-
塔木察格盆地位于蒙古国东部,是海拉尔-塔木察格盆地的二级构造单元。自 2005 年 5 月大庆油田对该盆地开展了一系列的勘探工作以来,相继钻遇多口工业油流井,取得实质性突破,证实该盆地是一个有利的含油盆地。近年来,为推动塔木察格盆地增储上产,持续开展成藏规律研究。塔木察格盆地自下而上由断陷构造层、断-坳转换构造层以及坳陷构造层叠合而成,经历 2 次强烈的构造运动[1-2],断裂活动贯穿其中,对盆地形成、沉积演化和成藏过程均有重要影响,也越来越受到专家和学者们的重视。反向断层和反转断层是2类比较典型的控藏断层,在世界范围内的多个盆地均有研究。前人从封闭条件、控圈面积、优势运移等角度进行了大量研究[3-8],认为与地层倾向相反的断层更易形成封闭条件优越的断块圈闭,反向断层控圈面积和幅度明显大于同向断层,反转断层作为油气运移通道对次生油气藏的形成具有重要作用,反转构造控制着圈闭的形成和油气的运移及保存。塔木察格盆地发育大量的反向断层和反转断层,与油气分布关系密切,但控藏机理尚不明确。为此,通过对盆地构造演化特征、生储盖配置关系、断裂发育规律及油气分布规律等方面的综合研究,探讨反向断层和反转断层对盆地油气成藏的控制作用,进而总结其成藏模式,以期有效指导勘探。
-
1 区域地质背景
-
1.1 构造单元划分
-
塔木察格盆地中部断陷带包括南贝尔凹陷和塔南凹陷。南贝尔凹陷总体呈北东走向,为西断东超的箕状断陷,可进一步分为东次凹、西次凹2个含油气构造单元;塔南凹陷为典型的东断西超复式箕状断陷,可进一步划分为西次凹、西部潜山断裂带、中部次凹和东次凹等构造单元[1] (图1)。
-
1.2 成藏组合特征
-
塔木察格盆地沉积地层年代主要是下白垩统,自上而下划分为青元岗组、伊敏组、大磨拐河组二段(大二段)、大磨拐河组一段(大一段)、南屯组二段(南二段)、南屯组一段(南一段)以及铜钵庙组[9-10],其中南一段可细分为上、中、下 3个亚段(图2)。研究区主要发育南一段中和上亚段2套全区分布的优质烃源岩[9],南一段下亚段烃源岩仅在局部地区发育。南一段中亚段为砂泥岩互层,整体沉积厚度不大,但互层状分布使得油气生成后易向外排烃,因此该套全区稳定分布的烃源岩具有较高的排烃效率。研究区共发育南一段上亚段泥岩和大一段泥岩 2 套区域性盖层。根据烃源岩、储层和盖层的组合关系,以南一段顶面和大一段顶面为界,塔木察格盆地纵向上可分为上、中、下 3 套含油气系统[11-12]。南一段油藏为主的下部含油气系统是盆地最重要的产油层系。
-
图1 塔木察格盆地构造分区
-
Fig.1 Tectonic division in Tamtsag Basin
-
1.3 构造演化特征
-
塔木察格盆地总体走向呈北北东向,由中新生代3期不同性质盆地叠合而成,分别为:铜钵庙组到南屯组为断(裂)陷构造层,大磨拐河组到伊敏组为断-坳转换构造层,青元岗组到古近系为坳陷构造层[13-15]。不同时期表现为不同的动力学机制。
-
从动力学角度看,引张作用导致地壳和岩石圈发生伸展变形。裂陷作用可理解为地壳和岩石圈受引张力作用,导致大规模开裂和断陷的地质作用过程[16],其动力学机制在不同阶段表现不同。根据引张力发生的原因,SENGOR 等将岩石圈裂陷作用机制分为主动和被动裂陷作用 2 种[17-18],塔木察格盆地同时存在2种动力学机制(图3)。
-
图2 塔木察格盆地含油气系统柱状图
-
Fig.2 Histogram of hydrocarbon system in Tamtsag Basin
-
被动裂陷作用由区域应力场引起,南一段中、下亚段沉积时期被动裂陷机制作用于盆地,活动的主干断层在局部控制裂陷盆地的形成,伴生了大量与主干控陷断层同向的次级断层,同时地层在不断发生掀斜翘倾,这些次级断层与地层倾向相反,为反向断层。以引张力为主,靠近控陷断层方向的地层发生沉降,而远离控陷断层方向的地层则发育掀斜隆起。南一段中和下亚段沉积末期均发生了断裂活动,前者活动强度大于后者。南一段下亚段沉积时期,盆地整体处于拉张环境,构造活动强度较弱,在局部区域发育与地层倾向相反的反向断层,由于翘倾发生局部的剥蚀而形成不整合。南一段中亚段沉积末期,被动裂陷作用再次引发构造变形,与南一段下亚段沉积时期作用过程相似,但构造运动更加活跃,反向断层形成数量更多、规模更大,伴随着下盘的掀斜隆起,为不整合面的形成奠定了基础。该时期盆地整体表现为振荡沉降,水体分布范围广,砂泥互层普遍发育。
-
主动裂陷和被动裂陷都是指岩石圈在水平引张力作用下的裂陷过程,两者区别在于引张力的形成是否由热隆起所引发[13,19-20]。南一段沉积晚期,主动裂陷机制开始主导盆地演化过程,岩石圈底下热物质上涌塑造了南东-北西方向的区域拉张应力场。南二段沉积末期,盆地经历了第 1 次强烈的构造运动,地层掀斜翻转活动频繁,为南二段顶部角度不整合的形成提供了条件,也形成了坳隆相间的构造格局,为后续的沉积充填奠定了古地貌基础。
-
图3 岩石圈裂陷作用示意(引自Wiki百科)
-
Fig.3 Schematic diagram of lithospheric rifting(Referred from Wikipedia)
-
进入大磨拐河组沉积时期,主动裂陷作用减弱,热物质停止上涌,构造活动恢复平静,盆地进入坳陷作用阶段。伊敏组沉积时期,盆地构造运动由静止逐渐加强。伊敏组二、三段沉积时期,盆地开启第2次强烈改造作用,不同于之前的拉张应力场,本次改造是右旋压扭应力场起主导作用,先期形成的南北向和北东向断层及背斜发生强烈反转,盆地全面回返,正反转断层、反转相关正断层以及各种背斜构造等多种类型的反转构造开始形成,同时也在坳陷构造层形成了大量密集分布的小断层。
-
2 油气藏类型及分布规律
-
2.1 油气藏类型及特点
-
塔木察格盆地不同含油气系统内油藏类型存在很大的差异。下部含油气系统油藏类型主要为反向断层遮挡型油藏,该类油藏控制的石油地质储量占该系统总储量约为 90%。中部含油气系统油藏类型以岩性-断层和岩性上倾尖灭为主,上部含油气系统以次生的岩性-断层油藏为主。
-
反向断层遮挡油藏多位于断陷盆地缓坡带的中下翘倾部位,侧向靠断层封堵[12,21-22],一般具有统一的油水界面,界面位置受断层侧向封闭能力控制;存在边水和底水,通常在断层附近的油井产量较高。
-
岩性-断层油气藏成藏规模较小,无统一的油水界面和边底水,油水横向变化快,岩性尖灭线和断层控制油藏平面分布。砂体受断层切割,形成岩性-断层圈闭,成藏期断层活动,油气快速充注至圈闭成藏。
-
岩性上倾尖灭油气藏,砂体上倾方向相变为泥岩或致密岩层,并被不渗透层包围形成油气藏,通常发育在缓坡带的中下部,物源主要来自缓坡带且伸向洼槽中心[8]。该油藏无统一的油水界面,岩性尖灭线控制油藏平面分布,油水横向变化较快,砂体向上倾方向尖灭,洼槽中心厚层泥岩生成的油气压力较大,由于储集体内压力较低,油气充注到岩性上倾尖灭圈闭中成藏。
-
2.2 油气分布特征
-
塔木察格盆地油气分布在 6 个构造单元,其中南贝尔凹陷东次凹北洼槽和塔南凹陷中部次凹油气最为富集,其次是南贝尔东次凹南洼槽和塔南凹陷东次凹,塔南凹陷西次凹油气较少(图1)。有效烃源岩范围覆盖全部储量区,且排烃强度越大的区域,已发现储量越多。南一段上亚段和大一段 2 套区域性泥岩盖层所封盖的油气储量分别占总储量的 72.5% 和 20%。因此,烃源岩和盖层对于塔木察格盆地的油气分布具有普遍的控制作用。但断层作为破坏盖层有效性最主要的因素,对于油气分布具有更加重要的意义。
-
2.2.1 油气纵向上呈互补分布
-
塔木察格盆地已发现储量纵向分布极不均衡,按石油地质探明储量统计,下部含油气系统约占总储量的70%,中部含油气系统约占20%,而上部含油气系统仅占10%左右(图2)。统计不同层位油气显示,上部次生含油气系统与下部原生含油气系统纵向上呈互补分布。南贝尔东次凹南洼槽多层位含油,下部含油气系统为工业油流的井,在上部往往未见显示;而上、中部含油气系统见工业油流的井,往往在下部含油气系统是差油层或不含油。统计塔南凹陷 3 个构造单元的油气生产情况,发现纵向上也呈互补分布的特点(图4)。西次凹和西部潜山断裂带有 16 口工业或低产油流井均分布在下部含油气系统,在上、中部含油气系统未见油;而在中部次凹的24口井中,油气分布相对复杂,8口井仅在下部含油气系统见工业或低产油流,11口井仅在上部含油气系统获工业或低产油流,1 口井下部获工业油流、上部获低产油流,1 口井下部获低产油流、上部获工业油流,仅塔52-斜1和塔69井在上、下含油气系统均产工业油流。
-
图4 塔木察格盆地塔南凹陷油气纵向分布统计
-
Fig.4 Vertical distribution of oil and gas in Tanan Sag,Tamtsag Basin
-
2.2.2 油气平面上呈条带分布
-
铜钵庙-南屯组沉积过程中,经历2次弱的构造活动形成了大量的反向断层,总体呈北东向展布,大部分在下部含油气系统中发育。南贝尔凹陷东次凹北洼槽南一段是勘探重点层位,已发现油藏相态为上油下水,发育一系列东倾的反向断层,南一段上亚段泥岩为反向断层西侧储层提供了良好的封堵条件,形成具有基本统一油水界面的反向断层遮挡油藏,沿反向断层呈北东向条带状展布。塔南凹陷中部次凹北洼槽为东段西超的箕状断陷,南一段发育一系列反向断层,形成多级断阶带,油气从洼槽中心向上倾方向运移,形成反向断块遮挡油藏,展布方向与反向断层一致(图1)。南贝尔凹陷东次凹南洼槽及塔南凹陷西部潜山断裂带、中部次凹和东次凹下部含油气系统均发育反向断层控制的油气富集带。
-
上部含油气系统获工业油流井较少,多分布在塔南凹陷中部次凹(图1),南贝尔凹陷东次凹北洼槽也有少量油气显示,大磨拐河组为主力目的层,工业油流井大多靠近反转断层分布,在反转断层切割砂体部位形成岩性-断层油气藏,并随砂体形态沿反转断层展布。
-
3 断裂控藏作用
-
3.1 反向断层控制下部含油气系统油气分布
-
分析下部含油气系统的油藏类型和油气分布规律,认为反向断层在塔木察格盆地油气成藏过程中具有重要作用。被动裂陷阶段盆地以伸展构造为主,主干控陷断层活动过程中,下降盘地层发生掀斜变形,同时形成了大量与控陷断层倾向相同、与地层倾向相反的反向断层,由此形成反向断层背靠低幅度隆起的构造模式。靠近控陷断层的凹陷部位持续沉降,而在远离控陷断裂的缓坡部位则表现为持续抬升。反向断层圈闭临近生烃凹陷,排烃后运移距离短,且处于油气运移的上倾方向,反向断层侧向封闭,油气在低隆起带上倾方向聚集成藏。解剖下部含油气系统油藏,认为反向断层遮挡型油藏是南贝尔凹陷东次凹北洼槽及塔南凹陷中部次凹北洼槽、中部次凹和西部潜山断裂带下部含油气系统的主要油藏类型,也控制了下部含油气系统大部分的储量。
-
反向断层遮挡圈闭能够成藏主要有 2 方面原因。首先,反向断层能够保持封闭状态,使圈闭完整性得以保存[16]。塔木察格盆地南一段中、下亚段以砂泥互层为主,地层断裂的过程中并未发生刚性错段,而形成了泥岩涂抹型断层核,使断裂带具备了封闭能力,随后期沉积充填过程的演化,不断压实埋深,断裂带的封闭能力逐渐增强。由于南一段上亚段和南二段区域塑性泥岩层的缓冲,在强烈构造运动时期,断至泥岩层内的三、四级反向控藏断层未发生明显活动,避免了油气沿断层侧向或垂向逸散。如塔 19-34 油藏,位于塔南凹陷西部潜山断裂带,受 TX22反向断层遮挡,形成具有油水界面的典型构造油藏,断层封闭性决定了烃柱高度。通过控藏断层的封闭性评价,TX22 断层具有较强封闭性,油藏未被后期构造活动破坏。其次,拉张环境下的控陷断层活动使断块发生掀斜旋转,远离控陷断层方向的地层翘倾隆起,受大气水淋滤和剥蚀形成了大量次生孔隙,成为反向断层背靠低幅度隆起的主要储集体[13,23-24]。
-
3.2 反转断层控制上部含油气系统油气分布
-
塔木察格盆地油气成藏主要有 2 个阶段。第 1 阶段为伊敏组沉积中期,南一段中和上亚段烃源岩大量生排烃,是中、下部含油气系统原生油藏的成藏关键时刻,断裂活动并不明显。第 2 阶段是伊敏组末期至青元岗组沉积时期[25],盆地回返,开始形成反转构造,在青元岗组沉积末期压扭作用进一步增强,盆地内数条断至基底的早期伸展断裂发生反转,向上断穿至青元岗组,断层原有的封闭性被破坏,成为油气二次运移的通道,将下部含油气系统原生油气藏的油气向上运移至上部含油气系统的岩性-断层圈闭内。分析油源[26-27],发现塔南凹陷上部次生油藏中的油气与下部原生油藏中的油气具有较强相关性。而且上部含油气系统的油气多分布在早伸中扭晚反转断层附近,与反转期时间上的匹配以及储集体与反转断层空间上的匹配共同控制了上部含油气系统的油气聚集部位,形成南贝尔东次凹南洼槽塔 19-67—塔 19-69和塔南凹陷中部次凹大磨拐河组油气聚集带(图5)。南贝尔凹陷东次凹北洼槽未发生反转[28-29],下部油气藏得以很好的保存。
-
4 油气成藏模式
-
4.1 反向断层背靠低隆起油气成藏模式
-
该成藏模式可以概括为“三期造储”、“三面组合”[15,22]。“三期造储”是相互匹配的 3 个时间要素,即反向断层掀斜变形、下盘翘倾抬升及大气水淋滤剥蚀相继发生,为优质储层的形成提供了条件[30-33]。 “三面组合”是指相互匹配的 3 个空间要素,反向断层提供侧向封闭条件,不整合面提供油气运移通道[24],区域性盖层提供垂向上的封盖条件,3个空间要素的结合使油藏得以完整保存。
-
图5 塔南凹陷塔19-20—塔97井油藏剖面
-
Fig.5 Wells Ta19-20-Ta97 hydrocarbon accumulations profile in Tanan Sag
-
该成藏模式主要发育在下部含油气系统,伊敏组沉积中期是成藏的关键时刻。烃源岩生烃后先经过短距离侧向运移进入临近砂体,大量的油气通过不整合面或开启的断层运移,或在断层两盘源储对接处发生侧向运移。由于大气水淋滤、剥蚀等作用,使研究区储层次生孔隙较为发育,反向断层在侧向起到封闭遮挡作用,不整合在垂向上同样具有一定遮挡作用,区域性盖层为上覆的南一段上部泥岩层。油藏大多靠近生烃凹陷或位于生烃凹陷内,油气短距离初次运移或沿低隆起不整合面运移,遇到反向断层遮挡圈闭聚集成藏,断层侧向封闭能力控制油水界面(图6)。
-
4.2 反转断层控制次生油气成藏模式
-
塔木察格盆地上部含油气系统储量规模小,以反转断层控制的次生油气藏为主。油气主要来自于下部原生古油藏破坏后的二次运移,反转期断裂活动破坏古油藏,油气沿反转断层向上运移。大磨拐河组辫状河三角洲沉积为油气藏提供了储集条件。大磨拐河组泥地比很高,属于自盖型。圈闭多为断层切割扇体形成的断层-岩性复合圈闭,反转断层-砂体构成了伞形输导体系(图6)。
-
5 结论
-
塔木察格盆地主要发育反向断层遮挡、岩性-断层复合油气藏及岩性上倾尖灭 3 种油气藏类型,油气纵向具有互补分布的特点,反向断层和反转断层分别控制下部和上部含油气系统,使其油气呈条带状分布。
-
塔木察格盆地发育反向断层背靠低隆起和反转断层控制次生油气成藏2种模式。反向断层背靠低隆起是指通过掀斜变形期、下盘抬升期和淋滤剥蚀期的时间匹配,以及反向断层、不整合面和区域盖层的空间配置,造就了这种下部含油气系统的典型成藏模式,控制了下部含油气系统大部分的储量。反转断层控制油气次生成藏是指反转断层破坏下部原生古油藏,油气向上二次运移至岩性-断层圈闭中聚集成藏,是上部含油气系统油气成藏的主要类型。
-
图6 塔木察格盆地油气成藏模式
-
Fig.6 Hydrocarbon accumulation mode of Tamtsag Basin
-
参考文献
-
[1] 曹瑞成,朱德丰,陈均亮,等.海拉尔—塔木察格盆地构造演化特征[J].大庆石油地质与开发,2009,28(5):39-43.CAO Ruicheng,ZHU Defeng,CHEN Junliang,et al.Structural evolution features of Hailaer-Tamtsag basin[J].Petroleum Geolo⁃ gy & Oilfield Development in Daqing,2009,28(5):39-43.
-
[2] 崔鑫,姜洪福,王运增,等.海拉尔盆地贝尔凹陷中部隆起带控藏因素及成藏模式[J].断块油气田,2018,25(5):555-558.CUI Xin,JIANG Hongfu,WANG Yunzeng,et al.Control factors and accumulation modes of central uplift belt in Beier Sag,Hailar Basin[J].Fault-Block Oil and Gas Field,2018,25(5):555-558.
-
[3] 谯汉生,牛嘉玉,王明明.中国东部深部层系反向断层遮挡聚油原理与勘探实践[J].石油勘探与开发,1999,26(6):10-13.QIAO Hansheng,NIU Jiayu,WANG Mingming.The principle and exploration practice of hydrocarbon accumulation sealed by back⁃ ward faults in deep formations of eastern China[J].Petroleum Ex⁃ ploration and Development,1999,26(6):10-13.
-
[4] CLOOS V H.Über antithetische Bewegungen[J].Geologische Rundschau,1928,19(3):246-251.
-
[5] BARTH T F W.Structural and petrologic studies in Dutchess County,New York:PartⅡ.Petrology and metamorphism of the Pa⁃ leozoic rocks[J].Geological Society of America Bulletin,1936,47(5/8):775-856.
-
[6] 郭志强,王海学,赵政权,等.同向和反向断层形成机制及控圈作用差异性[J].大庆石油地质与开发,2017,36(3):1-6.GUO Zhiqiang,WANG Haixue,ZHAO Zhengquan,et al.Forming mechanism of the synthetic and antithetic faults and differences of their controlling action on the traps[J].Petroleum Geology & Oilfield Development in Daqing,2017,36(3):1-6.
-
[7] 苑京文,贾东,王毛毛,等.下扬子句容断陷盆地负反转构造特征及对油气的控制[J].地质论评,2015,61(5):1 047-1 060.YUAN Jingwen,JIA Dong,WANG Maomao,et al.Structural char⁃ acteristics of negative inversion structure and its controls on oil and gas in Jurong Basin of Yangtze area[J].Geological Review,2015,61(5):1 047-1 060.
-
[8] HASSAN W M,FARWA A G,AWAD M Z.Inversion tectonics in central Africa rift system:Evidence from the Heglig Field[J].Ma⁃ rine and Petroleum Geology,2017,80:293-306.
-
[9] 曹瑞成,李春柏,蒋鸿亮,等.海拉尔—塔木察格盆地地质特征与油气富集规律[J].大庆石油地质与开发,2014,33(5):124-130.CAO Ruicheng,LI Chunbai,JIANG Hongliang,et al.Geological characteristics and hydrocarbon enriching rules for Hailer-Tamut⁃ sag Basin[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2014,33(5):124-130.
-
[10] 黄鹤,徐衍彬.油气穿过断盖配置散失部位的预测方法[J].特种油气藏,2018,25(5):19-23.HUANG He,XU Yanbin.Loss prediction of hydrocarbon across fault-caprock configuration[J].Special Oil & Gas Reservoirs,2018,25(5):19-23.
-
[11] 朱日房,张林晔,李政,等.陆相断陷盆地页岩油资源潜力评价——以东营凹陷沙三段下亚段为例[J].油气地质与采收率,2019,26(1):129-136.ZHU Rifang,ZHANG Linye,LI Zheng,et al.Evaluation of shale oil resource potential in continental rift basin:A case study of Lower Es3 Member in Dongying Sag[J].Petroleum Geology and Recovery Efficiency,2019,26(1):129-136.
-
[12] WANG Hongyu,CHEN Mo.The Reservoir controlling model of an⁃ tithetic faults in Tamtsag basin,Mongolia[J].IOSR Journal of En⁃ gineering,2016,6(1):53-57.
-
[13] 付晓飞,陈哲,闫百泉,等.海拉尔-塔木察格盆地中部断陷带油气富集主控因素分析——断层和盖层双控模式[J].中国科学:地球科学,2013,43(8):1 338-1 351.FU Xiaofei,CHEN Zhe,YAN Baiquan,et al.Analysis of main con⁃ trolling factors for hydrocarbon accumulation in central rift zones of the Hailar-Tamtsag Basin using a fault-caprock dual control mode[J].Scientia Sinica Terrae,2013,43(8):1 338-1 351.
-
[14] 吕海涛,张哨楠,马庆佑.塔里木盆地中北部断裂体系划分及形成机制探讨[J].石油实验地质,2017,39(4):444-452.LÜ Haitao,ZHANG Shaonan,MA Qingyou.Classification and for⁃ mation mechanism of fault systems in the central and northern Tarim Basin[J].Petroleum Geology & Experiment,2017,39(4):444-452.
-
[15] 于海涛,孙雨,孙同文,等.断-砂复合输导体系及优势输导通道表征方法与应用[J].油气地质与采收率,2019,26(5):31-40.YU Haitao,SUN Yu,SUN Tongwen,et al.Characterization meth⁃ ods and application of fault-sandstone composite transport system and dominant migration pathways[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(5):31-40.
-
[16] 陆克政,朱筱敏,漆家福.含油气盆地分析[M].北京:中国石油大学出版社,2006:55-95.LU Kezheng,ZHU Xiaomin,QI Jiafu.Oil and gas basin analysis [M].Beijing:China University of Petroleum Press,2006:55-95.
-
[17] SENGOR A M C.Sedimentation and tectonics of fossil rifts[C]//BUSBY C J,INGERSOLL R V,eds.Tectonics of sedimentary ba⁃ sins.Cambridge:Blackwell Science Inc,1995:53-124.
-
[18] BURKE K.Evolution of continental rift systems in the light of plate tectonics[C]//RAMBERG I B,NEUMANN E R.Tectonics and geophysics of continental rifts.Dordrecht:D Reidel Publishing Company,1978:1-9.
-
[19] 宋明水,王惠勇,张云银.济阳坳陷潜山“挤-拉-滑”成山机制及油气藏类型划分[J].油气地质与采收率,2019,26(4):1-8.SONG Mingshui,WANG Huiyong,ZHANG Yunyin“.Extrusion,tension and strike-slip”mountain-forming mechanism and reser⁃ voir type of buried hills in Jiyang Depression[J].Petroleum Geolo⁃ gy and Recovery Efficiency,2019,26(4):1-8.
-
[20] 马晓鸣.高邮凹陷构造特征研究[D].青岛:中国石油大学(华东),2009.MA Xiaoming.Research of structureal characteristics of Gaoyou depression[D].Qingdao:China University of Petroleum(East Chi⁃ na),2009.
-
[21] 孟令东.塔南凹陷断层封闭性综合定量评价[D].大庆:东北石油大学,2012.MENG Lingdong.Integrated evaluation of fault seal in Tanan de⁃ pression[D].Daqing:Northeast Petroleum University,2012.
-
[22] 李志鹏,卜丽侠.油田开发过程中断层纵向封闭性解析方法及应用[J].断块油气田,2018,25(2):190-195.LI Zhipeng,BU Lixia.Fault vertical sealing analysis method and application in oilfield development process[J].Fault-Block Oil and Gas Field,2018,25(2):190-195.
-
[23] 付晓飞,王勇,渠永红,等.被动裂陷盆地油气分布规律及主控因素分析——以塔木察格盆地塔南坳陷为例[J].地质科学,2011,46(4):1 119-1 131.FU Xiaofei,WANG Yong,QU Yonghong,et al.The law of oil and gas distribution and mainly controlling factors of the passive rift basin:The Tanan depression of Tamuchage Basin[J].Chinese Journal of Geology,2011,46(4):1 119-1 131.
-
[24] 胡胜男.油气垂向与侧向运移互换条件及特征的差异性[J].大庆石油地质与开发,2018,37(5):22-26.HU Shengnan.Differences of the interchangeable conditions and characteristics for petroleum vertical and lateral migrations[J].Pe⁃ troleum Geology & Oilfield Development in Daqing,2018,37(5):22-26.
-
[25] 王洪宇.乌尔逊凹陷大磨拐河组油分布规律及控制因素[J].大庆石油地质与开发,2012,31(6):30-35.WANG Hongyu.Oil distribution laws and their controlling factors of Damoguaihe Formation in Urxun Sag[J].Petroleum Geology & Oilfield Development in Daqing,2012,31(6):30-35.
-
[26] 王铁冠,龚剑明.中国中—新元古界地质学与油气资源勘探前景[J].中国石油勘探,2018,23(6):1-9.WANG Tieguan,GONG Jianming.Meso-Neoproterozoic geology and petroleum resources prospect in China[J].China Petroleum Exploration,2018,23(6):1-9.
-
[27] 孙志慧.海拉尔盆地贝尔凹陷油气资源评价[D].大庆:东北石油大学,2011.SUN Zhihui.The petroleum resource estimation of the Baier Sag in Hailer Basin[D].Daqing:Northeast Petroleum University,2011.
-
[28] 刘绍军,高庚,朱德丰,等.蒙古国塔木察格盆地南贝尔凹陷早白垩世断裂发育和盆地演化[J].大地构造与成矿学,2015,39(5):780-794.LIU Shaojun,GAO Geng,ZHU Defeng,et al.Early cretaceous fracturing and basin evolution of the South Buir Sag of the Tamt⁃ sag Basin in Mongolia[J].Geotectonica et Metallogenia,2015,39(5):780-794.
-
[29] 樊晓东,李忠权,陈国飞,等.井震联合断层识别技术在南贝尔凹陷东次凹中的应用[J].成都理工大学学报:自然科学版,2018,45(5):640-648.FAN Xiaodong,LI Zhongquan,CHEN Guofei,et al.Application of joint well-seismic technique to fault interpretation in Southern Beier Sag,Hailaer Basin,China[J].Journal of Chengdu Universi⁃ ty of Technology:Science & Technology Edition,2018,45(5):640-648.
-
[30] 王海学,王凤兰,吴桐,等.断裂垂向分段生长在油气勘探开发中的应用及发展趋势[J].地球物理学进展,2019,34(6):2 336-2 345.WANG Haixue,WANG Fenglan,WU Tong,et al.The trends and application of fault vertically segmented growth in the hydrocar⁃ bon exploration and Production[J].Progress in Geophysics,2019,34(6):2 336-2 345.
-
[31] 贾茹,付晓飞,孟令东,等.断裂及其伴生微构造对不同类型储层的改造机理[J].石油学报,2017,38(3):286-296.JIA Ru,FU Xiaofei,MENG Lingdong,et al.Transformation mech⁃ anism of fault and its associated microstructures for different kinds of reservoirs[J].Acta Petrolei Sinica,2017,38(3):286-296.
-
[32] 刘志达,付晓飞,孟令东,等.高孔隙性砂岩中变形带类型、特征及成因机制[J].中国矿业大学学报,2017,46(6):1 267-1 281.LIU Zhida,FU Xiaofei,MENG Lingdong,et al.Types,characteris⁃ tics and genetic mechanism of deformation bands in hign-porous sandstone[J].Journal of China University of Mining & Technolo⁃ gy,2017,46(6):1 267-1 281.
-
[33] BROGI A.Variation in fracture patterns in damage zones related to strike-slip faults interfering with pre-existing fractures in sand⁃ stone[J].Journal of Structural Geology,2011,33(4):644-661.
-
摘要
塔木察格盆地是大庆油田海外重要的油气资源生产基地。基于盆地构造运动的动力学性质及构造演化特征,自下而上将盆地划分为断陷层、断-坳转换层和坳陷层3个构造层,断陷阶段的被动裂陷作用使地层发生掀斜隆起,从而形成大量与地层倾向相反的反向断层;伊敏组沉积末期,在区域压扭应力场作用下,盆地发生强烈反转,形成了大量早期伸展中期压扭晚期反转的断层。分析已钻探的油气藏类型及其分布规律,认为反向断层和反转断层对油气藏的形成具有控制作用。根据生储盖组合的配置关系,盆地纵向上划分为上、中、下3套含油气系统,不同含油气系统间油气呈互补分布,其中以南一段为主的下部含油气系统是最重要的产油层系,油藏类型以反向断层遮挡的油气藏为主;平面上受控于控藏断层,下部油气主要沿反向断层呈条带状分布,上部油气大多靠近反转断层聚集。分析反向断层和反转断层的控藏机理,认为研究区发育反向断层背靠低隆起油气成藏和反转断层控制次生油气成藏2种成藏模式。
Abstract
Tamtsag Basin is an important overseas hydrocarbon production base of Daqing Oilfield. Based on the dynamic properties and the tectonic evolution characteristics of the tectonic movement in the basin,the basin is divided into three structural strata from the bottom to the top,including fault-depression,fault-depression transformation,and depression. During the fault-depression,the passive rifting titled and uplifted the strata,to form a large number of antithetic faults which were opposite to the stratigraphic tendency. At the end of the deposition of Yimin Formation,the basin was strongly reversed under the action of regional compressive and torsional stress field,and many faults were formed with extension, compression,and torsion step by step. By analyzing the types and distribution of drilled hydrocarbon reservoir in the basin, it is believed that antithetic faults and reverse faults control the hydrocarbon accumulation.According to the configuration relationship of source-reservoir-caprock association,the basin is divided vertically into upper,middle,and lower three sets of hydrocarbon systems. The distribution of hydrocarbon in different systems is complementary,the lower hydrocarbon sys- tem dominated by the first member of Nantun Group is the most important producing layer,and the reservoir type is mainly blocked by reverse fault. In the plane,hydrocarbon distributions are controlled by faults. Hydrocarbon is mainly arranged as a“strip”along the antithetic fault in the lower system and gathered near the reverse fault in the upper system. By analyz- ing the controlling mechanism of antithetic faults and reverse faults,two kinds of hydrocarbon accumulation mode are sum- marized,including the lower uplift hydrocarbon accumulation backed by antithetic fault and the secondary hydrocarbon ac-cumulation controlled by the reverse fault in research area.