-
石油是全球最重要的能源资源和基础化工原料,是人类社会赖以生存和发展的重要物质基础,占世界一次能源消费总量的三分之一。随着当代社会的不断发展,人类对石油资源需求的不断提高,石油成为国际社会争夺最为激烈的战略资源,在国家经济发展中发挥着举足轻重的作用。据《中国油气产业发展分析与展望报告蓝皮书(2018— 2019)》显示,2018 年,中国石油产量连续第 3 年下滑,降至 1.89×108 t;石油净进口量达 4.62×108 t,比 2017 年增长 10.9%,对外依存度逼近 70%。目前中国大多数油田已经进入三次采油阶段,因此如何有效开发油田、提高采收率是迫在眉睫的事情。三次采油主要分为化学驱油、热力采油、气驱采油以及微生物采油等方法,而化学驱油又是三次采油的核心[1]。随着化学驱油技术的发展以及对驱油新材料要求的不断提高,研究和开发驱油新材料成为三次采油的重要课题[2]。
-
驱油新材料主要解决液/固界面与液/液界面的问题。在液/固界面中,以“荷叶效应”的微/纳米二元结构为理论依据,驱油新材料对固体界面进行修饰改性,构筑岩石表面微观形貌,改变岩石表面润湿性。液/液界面要求驱油新材料具有很高的界面活性,较好地降低油/水界面张力。要满足两个界面的需求,耐温抗盐新型驱油功能材料日益受到科研工作者的重视。金属纳米因其成本高,环保问题难以解决,很难应用于三次采油提高采收率。笼型多面体低聚倍半硅氧烷(POSS)作为一种具有明确结构的纳米材料,在无机功能材料与有机硅聚合物之间架起了桥梁,是设计合成这类驱油新材料的重要单体。POSS分子以无机硅氧烷为骨架,具有良好的稳定性,而有机基团提供了功能化基团,用于进一步修饰、接枝或聚合,使其应用领域更加广泛。在前人研究成果的基础上,系统地综述了 POSS 单体的合成方法,运用这些方法,设计合成了基于单官能团、多官能团和双官能团的 POSS 单体。同时进一步阐述了基于 POSS单体复合新材料在三次采油等方面的应用,并对 POSS 单体在驱油新材料中的发展趋势及前景进行了展望。
-
1 POSS单体的合成
-
倍半硅氧烷是一种有机硅化合物,其分子式为 (RSiO3/2)n(R通常为氢、烷基、芳基、环氧或氨基)[3]。具有相同分子结构或相同摩尔质量的倍半硅氧烷可以有多个异构体,其结构遵循(RSiO3/2)n,其中n一般为6,8和10等[4]。其结构可以从线性聚合物到不完全缩合笼形聚合物,再到更有序的笼形聚合物[5]。六面体是这些化合物中最具代表性的分子结构,分子式为(RSiO3/2)8,被称为笼型多面体低聚倍半硅氧烷[6] (图1)。
-
图1 六面体POSS的一般特征
-
Fig.1 General features of hexahedral POSS
-
POSS化合物可分为功能化POSS化合物和非功能化POSS化合物。由于非功能化的POSS化合物无反应性基团,只能作为一种单独的杂化材料使用,很难进行下一步的接枝或改性。因此,本文只讨论具有活性基团的功能化POSS化合物。
-
1.1 POSS化合物的发展简史
-
1946 年,SCOTT 研究了以盐酸为催化剂,二甲基二氯硅烷和甲基三氯硅烷在丁醇/甲苯混合溶液中的水解缩合反应[7]。虽然他没有得到今天为人所熟知的具有规则结构的笼型倍半硅氧烷,但这些化合物已经有了三维结构的原型。因此,人们仍然认为他是笼型倍半硅氧烷的发现者。
-
1965 年,BROWN 等以苯基三氯硅烷和环己基三氯硅烷为反应单体,合成了八环己基POSS[8] 和八苯基POSS[9],并系统研究了反应机理及中间产物,首次发现不完全凝聚的三硅烷醇(C6H11)7Si7O9(OH)3,为进一步功能化提供了可行性。
-
20世纪90年代中期,美国空军研究实验室开发了一种由多面体低聚倍半硅氧烷组成的纳米结构混合体系,以满足空军对新一代超轻高性能聚合物材料的需求[10]。这在一定程度上促进了有机/无机复合材料的发展,为 POSS 化合物开辟了新的应用领域。
-
1998年,Hybrid Plastics公司从美国空军研究实验室分离,此后 POSS 化合物的生产和销售逐渐商业化,应用范围越来越广。目前Hybrid Plastics公司仍然是POSS领域最重要的原材料供应商。
-
1.2 单官能团POSS化合物
-
1.2.1 共水解法
-
共水解法是指通过氯硅烷或烷氧基硅烷的共水解缩合反应制备单官能团 POSS化合物。这是制备 POSS 化合物最简单直接的方法,相当大比例的单官能团 POSS化合物可以通过此方法合成。但也有一定的缺陷,包括反应时间长,有时长达3个月甚至半年,而且产率通常低于 50%。笼形结构的形成通常是一个复杂的过程,需要严格控制几个条件。当 RSiY3 和 R'SiY3 的摩尔比为 7∶1 时,单官能团 POSS 化合物在混合物中所占的比例最高[11]。而单官能团 POSS 化合物的产率取决于初始单体的性质、初始单体的浓度、溶剂的性质、催化剂的种类、温度和加水的比例[12]。
-
CHEN 等通过烷氧基硅烷共水解缩合法,制备了单官能团 POSS化合物[13]。以乙烯基三甲氧基硅烷(VTS)和正丙基三甲氧基硅烷(PTS)为原料,浓盐酸为催化剂,甲醇回流 3 d,得到单乙烯基七丙基 POSS(图2)[13],产率为32%。
-
1.2.2 官能团取代法
-
官能团取代法是指以带有活性基团的 POSS 和活性单体为原料,制备单官能团 POSS 化合物的方法。该法一般适用于含有活泼氢原子或是碳碳不饱和键的活性基团,通过有机化学中的硅氢加成反应,将所需的官能团引入到 POSS 单体中[14]。陈明将单乙烯基七丙基 POSS 溶于甲苯,在氯铂酸/异丙醇溶液催化下,常温下活化 1 h;然后点滴加入甲基氢二氯硅烷,升温反应 16~20 h,得到 β-乙基甲基二氯七丙基POSS(图3)[15]。KAZMIERCZAK等提出通过十二羰基三钌催化单官能团 POSS单体与氢硅烷中间体的脱氢偶联反应,合成一系列单官能团 POSS化合物,此方法高效、简便[16]。
-
1.2.3 顶角盖帽法
-
顶角盖帽法是指不完全缩合的倍半硅氧烷 R7Si7O9(OH)3与三氯硅烷或三烷氧基硅烷反应,合成完全缩合的单官能团 POSS化合物。该法由于反应的副产物少、提纯简单而得到广泛关注。顶角盖帽法的核心在于不完全缩合的三硅醇 POSS的合成及盖帽单体的选择。R 主要是一些不活泼的官能团,如环戊基、环己基、苯基和异丁基等;R'为活泼的官能团,可以是氢、卤素、氨基、烯基和环氧基。合成不完全缩合的三硅醇主要有不完全水解缩合法和顶角打开法两种。
-
不完全水解缩合法以三氯硅烷或三烷氧基硅烷为原料,通过控制反应过程中加水量、反应温度和反应时间等,直接制得 R7Si7O9(OH)3(图4)。FE⁃ HER 等从不完全缩合的三硅醇开始研究了这种方法[17],而四硅醇化合物 R6Si6O7(OH)4也为人所知和利用[17-19]。YE 等快速简便合成了不完全缩合七异丁基三羟基 POSS、不完全缩合七异辛基三羟基 POSS 和不完全缩合七苯基三羟基 POSS,惰性基团 R 既可以是短链脂肪烃或长链脂肪烃,也可以是芳香烃[20]。该方法反应时间相对较短,产率也高于 FEHER 等的方法。JANOWSKI 等通过微波辅助的方法,将苯基三氯硅烷在丙酮水溶液中反应30 h,得到不完全缩合七环戊基三羟基 POSS[21]。与常规加热反应产率为 14.63% 相比,产率提高至 16.26%,并缩短了反应时间。
-
顶角打开法是指完全缩合的笼型倍半硅氧烷在强酸或强碱的作用下,选择性地打开其中一个顶点,得到不完全缩合的R7Si7O9(OH)3(图5)。该方法对 R 基团的选择没有要求,具有较好的普适性。R 基团既可以是环己基和环戊基等位阻较大的官能团,也可以为甲基和乙烯基等位阻较小的官能团,因此受到科学工作者的广泛关注。张锐等以乙腈为反应溶剂,以环己基三氯硅烷为原料,通过水解缩合反应合成得到纯净的 T6(C6H11)Si6O8 [19]。通过控制反应时间,将(C6H11)Si6O8溶解在四氢呋喃中,并加入质量分数为 25% 的四甲基氢氧化铵水溶液为催化剂,碱性条件下制得四硅醇。结果表明,此法为双官能团 POSS化合物的设计合成开辟了一条简单可行的新途径。
-
图2 单乙烯基七丙基POSS的制备[13]
-
Fig.2 Synthesis of T8(CH=CH2)(CH2CH2CH3)7 [13]
-
图3 β-乙基甲基二氯七丙基POSS的制备[15]
-
Fig.3 Synthesis of T8[(CH2)2SiCl2CH3](CH2CH2CH3)7 [15]
-
图4 不完全水解缩合法合成示意
-
Fig.4 Schematic diagram of incomplete hydrolysis condensation synthesis
-
图5 顶角打开法合成示意
-
Fig.5 Schematic diagram of corner-opening synthesis
-
顶角盖帽法是利用不完全缩合的倍半硅氧烷 R7Si7O9(OH)3中所含有的活泼羟基与三氯硅烷、三烷氧基硅烷或某些金属化合物反应,将活泼官能团或金属原子引入到 POSS 笼型结构中,得到性能各异的单官能团POSS化合物(图6)。WHEELER等以不完全缩合七苯基三羟基 POSS 为原料,置于干冰/丙酮浴中,加入氨丙基三甲氧基硅烷,制得氨丙基七苯基 POSS[22]。KOH 等首先通过不完全缩合七 (三氟丙基)三羟基 POSS 在氢氧化钠作用下,合成出不完全缩合的三钠盐,然后和带有活性基团的乙酰氧基乙基三氯硅烷进行顶角盖帽得到单官能团 POSS[23]。ZENG 等通过七(三氟丙基)POSS 三钠盐与三氯氢硅顶角盖帽得到七(三氟丙基)氢基POSS; 将其产物再与烯丙基缩水甘油醚(AGE)进行硅氢加成反应,最终得到七(三氟丙基)缩水甘油醚氧丙基 POSS(图7)[24]。此外,不完全缩合倍半硅氧烷的顶角盖帽反应为金属元素引入硅氧骨架开辟了一条途径[25-27]。
-
图6 顶角盖帽法合成示意
-
Fig.6 Schematic diagram of corner-capping synthesis
-
1.3 多官能团POSS化合物
-
多官能团 POSS 化合物包含三个或三个以上的反应性官能团,官能团可以相同也可以不同。由于该类型的合成较为复杂。因此,本节只讨论具有八个反应性基团的 POSS 化合物,研究最多的为八氢基POSS、八乙烯基POSS和八苯基POSS。
-
目前最常用的制备八氢基 POSS 是 AGASKAR 等以三氯氢硅为原料,在三氯化铁的催化作用下水解制得,分离副产物后产率为17.5%[28]。CRIVELLO 等在含氯化铁、稀盐酸和甲苯的反应器中连续加入三氯氢硅,在氮气保护下得到八氢基 POSS,水解缩合反应产率可达 23%[29]。虽然八氢基 POSS 可能是其他 T8 POSS 衍生物的一个非常有用的前驱体,但其合成的低产率阻碍了其广泛应用。
-
图7 七(三氟丙基)缩水甘油醚氧丙基POSS的制备[24]
-
Fig.7 Synthesis of T8[(CH2)3OCH2CH(O)CH2](CH2CH2CF3)7 [24]
-
薛裕华等在 AGASKAR[28]的方法上进行了改进[30]。以乙烯基三氯硅烷为原料,无水氯化铁和浓盐酸为催化剂,甲醇-石油醚-二氯甲烷为溶剂,经水解缩合得到八乙烯基 POSS,此反应时间短,产率为 34.7%。张万里等以乙烯基三甲氧基硅烷为原料,乙酸乙酯为溶剂,盐酸为催化剂,通过水解缩合重结晶合成了八乙烯基 POSS[31]。原料乙烯基三甲氧基硅烷相比于三氯硅烷,在常温下相对稳定,沸点更高,反应条件比较温和,腐蚀性也比较小,更容易储存。葛铁军等以乙烯基三甲氧基硅烷和乙烯基三乙氧基硅烷为原料,通过改变反应体系得到了更高产率、更纯净的八乙烯基POSS[32]。
-
NI等首先对苯基三氯硅烷进行水解,得到阶梯状聚苯基硅氧烷树脂;然后在苄基三甲基氢氧化铵催化下对其进行重排反应,得到八苯基 POSS;再以八苯基 POSS为原料,经发烟硝酸硝化,得到中间体八硝基苯基POSS,最后在钯碳催化剂和甲酸的作用下,将八硝基苯基POSS还原为八氨基苯基POSS(图8)[33]。硝基的引入使苯环活性大大增加,由此可衍生出多种含苯基的笼型倍半硅氧烷。
-
1.4 双官能团POSS化合物
-
由于单官能团 POSS 化合物仅有一个反应性官能团,不能作为桥联基团,只能作为功能单体应用于新型驱油功能材料。多官能团 POSS化合物则至少有三个反应性官能团,很难控制反应官能团的位置及数目,容易发生交联聚合,难以得到目标产物。因此,双官能团 POSS 化合物是新型驱油功能材料的一种理想单体,它包含六个相同的惰性官能团和两个反应性官能团。根据化合物改性的需要,这两个反应性官能团可以相同,也可以不同。双官能团 POSS单体既可以改善新型驱油功能材料的性质,提高其耐温抗盐能力,又可以作为桥联基团连接新材料,同时也可作为功能单体单独使用。合成双官能团 POSS化合物的难度在于精确控制反应性官能团在笼中的种类、数目及位置,科学工作者对此进行了大量的研究。
-
1.4.1 取代基种类相同的双官能团POSS化合物
-
陈超等以甲基三甲氧基硅烷(MTS)和乙烯基三甲氧基硅烷(VTS)为原料,在浓盐酸催化下,通过共水解法合成了二乙烯基六甲基POSS(图9)[34]。
-
1.4.2 取代基种类不同的双官能团POSS化合物
-
CARNIATO 等在同一笼结构上合成具有两种不同官能团的 Ti-NH2 POSS 化合物,通过两步反应理论上可得到 88% 的双功能化产物。同时将金属元素引入硅氧骨架,金属原子占据笼型的一个顶点而非取代基,成为笼型结构的一部分(图10)[35]。
-
1.4.3 取代基位置不同的双官能团POSS化合物
-
张锐以 T6(C6H11)6Si6O8和氨丙基三乙氧基硅烷为原料,质量分数为25%的四甲基氢氧化铵水溶液为催化剂,通过顶角盖帽反应合成了邻二氨丙基六环己基 POSS(图11)[36]。KAZMIERCZAK 等通过三氟甲磺酸铜(Ⅱ)催化双官能团 POSS单体与氢硅烷中间体的脱氢偶联反应,合成一系列邻双官能团 POSS化合物[37]。
-
图8 八氨基苯基POSS的制备[33]
-
Fig.8 Synthesis of T8(C6H4NH2)8 [33]
-
图9 二乙烯基六甲基POSS的制备[34]
-
Fig.9 Synthesis of T8(CH=CH2)2(CH3)6 [34]
-
图10 Ti-NH2 POSS的制备[35]
-
Fig.10 Synthesis of T8[(Ti)(CH2CH2CH3)][(CH2)3NH2](C3H7)6 [35]
-
图11 邻二氨丙基六环己基POSS的制备[36]
-
Fig.11 Synthesis of T8[(CH2)3NH2]2(C6H11)6 [36]
-
1.4.4 线性双官能团POSS化合物
-
近年来,合成了一种新型的 POSS衍生物,双夹板形笼型倍半硅氧烷(DDSQ),它具有两个反应性的氢基团,为双官能团 POSS 化合物的合成提供了新思路。DDSQ 在卡斯特催化剂的作用下,与多种含有碳碳双键的化合物进行硅氢加成反应[38-40]。将 DDSQ 串联在线性聚合物的主链上,从而有效地提高了原聚合物材料的热稳定性、机械强度和疏水性[41]。CAO 等合成了单链 DDSQ 和支化聚合物 DDSQ 两种含有环氧基团的 POSS 衍生物[42]。单链 DDSQ结构更加灵活,环氧树脂的增韧性能更好,而支化聚合物 DDSQ 具有更好的耐热性能。此外, DDSQ使环氧树脂的表面由亲水性变为疏水性。
-
2 POSS单体的应用进展
-
2.1 基于POSS单体结构设计进展
-
利用分子动力学模拟和量子力学的计算方法,来确定反应过程的机理、中间产物以及最终产物可能的空间构型,从而确定 POSS单体最稳定、最合理的结构类型。它不仅能为杂化材料制备提供可行的设计方案及理论依据,同时也能为新材料的研发提供科学的理论指导[43]。PEREIRA等研究表明,不同的硅氧烷具有不同的特征参数,通过几何参数计算出总能量,进而表征了POSS分子结构的相对稳定性,从而确定每个 POSS 分子的单一结构类型[44-45]。胡立江等运用量子力学计算的方法,得到各种结构的几何参数和分子系统的总能量。在此基础上计算发现,笼形结构具有较高的对称性,T8 POSS只存在于笼形结构中[46]。该结构的总能量最低,比其他异构体更稳定。POSS 单体由于其良好的三维结构和优异的物化性能,在纳米复合材料和聚合物的制备与改性中得到重要应用,因此受到科学工作者的广泛关注。运用分子模拟手段进行分子结构设计及构效关系研究,选择合适方法,制备性能各异的官能团POSS化合物,以满足不同领域的使用要求。合成 POSS化合物面临的主要挑战是开发一条简单而高产的合成路线,以及精确控制取代基在 POSS 笼中的取代位置。由于化合物的合成较为复杂,单一产品的合成难度较大,目前开发还处于起步阶段,报道的类型较少。如果能够满足这些挑战,可以预见POSS在复合材料领域的应用将取得更大进展。
-
2.2 基于POSS单体制备复合材料进展
-
利用 POSS 单体制备纳米复合材料和杂化聚合物的方法主要有四种(图12)[47-48]。第一种是在无反应活性基团的 POSS 分子下聚合,或者通过物理混合的方法将 POSS分子引入到已制备的有机聚合物基体中。该方法不产生共价键,POSS分子被捕获或混合到有机聚合物基质中。第二种是含单个反应活性基团的 POSS分子通过共价键接枝到预先制备的聚合物分子主链上,形成“吊坠型”结构。第三种是含有多个反应活性基团的 POSS分子直接相互交联,它不需使用额外的聚合物,通过共价键与小的有机分子形成三维网络,也可以通过适当的POSS 化合物相互反应。第四种是含有两个反应活性基团的 POSS 分子作为桥联基团,与有机单体聚合形成“双子型”或“串珠型”结构材料。
-
2.3 基于POSS单体在三次采油中的研究进展
-
2.3.1 机理研究
-
化学驱油技术涉及注入一系列化学物质,如碱[49]、表面活性剂[50]、泡沫[51] 和聚合物[52] 等,以提高宏观效率(体积波及系数)和微观效率(孔隙驱替效率)[53]。影响波及系数的因素主要有储层的非均质性、油水流度比和注采井数比等。石油开采过程中,一般是调节油藏的非均质性,通过加入聚合物降低油水流度比,调整完善布井方式和加密井网等技术扩大波及系数。从提高孔隙驱替效率的角度来看,需要降低石油在多孔介质中的运移阻力,使石油较大限度地从多孔介质的表面剥离且尽可能不产生二次吸附。对于如何大幅度提高孔隙驱替效率,主要是解决液/液界面与液/固的问题[54]。
-
液/液界面主要为油/水界面,油的极性较小、能量较低,而水是极性的,能量较高,因此油与水之间存在很大的张力,是不相容的两相。油与水相遇后,两相界面斥力较大,水油之间摩擦阻力较小,水会绕开油进行流动,产生水窜,导致驱油效果极不理想。基于 POSS 单体新型驱油功能材料,除了增强材料的稳定性和耐温抗盐能力以满足日益增加的“高温高盐”油藏条件外,更重要是具有较强两相分布效率与效力,大幅度增加水驱油的内在动力。另外,新型驱油功能材料疏水纳米 POSS 粒子可以形成相应的纳米载体,存储和携带驱油剂分子通过多孔介质储层,减少了驱油剂在岩石表面的吸附,只在油/水界面释放,较好降低油/水界面张力,可以有效提高驱油效率。
-
液/固界面主要为水/岩界面与油/岩界面。由于毛管压力效应及储层孔隙结构影响,石油以油膜的形式粘滞在岩石颗粒表面[55]。想要充分剥离油膜,使石油变成相对“游离”状态,必须解决好两个方面问题,一是要构筑岩石界面合适的微观形貌[56],二是要改变岩石表面润湿性[57]。其中最重要的就是构筑岩石界面的微观形貌,荷叶“出淤泥而不染”,具有自清洁效应给了我们一些启示。近年来研究发现,荷叶自清洁效应本质是表面存在着非常复杂的多重微米和纳米级的二元结构[58]。荷叶表面上有许多微米级的乳突,而每个乳突又是由许多纳米级的突起组成。这种微/纳米协同作用,使紧贴叶面处存在极薄的纳米级的空气层。表面纳米微小突起起到相转变作用,使得表面周围的液体水转化成水汽,水汽和空气混合被“关到”水与固体之间。这种“气锁”效应,导致水珠大部分与水汽/空气混合气体接触,与固体直接接触面积反而大大减小,相当于大量水体与荷叶表面间铺就了一层气体层,从而大大降低荷叶表面的能量,使其表面性能发生较大的改变(图13)。正是基于上述原理,驱油新材料可以很好地在岩石界面构筑微/纳米二元结构,使得原本属于高能界面的岩石变为低能界面的物质,进而减小岩石界面对石油的黏附力,增大石油在多孔介质中的流动性,从而大幅度提高石油采收率。基于 POSS 单体新型驱油功能材料兼具传统的表面活性剂和纳米驱油剂的性能,较好地应用于三次采油提高采收率,是驱油材料重要发展趋势之一。
-
2.3.2 应用研究
-
近年来,基于 POSS 单体功能材料广泛地应用于三次采油领域,并取得了较大的进展。从目前开发出新型功能材料情况来看,根据分子结构类型,基于 POSS 单体功能材料目前主要包括三种类型:一是基于传统驱油剂改性的 POSS 功能材料,利用各种化学反应将单体 POSS化合物作为活性功能基团以化学键的方式连接在碳氢链为疏水基团的传统驱油剂上,形成“单尾型”或“双子型”驱油用表面活性剂。二是基于有机硅氧烷为骨架的新型驱油功能材料,主要是通过构建有机硅氧烷为骨架与嫁接单官能团 POSS化合物来实现的。三是基于双官能团 POSS 化合物为桥联基团“双子型”驱油新材料,以双官能团 POSS 化合物为桥联基将两个或两个以上驱油剂分子有效连接起来形成新型驱油功能材料。通过上述分子结构设计与合成,形成基于 POSS功能单体的新型驱油材料,大幅度提高驱油功能材料物理化学性能。
-
从室内及现场应用结果看,基于 POSS 单体新型驱油功能材料具有以下优良性能:一是界面活性高,在标准测试条件下,可使油/水界面张力降至 10-3 mN/m至10-4 mN/m,少数情况下可降至10-5 数量级。二是普适性高,从目前应用油田来看,对于胜利原油、长庆原油和大庆原油,均表现出良好的界面活性。三是较好耐温抗盐性,在温度为 80℃,体系中Na+ 的质量浓度为50 000 mg/L,Mg2+ 和Ca2+ 的质量浓度均为 2 000 mg/L的条件下,可使油/水界面张力降至超低数量级。在胜利油田进行现场试验时,油藏温度高达 149℃,新材料仍表现出良好的耐温抗盐性能,满足日益增加的“高温高盐”油藏的开采需求。四是具有较强修饰改善液/固界面的性能,可以很好地构筑岩石界面的微观形貌,使其形成微/纳米二元结构。通过模拟测试,石油在改性后界面上接触角变化可达 30°,以“液珠”形式附着在固体表面,达到“双疏”效果。五是具有良好驱油效果,通过室内物理模拟实验,提高采收率是传统驱油剂的 3 倍以上。基于 POSS 单体新型驱油功能材料已经在中国石油行业得到了产业化应用,增油效果显著,具有广阔的发展前景。
-
图13 微观形貌对润湿性的影响
-
Fig.13 Effect of microtopography on wettability
-
3 结论
-
近年来,人们致力于开发结构精确、性能优良、应用前景广阔的新型 POSS 杂化材料,并取得了很大的进展。基于 POSS单体耐温抗盐新型驱油功能材料因其良好的发展前景,引起研究者广泛的关注。以硅氧链为骨架的结构在石油开采领域是一个新的突破口,相比常规的碳氢链,具有更为优越的性能。POSS 单体独特的三维结构赋予其优良的性能,顶角取代基的可操纵性意味着它可为驱油新材料的开发提供良好的载体。但从目前发展的趋势来看,基于 POSS 单体新型驱油功能材料的研发必须着力解决以下三个方面的问题:一是 POSS 单体产业化。必须深入研究反应机理,开发合成新方法,改进现有合成工艺,提高反应产率,缩短反应周期。二是分子结构集成化。由于研究的对象多样化与复杂化,因此基于 POSS 单体新型驱油功能材料必须与其他功能基团协同配合,有机/无机纳米复合材料才能得到充分高效地发挥。加大 POSS单体官能团研究,精确控制取代基在 POSS 笼中的取代位置,利用 POSS 单体制备纳米复合材料和杂化聚合物材料在石油开采领域进一步应用。三是对环境友好。基于 POSS单体新型驱油功能材料无论是研究、生产还是使用阶段都必须树立对环境友好的理念。随着研究的不断深入,构筑单元的选择越来越多样,合成路线越来越灵活,基于 POSS单体新型复合材料必将取得更大突破,广泛应用于三次采油、航空航天、生命科学和电子工业等诸多领域,在未来创造更大的应用价值。
-
参考文献
-
[1] 程玉桥,薛莉娜,牛春荣,等.磺酸盐型表面活性剂的研究进展 [J].石油化工,2018,47(11):1 282-1 291.CHENG Yuqiao,XUE Lina,NIU Chunrong,et al.Progress in the research of sulfonate surfactants[J].Petrochemical Technology,2018,47(11):1 282-1 291.
-
[2] 程玉桥,梁书芹,张贤松,等.Gemini型驱油剂中间体双封端剂的研究进展[J].精细化工,2017,34(12):1 321-1 328,1 339.CHENG Yuqiao,LIANG Shuqin,ZHANG Xiansong,et al.Re⁃ search progress of Gemini type oil displacement agent intermedi⁃ ates double end-capping agent[J].Fine Chemicals,2017,34(12):1 321-1 328,1 339.
-
[3] BANEY R H,ITOH M,SAKAKIBARA A,et al.Silsesquioxanes [J].Chemical Reviews,1995,95(5):1 409-1 430.
-
[4] WANG F,LU X,HE C.Some recent developments of polyhedral oligomeric silsesquioxane(POSS)-based polymeric materials[J].Journal of Materials Chemistry,2011,21(9):2 775-2 782.
-
[5] TANAKA K,CHUJO Y.Advanced functional materials based on polyhedral oligomeric silsesquioxane(POSS)[J].Journal of Mate⁃ rials Chemistry,2012,22(5):1 733-1 746.
-
[6] WU J,MATHER P.POSS polymers:physical properties and bio⁃ materials applications[J].Polymer Reviews,2009,49(1):25-63.
-
[7] SCOTT D W.Thermal rearrangement of branched-chain methylpo⁃ lysiloxanes[J].Journal of the American Chemical Society,1946,68(3):356-358.
-
[8] BROWN J F,VOGT L H.The polycondensation of cyclohexylsilan⁃ etriol[J].Journal of the American Chemical Society,1965,87(19):4 313-4 317.
-
[9] BROWN J F.The polycondensation of phenylsilanetriol[J].Jour⁃ nal of the American Chemical Society,1965,87(19):4 317-4 324.
-
[10] PHILLIPS S H,HADDAD T S,TOMCZAK S J.Developments in nanoscience:polyhedral silsesquioxane(POSS)-polymers oligo⁃ meric[J].Current Opinion in Solid State & Materials Science,2004,8(1):21-29.
-
[11] MARTYNOVA T N,CHUPAKHINA T I.Heterofunctional oligoor⁃ ganylsilsesquioxanes[J].Journal of Organometallic Chemistry,1988,345(1):10-18.
-
[12] VORONKOV M G,LAVRENT'YEV V I.Polyhedral oligosilses⁃ quioxanes and their homo derivatives[J].Topics in Current Chem⁃ istsy,1982,(102):199-236.
-
[13] CHEN C,CHEN M,HUANG S Q.Synthesis and characterization of monofunctionalized polyhedral oligomeric silsesquioxanes by cohydrolytic and cocondensation of propyltrimethoxysilane and vi⁃ nyltrimethoxysilane[J].Journal of Macromolecular Science Part A-Pure and Applied Chemistry,2011,48(6):478-481.
-
[14] CHALK A J,HARROD J F.Homogeneous catalysis.II.The mecha⁃nism of the hydrosilation of olefins catalyzed by group VIII metal complexes[J].Journal of the American Chemical Society,1965,87(1):16-21.
-
[15] 陈明.含POSS功能聚硅烷的合成及其性能研究[D].武汉:湖北大学,2011.CHEN Ming.Synthesis and characterization of POSS functional⁃ ized polysilanes[D].Wuhan:Hubei University,2011.
-
[16] KAZMIERCZAK J,KUCINSKI K,LEWANDOWSKI D,et al.Rucatalyzed dehydrogenative silylation of POSS-silanols with hydro⁃ silanes:its introduction to one-pot synthesis[J].Inorganic Chem⁃ istry,2019,58(2):1 201-1 207.
-
[17] FEHER F J,BUDZICHOWSKI T A,BLANSKI R L,et al.Facile syntheses of new incompletely condensed polyhedral oligosilses⁃ quioxanes:[(c-C5H9)7Si7O9(OH)3 ],[(c-C7H13)7Si7O9(OH)3 ],and[(c-C7H13)6Si6O7(OH)4 ][J].Organometallics,1991,10(7):2 526-2 528.
-
[18] CHINNAM P R,GAU M R,SCHWAB J,et al.The polyoctahedral silsesquioxane(POSS)1,3,5,7,9,11,13,15-octa-phenylpenta⁃ cyclo9.5.1.1(3,9).1(5,15).1(7,13)-octasiloxane(octaphenylPOSS)[J].Acta Crystallographica Section C-Structural Chemis⁃ try,2014,70:971-974.
-
[19] 张锐,李齐方,张万里.六聚笼型倍半硅氧烷的合成及解离研究[J].化学通报,2007,70(4):299-303.ZHANG Rui,LI Qifang,ZHANG Wanli.The synthesize and par⁃ tial hydrolysis of hexyl(cyclohexyl)silsesquioxane[J].Chemistry Bulletin,2007,70(4):299-303.
-
[20] YE M F,WU Y W,ZHANG W C,et al.Synthesis of incompletely caged silsesquioxane(T-7-POSS)compounds via a versatile three-step approach[J].Research on Chemical Intermediates,2018,44(7):4 277-4 294.
-
[21] JANOWSKI B,PIELICHOWSKI K.Microwave-assisted synthesis of cyclopentyltrisilanol(c-C5H9)7Si7O9(OH)3 [J].Journal of Or⁃ ganometallic Chemistry,2008,693(6):905-907.
-
[22] WHEELER P A,FU B X,LICHTENHAN J D,et al.Incorporation of metallic POSS,POSS copolymers,and new functionalized POSS compounds into commercial dental resins[J].Journal of Applied Polymer Science,2006,102(3):2 856-2 862.
-
[23] KOH K,SUGIYAMA S,MORINAGA T,et al.Precision synthesis of a fluorinated polyhedral oligomeric silsesquioxane-terminated polymer and surface characterization of its blend film with poly(methyl methacrylate)[J].Macromolecules,2005,38(4):1 264-1 270.
-
[24] ZENG K,LIU Y H,ZHENG S X.Poly(ethylene imine)hybrids containing polyhedral oligomeric silsesquioxanes:Preparation,structure and properties[J].European Polymer Journal,2008,44(12):3 946-3 956.
-
[25] AISH E H.Synthesis and catalytic applications of chemically graft⁃ ed SiH-functionalized tripodal Ti-POSS complexes in crosslinked hyperbranched poly(siloxysilane)[J].Australian Journal of Chem⁃ istry,2015,68(7):1 091-1 101.
-
[26] CARNIATO F,BOCCALERI E,MARCHESE L,et al.Synthesis and characterisation of metal isobutylsilsesquioxanes and their role as inorganic-organic nanoadditives for enhancing polymer thermal stability[J].European Journal of Inorganic Chemistry,2007,(4):585-591.
-
[27] YAHYAEI H,MOHSENI M,GHANBARI H,et al.Synthesis and characterization of polyhedral oligomeric titanized silsesquioxane:A new biocompatible cage like molecule for biomedical applica⁃ tion[J].Materials Science & Engineering C-Materials for Biologi⁃ cal Applications,2016,61:293-300.
-
[28] AGASKAR P A.New synthetic route to the hydridospherosilox⁃ anes Oh-H8Si8O12 and D5h-H10Si10O15[J].Inorganic Chemistry,1991,30(13):2 707-2 708.
-
[29] CRIVELLO J V,MALIK R.Synthesis and photoinitiated cationic polymerization of monomers with the silsesquioxane core[J].Jour⁃ nal of Pobmer Science Part A:Polymer Chemistry,1997,35(3):407-425.
-
[30] 薛裕华,顾雪萍,冯连芳,等.笼状纳米化合物八乙烯基倍半硅氧烷的合成及表征[J].浙江大学学报:工学版,2007,41(4):679-682.XUE Yuhua,GU Xueping,FENG Lianfang,et al.Synthesis and characterization of nanocompound octavinyl polyhedral oligomer⁃ ic silsesquioxane[J].Journal of Zhejiang University:Engineering Science,2007,41(4):679-682.
-
[31] 张万里,陈清,陆凤英.八乙烯基笼型倍半硅氧烷的合成[J].有机硅材料,2012,26(6):392-395.ZHANG Wanli,CHEN Qing,LU Fengying.Synthesis of cage octa(vinylsilsesquioxane)[J].Silicone Material,2012,26(6):392-395.
-
[32] 葛铁军,肖尚雄,王佳,等.乙烯基笼型倍半硅氧烷的合成及表征[J].化工新型材料,2018,46(2):67-70.GE Tiejun,XIAO Shangxiong,WANG Jia,et al.Synthesis and characterization of octavinyloctasilsesquioxane[J].New Chemical Materials,2018,46(2):67-70.
-
[33] NI Y,ZHENG S X.A novel photocrosslinkable polyhedral oligo⁃ meric silsesquioxane and its nanocomposites with poly(vinyl cin⁃ namate)[J].Chemistry of Materials,2004,16(24):5 141-5 148.
-
[34] 陈超,李海波,仇凤玲,等.双功能基多面体低聚倍半硅氧烷(POSS)的合成与表征[J].高分子材料科学与工程,2012,28(4):5-8.CHEN Chao,LI Haibo,QIU Fengling,et al.Synthesis and charac⁃ terization of bifunctionalized polyhedral oligomeric silsesquiox⁃ anes[J].Polymer Materials Science & Engineering,2012,28(4):5-8.
-
[35] CARNIATO F,BOCCALERI E,MARCHESE L.A versatile route to bifunctionalized silsesquioxane(POSS):synthesis and charac⁃ terisation of Ti-containing aminopropylisobutyl-POSS[J].Dalton Transactions,2008,(1):36-39.
-
[36] 张锐.双官能化笼型倍半硅氧烷的合成研究[D].北京:北京化工大学,2007.ZHANG Rui.The synthesize of di-functional polyhedral oli⁃ gosilsesquioxane[D].Beijing:Beijing University of Chemical Technology,2007.
-
[37] KAZMIERCZAK J,HRECZYCHO G.Copper(ii)triflate-mediated synthesis of functionalized silsesquioxanes via dehydrogenative coupling of POSS silanols with hydrosilanes[J].Dalton Transac⁃tions,2019,48(19):6 341-6 346.
-
[38] SEINO M,HAYAKAWA T,ISHIDA Y,et al.Hydrosilylation po⁃ lymerization of double-decker-shaped silsesquioxane having hy⁃ drosilane with diynes[J].Macromolecules,2006,39(10):3 473-3 475.
-
[39] KUCUK A C,MATSUI J,MIYASHITA T.Langmuir-Blodgett films composed of amphiphilic double-decker shaped polyhedral oligomeric silsesquioxanes[J].Journal of Colloid and Interface Sci⁃ ence,2011,355(1):106-114.
-
[40] ZHANG W H,XU J D,LI X S,et al.Preparation,characterization,and properties of poly(aryl ether sulfone)systems with doubledecker silsesquioxane in the main chains by reactive blending[J].Journal of Polymer Science Part A:Polymer Chemistry,2014,52(6):780-788.
-
[41] LIU N,WEI K,WANG L,et al.Organic-inorganic polyimides with double decker silsesquioxane in the main chains[J].Polymer Chemistry,2016,7(5):1 158-1 167.
-
[42] CAO J,FAN H,LI B G,et al.Synthesis and evaluation of doubledecker silsesquioxanes as modifying agent for epoxy resin[J].Polymer,2017,124:157-167.
-
[43] 王玲玲,张明,刘咏,等.苯基笼状倍半硅氧烷(TSP-POSS)改性聚氨酯的分子模拟和热性能研究[J].高分子学报,2015,(3):266-276.WANG Lingling,ZHANG Ming,LIU Yong,et al.An investigation on structure and thermal properties of TSP-POSS/PU hybrid com⁃ posites by molecular simulation approach[J].Acta Polymerica Si⁃ nica,2015,(3):266-276.
-
[44] PEREIRA J C G,CATLOW C R A,PRICE G D.Ab initio studies of silica-based clusters.Part I.Energies and conformations of sim⁃ ple clusters[J].Journal of Physical Chemistry A,1999,103(17):3 252-3 267.
-
[45] PEREIRA J C G,CATLOW C R A,PRICE G D.Ab initio studies of silica-based clusters.Part II.Structures and energies of complex clusters[J].Journal of Physical Chemistry A,1999,103(17):3 268-3 284.
-
[46] 胡立江,张兴文,黄玉东,等.有机/无机杂化纳米结构单元的空间构型研究——Ⅰ.乙烯基倍半硅氧烷梯型结构的量子力学确定[J].中国科学:B辑,2004,34(3):202-210.HU Lijiang,ZHANG Xingwen,HUANG Yudong,et al.Study on spatial configuration of organic/inorganic hybrid nanostructure units—Ⅰ.Quantum mechanics determination of ladder structure of vinylsilsesquioxane[J].Science in China:Series B,2004,34(3):202-210.
-
[47] 高党鸽,王平平,吕斌,等.POSS/聚合物纳米复合材料制备方法的研究进展[J].材料导报,2019,33(3):550-557.GAO Dangge,WANG Pingping,LÜ Bin,et al.Research progress in preparation methods of POSS/polymer nanocomposite[J].Mate⁃ rials Review,2019,33(3):550-557.
-
[48] CORDES D B,LICKISS P D,RATABOUL F.Recent develop⁃ ments in the chemistry of cubic polyhedral oligosilsesquioxanes [J].Chemical Reviews,2010,110(4):2 081-2 173.
-
[49] 刘向斌.强碱三元复合驱颗粒调剖剂强度和弹性评价方法[J].大庆石油地质与开发,2019,38(2):99-104.LIU Xiangbin.Evaluating method of the strength and elasticity of the particle profile-controlling agent for strong-alkali ASP flood⁃ ing[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(2):99-104.
-
[50] 郭宇.耐温抗盐型复合表面活性剂驱油体系的合成及应用[J].断块油气田,2018,25(2):258-261.GUO Yu.Synthesis and application of oil displacement system of temperature-resistant and salt-resistant high-efficiency compos⁃ ite surfactant[J].Fault-Block Oil and Gas Field,2018,25(2):258-261.
-
[51] 李宛珊,王健,任振宇,等.低渗透油藏二氧化碳气溶性泡沫控制气窜实验研究[J].特种油气藏,2019,26(5):136-141.LI Wanshan,WANG Jian,REN Zhenyu,et al.Gas-channeling control experiment with carbon dioxide gas-soluble foam in lowpermeability oil reservoir[J].Special Oil & Gas Reservoirs,2019,26(5):136-141.
-
[52] 李宗阳,王业飞,曹绪龙,等.新型耐温抗盐聚合物驱油体系设计评价及应用[J].油气地质与采收率,2019,26(2):106-112.LI Zongyang,WANG Yefei,CAO Xulong,et al.Design evaluation and application of a novel temperature-resistant and salt-tolerant polymer flooding system[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(2):106-112.
-
[53] 陈欢庆,张虎俊,隋宇豪.油田开发中后期精细油藏描述研究内容特征[J].中国石油勘探,2018,23(3):115-128.CHEN Huanqing,ZHANG Hujun,SUI Yuhao.Rasearch charac⁃ teristics of fine reservoir description in middle and late oilfield de⁃ velopment[J].China Petroleum Exploration,2018,23(3):115-128.
-
[54] 程玉桥,杜婷婷,牛春荣,等.磷酸型化合物设计合成方法研究进展[J].精细化工,2019,36(2):190-198.CHENG Yuqiao,DU Tingting,NIU Chunrong,et al.Research ad⁃ vance in design and synthesis methods of compounds based on phosphoric acid[J].Fine Chemicals,2019,36(2):190-198.
-
[55] 蒋永平.CO2复合驱油分子动力学模拟及微观机理研究[J].石油实验地质,2019,41(2):274-279.JIANG Yongping.Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding[J].Petroleum Geology & Experiment,2019,41(2):274-279.
-
[56] DODIUK H,RIOS P F,DOTAN A,et al.Hydrophobic and selfcleaning coatings[J].Polymers for Advanced Technologies,2007,18(9):746-750.
-
[57] KARIMI A,FAKHROUEIAN Z,BAHRAMIAN A,et al.Wettabili⁃ ty alteration in carbonates using zirconium oxide nanofluids:EOR implications[J].Energy & Fuels,2012,26(2):1 028-1 036.
-
[58] 江雷.从自然到仿生的超疏水纳米界面材料[J].化工进展,2003,22(12):1 258-1 264.JIANG Lei.Nanostructured materials with superhydrophobic sur⁃ face-from nature to biomimesis[J].Chemical Industry and Engi⁃ neering Progress,2003,22(12):1 258-1 264.
-
摘要
化学驱以其性价比高日益受到提高原油采收率研究者的重视,研究新型驱油功能材料是化学驱工作最核心问题之一。近年来,笼型多面体低聚倍半硅氧烷(POSS)因其良好的三维结构以及优异的物化性能引起了材料科学工作者的广泛关注,是构建驱油用有机/无机杂化纳米复合材料的理想基本单元。在分析总结前人研究成果的基础上,较为系统地综述了纳米型 POSS单体的合成方法,运用这些方法设计合成了基于单官能团、多官能团和双官能团的POSS单体。基于功能单体,通过修饰、接枝或聚合等手段,进一步设计合成功能强大、性能各异的有机/无机杂化纳米复合驱油材料。在设计合成的基础上,进一步阐述了 POSS单体结构与性能的关系以及在三次采油等方面的应用研究进展,并对POSS单体在驱油新材料中发展趋势及前景进行了展望。
Abstract
Chemical flooding has been paid more and more attention by petroleum researchers for its high cost performance. New functional materials for oil displacement are one of the key issues in chemical flooding. In recent years,a novel mono- mer for oil displacement functional materials,polyhedral oligomeric silsesquioxane(POSS),has attracted extensive atten- tion of material scientists because of its good three-dimensional structure and excellent physicochemical properties,which makes it an ideal basic unit for constructing organic/inorganic nanocomposite materials for oil displacement. Based on the preliminary work,this paper systematically reviews the synthesis methods of the nano-POSS monomers,and uses these methods to design and synthesize monofunctional,multifunctional and difunctional POSS monomers. These functional monomers are modified,grafted or polymerized to further design and synthesize organic/inorganic nanocomposite materials for oil displacement with powerful functions and various properties. The relationship between the structure and performance of POSS monomers and the application of POSS monomers in tertiary oil recovery are further elaborated. And the develop- ment trend and prospect of POSS monomer in new materials for oil displacement are also discussed.