en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郭亚兵(1990—),男,河南许昌人,在读博士研究生,从事提高采收率方面的研究。E-mail:guoyabing90@163.com。

中图分类号:TE357

文献标识码:A

文章编号:1009-9603(2020)02-0105-07

DOI:10.13673/j.cnki.cn37-1359/te.2020.02.013

参考文献 1
岳湘安,王尤富,王克亮.提高石油采收率基础[M].北京:石油工业出版社,2007:37.YUE Xiang’an,WANG Youfu,WANG Keliang.Fundamental study on enhanced oil recovery[M].Beijing:Petroleum Industry Presss,2007:37.
参考文献 2
LI Kexing,JING Xueqi,QU Dan,et al.Pore-level investigations on the oil displacement mechanisms of a viscoelastic surfactant in porous media[J].Journal of Petroleum Science and Engineering,2019,173(2):748-757.
参考文献 3
李俊键,姜汉桥,周代余,等.古油藏低矿化度水驱微观剩余油动用机理实验研究[J].油气地质与采收率,2018,25(5):104-109.LI Junjian,JIANG Hanqiao,ZHOU Daiyu,et al.Experimental study on the microscopic displacement mechanism of remaining oil by low salinity water flooding in the paleo-oil reservoir[J].Pe⁃ troleum Geology and Recovery Efficiency,2018,25(5):104-109.
参考文献 4
贾忠伟,袁敏,张鑫璐,等.水驱微观渗流特征及剩余油启动机理[J].大庆石油地质与开发,2018,37(1):65-70.JIA Zhongwei,YUAN Min,ZHANG Xinlu,et al.Waterflooding microscopic flow characteristics and the remained oil starting mechnisms[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(1):65-70.
参考文献 5
吴晨宇,侯吉瑞,赵凤兰,等.三元复合体系启动水驱后剩余油微观机理[J].油气地质与采收率,2015,22(5):84-88.WU Chenyu,HOU Jirui,ZHAO Fenglan,et al.Study on the micro⁃ scopic mechanism of driving remaining oil by ASP compound sys⁃ tem after water flooding[J].Petroleum Geology and Recovery Effi⁃ ciency,2015,22(5):84-88.
参考文献 6
王国锋.低渗透油层低黏度聚驱微观剩余油动用机理[J].断块油气田,2018,25(6):776-780.WANG Guofeng.Microscopic residual oil utilization mechanism of low viscosity polymer flooding in low permeability reservoir[J].Fault-Block Oil and Gas Field,2018,25(6):776-780.
参考文献 7
朱维耀,马启鹏,李兵兵,等.注采角度变化对驱油效率和微观剩余油的影响[J].断块油气田,2019,26(2):220-224.ZHU Weiyao,MA Qipeng,LI Bingbing,et al.Influence of injec⁃ tion-production angle variation on oil displacement efficiency and microscopic remaining oil[J].Fault-Block Oil and Gas Field,2019,26(2):220-224.
参考文献 8
刘丽丽,王立辉,宋华,等.微孔道残余油膜的驱替机理[J].新疆石油地质,2019,40(4):460-463.LIU Lili,WANG Lihui,SONG Hua,et al.Displacement mecha⁃ nism analysis of residual oil film in micro-channels[J].Xinjiang Petroleum Geology,2019,40(4):460-463.
参考文献 9
张立娟,岳湘安.亲油岩石壁面残余油膜的微观驱替机理[J].油气地质与采收率,2007,14(1):79-82,85.ZHANG Lijuan,YUE Xiang’an.Microscopic displacement mecha⁃ nism of oil segment remained on hydrophobic rock wall[J].Petro⁃ leum Geology and Recovery Efficiency,2007,14(1):79-82,85.
参考文献 10
张立娟,岳湘安.油藏中分散非连续残余油膜的驱替机理分析[J].油田化学,2006,23(3):243-247.ZHANG Lijuan,YUE Xiang’an.On the displacement mechanism of residual oil film[J].Oilfield Chemistry,2006,23(3):243-247.
参考文献 11
孙盈盈,岳湘安,张立娟,等.乳化作用对水驱后残余油膜效果的实验与评价[J].新疆石油地质,2014,35(1):73-76.SUN Yingying,YUE Xiang’an,ZHANG Lijuan,et al.Effect of emulation on displacement of residual oil film following water⁃ flooding:Experiment and evaluation[J].Xinjiang Petroleum Geol⁃ ogy,2014,35(1):73-76.
参考文献 12
张立娟,岳湘安,孙盈盈.多孔介质中油膜驱替特性的实验模拟[J].油气地质与采收率,2015,22(6):80-84.ZHANG Lijuan,YUE Xiang’an,SUN Yingying.Experimental simulation on displacement of oil film in porous media[J].Petro⁃ leum Geology and Recovery Efficiency,2015,22(6):80-84.
参考文献 13
张明安.二元复合体系微观驱油机理可视化实验[J].油气地质与采收率,2013,20(3):79-82.ZHANG Ming’an.Experiments on visualization of the microscopic mechanism of surfactant/polymer binary compound system[J].Pe⁃ troleum Geology and Recovery Efficiency,2013,20(3):79-82.
参考文献 14
刘哲宇,魏秋帆,张菁,等.二元复合体系动用不同模态孔隙结构的剩余油[J].断块油气田,2019,26(3):337-341.LIU Zheyu,WEI Qiufan,ZHANG Jing,et al.Effect of modes of pore structure on pore-scale residual oil displacement in polymer/surfactant flooding[J].Fault-Block Oil and Gas Field,2019,26(3):337-341.
参考文献 15
PEI Haihua,ZHANG Guicai,GE Jijiang,et al.Analysis of micro⁃ scopic displacement mechanisms of alkaline flooding for en⁃ hanced heavy-oil recovery[J].Energy & Fuels,2011,25(10):4 423-4 429.
参考文献 16
黄迎松.水驱速度对束缚型和油膜型剩余油动用的影响理论及实验[J].大庆石油地质与开发,2018,37(2):56-61.HUANG Yingsong.Theories and experiments of the water-flood⁃ ing-rate influences on the development of the captured and film type remained oil[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(2):56-61.
参考文献 17
PASA Gelu,TITAUD Olivier.A class of viscosity profiles for oil displacement in porous media or hele-shaw cell[J].Transport in Porous Media,2005,58(3):269-286.
参考文献 18
李美蓉,娄来勇,庄岩,等.孤岛聚合物驱原油沥青质乳化能力研究[J].特种油气藏,2007,14(5):76-79,83.LI Meirong,LOU Laiyong,ZHUANG Yan,et al.Study on emulsifi⁃ cation of Gudao crude oil asphaltene in polymer flooding[J].Spe⁃ cial Oil & Gas Reservoirs,2007,14(5):76-79,83.
参考文献 19
尚丹森,侯吉瑞,马云飞.基于乳化性能设计的驱油用新型三元复合体系评价[J].西安石油大学学报:自然科学版,2018,33(3):79-85. SHANG Dansen,HOU Jirui,MA Yunfei.Evaluation of new ASP system for oil displacement based on emulsification performance design[J].Journal of Xi’an Shiyou University:Natural Science Edition,2018,33(3):79-85.
参考文献 20
葛际江,王东方,张贵才,等.稠油驱油体系乳化能力和界面张力对驱油效果的影响[J].石油学报:石油加工,2009,25(5):690-696.GE Jijiang,WANG Dongfang,ZHANG Guicai,et al.The effect of emulsifying power and interfacial tension on displacement charac⁃ teristics for displacement systems of heavy crude oil[J].Acta Petrolei Sinica:Petroleum Processing Section,2009,25(5):690-696.
参考文献 21
王业飞,仲东,徐睿,等.二元复合体系乳化性能及其对普通稠油的驱替效果[J].油气地质与采收率,2019,26(5):79-85.WANG Yefei,ZHONG Dong,XU Rui,et al.Emulsification proper⁃ ties of binary composite system and their effect on displacement of conventional heavy oil[J].Petroleum Geology and Recovery Ef⁃ ficiency,2019,26(5):79-85.
参考文献 22
罗莉涛,廖广志,刘卫东,等.Marangoni对流启动残余油微观机理[J].石油学报,2015,36(9):1 127-1 134.LUO Litao,LIAO Guangzhi,LIU Weidong,et al.Micromechanism of residual oil mobilization by Marangoni convection[J].Acta Petrolei Sinica,2015,36(9):1 127-1 134.
参考文献 23
GUO Yabing,YUE Xiang’an,FU Joseph Yuchun,et al.Relevance between emulsification capability and interfacial tension of chemi⁃ cal flooding agents[J].Energy & Fuels,2018,32(12):12 345-12 350.
参考文献 24
岳湘安,杨长春,张立娟,等.高温乳化动态测试仪及测试方法:201720419344[P].2018-06-06.YUE Xiang’an,YANG Changchun,ZHANG Lijuan,et al.Hightemperature emulsification characterizer and test method:201720419344[P].2018-06-06.
参考文献 25
杨长春.高温高盐油藏水平井深部吞吐-堵水方法研究[D].北京:中国石油大学(北京),2017:95-105.YANG Changchun.Method research of combining in-depth huff and puff with plugging in horizontal wells of high-temperature and high-salinity reservoirs[D].Beijing:China University of Pe⁃ troleum(Beijing),2017:95-105.
目录contents

    摘要

    为深化油膜驱替机理认识,开展油膜驱替实验。以综合反映乳化速度和乳化量的乳化系数量化表征油水乳化能力。针对实验用低黏和中黏原油,筛选出具有强乳化能力-超低界面张力、强乳化能力-低界面张力和弱乳化能力-超低界面张力3种不同性质的驱油剂,并进行玻璃棒束油膜驱替实验。实验结果表明,对于低黏原油,乳化系数分别为0.667和0.706的强乳化能力驱油剂,不论其界面张力是否达到超低,其驱替效率都约为90%,而乳化系数为 0.244的弱乳化能力-超低界面张力驱油剂的驱替效率不足 70%;对于中黏原油,乳化系数分别为 0.534和 0.602 的强乳化能力驱油剂,不论其界面张力是否达到超低,其驱替效率都约为83%,而乳化系数为0.258的弱乳化能力-超低界面张力驱油剂的驱替效率不足65%。研究结果表明,油水乳化能力是对油膜驱替起决定作用的性能指标。

    Abstract

    In order to have a better understanding of the mechanism of oil film displacement,the oil film displacement ex- periments are conducted. Considering the effects of emulsifying speed and emulsification amount,the emulsification index (EI)is used to quantitatively characterize the emulsification capability of the chemical flooding agents. For the low and me- dium viscosity oil used in experiments,three kinds of oil displacement agents are screened,which have the strong emulsifi- cation capability and ultra-low interfacial tension(IFT),strong emulsification capability and low IFT,and weak emulsifica- tion capability and ultra-low IFT,respectively. And then,the three kinds of oil displacement agents are used to conduct the oil film displacement experiments based on the glass rod bundle model. For the low viscosity crude oil,the oil film displace- ment efficiencies of the oil displacement agents with higher emulsification capability(EI are 0.667 and 0.706 respectively) are about 90% no matter the IFT of displacement agents is ultra-low,while the oil film displacement efficiency of the oil displacement agent with weak emulsification capability and ultra-low IFT(EI=0.244)is less than 70%. For the medium viscosity oil,the oil film displacement efficiencies of the oil displacement agents with higher emulsification capability(EI are 0.534 and 0.602 respectively)are about 83% no matter the IFT of oil displacement agents is ultra-low,while the oil film displacement efficiency of oil displacement agent with weak emulsification capability and ultra-low IFT(EI=0.258)is less than 65%. The research results show that the oil film displacement efficiencies mainly depend on the emulsification capa- bility of the oil displacement agents.

  • 水驱后油藏中残余油类型主要有孔喉残余油滴、油膜、微观非均质残余油、水动力滞留残余油[1-3],有效挖掘各类残余油潜力是提高采收率的关键[3-7]。因黏附力而被吸附在储层矿物表面的油膜是水驱后典型的残余油,具有铺展面积大、难以启动和驱替的特点,是提高采收率的潜力所在[8-12]。因此,深入研究驱油剂对油膜的驱替效果具有重要意义。

  • 目前,研究人员主要是通过岩心薄片模型[13-14]、玻璃蚀刻模型[15-16] 和平板模型[17] 来研究驱油剂对油膜的驱替特性。岩心薄片模型来源于真实的岩心,具有接近于真实多孔介质的优点,缺点是孔隙结构复杂,形成的残余油类型并不是单一的油膜。玻璃刻蚀模型通过刻蚀简单的孔隙通道,能够可视化观察驱油剂对油膜的驱替过程,缺点是模型尺寸较小,且饱和油量小,难以量化油膜驱替效率。平板模型的表面容易处理成亲油的,且面积可控,可保证一定的油膜量,从而实现油膜的量化,缺点是平板模型过于简单,难以反映出孔隙介质中油膜的驱替特性,且平板间隙中的流动易于出现绕流,影响实验结果的可靠性。

  • 油水乳化能力是化学驱油剂的一个重要性能,各研究者采用不同的方法和指标对其进行评价,如乳化带透光率[18]、乳化力[19]、最小乳化转速[20]、最低振荡速率[21] 等,但是普遍存在问题,如测试方法实用性差、表征参数未能全面反映乳化能力等,亟需建立对这一性能的科学、实用的评价方法。另外,界面张力和乳化效应是驱油剂驱替油膜的重要机制[9-1222],但是目前有关驱油剂的这2个主要性能指标在油膜驱替中所起作用的主次关系研究较少。

  • 针对以上问题,建立一种研究多孔介质中油膜驱替特性的实验模拟装置,该装置以玻璃棒束模型来模拟孔隙介质,确保残余油以单一油膜形式存在,排除了油滴、微观非均质残余油等其他类型残余油的影响,并通过计量采出液体积量化油膜的驱替效率。以综合反映乳化速度和乳化量的乳化系数表征油水乳化能力。针对低黏原油和中黏原油,筛选出具有不同乳化能力和界面张力的驱油剂,并进行油膜驱替模拟实验,研究乳化能力和界面张力对油膜驱替的影响。

  • 1 油水乳化能力评价方法

  • 油水乳化能力是指驱油剂促使乳状液形成的能力,反映油水乳化的难易程度。

  • 准确评价油水乳化能力的方法需要满足以下要求:①乳化条件精确控制;②反映乳化动态过程; ③精确测取最大乳化量;④消除乳状液重力悬浮、黏壁等问题。

  • 针对以往评价方法存在的问题,研发了高温乳化动态评价仪 THE-Ⅱ(图1)[23-25]。该评价仪利用超声波振动实现油水乳化,可通过调节功率和频率精确地控制乳化条件,保证所有样品的乳化实验条件严格统一。利用该评价仪可实时地、准确地读取乳化量的动态数据。

  • 图1 高温乳化动态评价仪THE-Ⅱ

  • Fig.1 High temperature emulsification characterizer(THE-Ⅱ)

  • 定义乳状液中油量与乳化装置中总油量之比为乳化油率。在乳化过程中,乳化能力与 2 个特征参数相关,一是乳化速度(图2a 中乳化油率曲线斜率);二是总乳化油量(图2a中乳化油率平衡值Eoe)。对于特定油水体系,测得如图2a所示的乳化油率动态曲线,乳化过程如图2b所示。将乳化油率动态曲线与时间轴(0~20 min)围成的无因次面积 A1和乳化油率最大值(其值为100%)与时间轴(0~20 min) 围成的无因次面积A2之比定义为乳化系数[23-25]。显然,该乳化系数综合反映乳化速度和乳化量,其值越大,油水乳化能力越强。

  • 2 驱油剂的性能指标及测定

  • 2.1 实验材料

  • 实验用 2种原油的组分及黏度如表1所示。对比 2 种原油影响乳化性能的主要组分,原油 A 中蜡含量相对较高,而原油 B 中胶质含量相对较高。对比2种原油的黏度可以看出,原油A黏度较小,为低黏原油;原油B黏度相对较大,为中黏原油。

  • 图2 典型乳化油率动态曲线及乳化过程示意

  • Fig.2 Typical dynamic curve of emulsified oil rate and schematic diagram of emulsification process

  • 表1 2种原油的组分及黏度

  • Table1 Composition and viscosity of two kinds of crude oil

  • 实验用水为去离子水。实验用表面活性剂包括甜菜碱类表面活性剂、阴离子表面活性剂和调节剂的复配体系,由实验室配制。

  • 2.2 低黏原油驱油剂

  • 针对实验用低黏原油 A,根据驱油剂的乳化能力和界面张力,筛选出具有不同乳化能力和界面张力的3种驱油实验用驱油剂。应用高温乳化动态评价仪THE-Ⅱ,测定3种驱油剂与低黏原油A的乳化油率,从图3可以看出,1#和2#驱油剂的乳化油率明显高于 3#驱油剂,分别为 82.4% 和 75.2%。依据乳化油率动态曲线计算出1#,2#和3#驱油剂与低黏原油 A 的乳化系数分别为 0.706,0.667和 0.244。应用界面张力仪 JJ-2000B,测定 3 种驱油剂与低黏原油 A 的界面张力,从图4 可以看出,1#,2#和 3#驱油剂与低黏原油A的平衡界面张力分别为7.5×10-3 ,8.1× 10-2 和 2.4×10-3 mN/m。由测试结果可知,1#驱油剂为强乳化能力-超低界面张力体系;2#驱油剂为强乳化能力-低界面张力体系;3#驱油剂为弱乳化能力-超低界面张力体系。

  • 图3 3种驱油剂与低黏原油A的乳化油率动态曲线

  • Fig.3 Dynamic emulsified oil rate curves of three oil displacement agents and low viscosity oil A

  • 图4 3种驱油剂与低黏原油A的界面张力动态曲线

  • Fig.4 Dynamic interfacial tension curves of three oil displacement agents and low viscosity oil A

  • 2.3 中黏原油驱油剂

  • 针对实验用中黏原油 B,根据驱油剂的乳化能力和界面张力,筛选出 3 种具有不同乳化能力和界面张力的驱油实验用驱油剂。应用高温乳化动态评价仪THE-Ⅱ,测定3种驱油剂与中黏原油B的乳化油率,从图5可以看出,4#和5#驱油剂的乳化油率明显高于 6#驱油剂,分别为 77.3% 和 72.2%。依据乳化油率动态曲线计算出4#,5#和6#驱油剂与中黏原油 B 的乳化系数分别为 0.602,0.534 和 0.258。应用界面张力仪 JJ-2000B,测定 3 种驱油剂与中黏原油 B 的界面张力,从图6 可以看出,4#,5#和 6#驱油剂与中黏原油 B 的平衡界面张力分别为 6.4×10-3, 2.4×10-2 和 3.1×10-3 mN/m。由测试结果可知,4#驱油剂为强乳化能力-超低界面张力体系;5#驱油剂为强乳化能力-低界面张力体系;6#驱油剂为弱乳化能力-超低界面张力体系。

  • 图5 3种驱油剂与中黏原油B的乳化油率动态曲线

  • Fig.5 Dynamic emulsified oil rate curves of three oil displacement agents and medium viscosity oil B

  • 图6 3种驱油剂与中黏原油B的界面张力动态曲线

  • Fig.6 Dynamic interfacial tension curves of three oil displacement agents and medium viscosity oil B

  • 3 油膜驱替实验

  • 3.1 玻璃棒束模型

  • 油膜类残余油形成的主要原因是油藏岩石表面润湿性为亲油性,原油因黏附力被吸附在岩石矿物表面并发生展布,主要包括连续油膜和不连续油膜 2 种类型[9]。为模拟该过程,先将玻璃棒束浸泡在质量分数为0.5%的二甲基二氯硅烷-煤油溶液中 48 h以上,将玻璃棒表面处理成亲油性;然后用酒精将浸泡过的玻璃棒束清洗 3 遍后风干备用;最后将风干的玻璃棒束浸泡在70℃原油中老化72 h以上。将黏附好油膜的玻璃棒束小心装入外管中,封闭两端,模型结构如图7所示。

  • 3.2 油膜驱替效率测定

  • 将玻璃棒束油膜驱替装置连接好后,先水驱,若水驱阶段无原油采出,则油膜制备合格,否则,重新制备油膜;然后分别用具有不同乳化能力和界面张力的 3 种驱油剂进行驱替,驱至不出油为止,每隔一段时间记录出液情况,并用显微镜观察采出液微观状态。根据总出油体积计算油膜驱替效率。

  • 图7 玻璃棒束模型结构示意

  • Fig.7 Schematic diagram of glass rod bundle model

  • 油膜驱替效率为:

  • η=ρ0Vom2-m1×100%
    (1)
  • 式中:η 为油膜驱替效率,%;ρo 为原油密度,g/ cm3Vo 为采出原油体积,mL;m2 为黏附油膜后玻璃棒束质量,g;m1为黏附油膜前玻璃棒束质量,g。

  • 3.3 低黏原油油膜驱替实验结果

  • 对于低黏原油 A,分别以相同的驱替速度(0.5 mL/min)先水驱后驱油剂驱。从 1#,2#和 3#驱油剂驱替残余油膜过程中的采出液显微镜照片(图8)可以看出,具有强乳化能力驱油剂的驱替过程中,显微镜下观测采出液有明显乳化现象(图8a,8b),形成乳液液滴较多;而具有弱乳化能力-超低界面张力的驱油剂驱替过程中,显微镜下观测采出液乳化现象不明显(图8c),乳液液滴较少。

  • 驱油剂驱替结束后,取出玻璃棒束并观察其颜色。从图9可以看出,水驱结束时无原油采出,玻璃棒束颜色为深黄色(图9a);具有强乳化能力驱油剂驱替结束后,玻璃棒束颜色由深黄色变为浅黄色 (图9b,9c),油膜驱替效果较好;而具有弱乳化能力-超低界面张力驱油剂驱替结束后,玻璃棒束颜色变化较小,基本仍为深黄色(图9d),油膜驱替效果相对较差。

  • 从3种驱油剂与低黏原油的油膜驱替效率动态曲线(图10)可以看出,具有强乳化能力的驱油剂,不论其界面张力是否达到超低,其驱替效率都在 90% 左右;而弱乳化能力-超低界面张力驱油剂的驱替效率不足 70%。由此可见,对于低黏原油,只要乳化系数足够高就可以高效驱替残余油膜;乳化系数较低,即使界面张力达到超低,油膜的驱替效率也较低。

  • 图8 3种驱油剂驱替低黏原油油膜过程中采出液显微镜照片

  • Fig.8 Micrographs of produced liquid in low viscosity oil film displacement with three oil displacement agents

  • 图9 3种驱油剂驱替低黏原油油膜结束时玻璃棒束照片

  • Fig.9 Photographs of glass rod bundles after low-viscosity oil film displacement with three oil displacement agents

  • 图10 3种驱油剂与低黏原油的油膜驱替效率动态曲线

  • Fig.10 Dynamic displacement efficiency curves of oil film of three oil displacement agents and low viscosity oil

  • 3.4 中黏原油油膜驱替实验结果

  • 对于中黏原油 B,分别以相同的驱替速度(0.5 mL/min)先水驱后驱油剂驱。从 4#,5#和 6#驱油剂驱替残余油膜过程中的采出液显微镜照片(图11) 可以看出,具有强乳化能力驱油剂的驱替过程中,显微镜下观测采出液有明显乳化现象(图11a, 11b),形成乳液液滴较多;而在具有弱乳化能力-超低界面张力驱油剂驱替过程中,显微镜下观测采出液乳化现象不明显(图11c),乳液液滴较少。

  • 图11 3种驱油剂驱替中黏原油油膜过程中采出液显微镜照片

  • Fig.11 Micrographs of produced liquid in medium-viscosity oil film displacement with three oil displacement agents

  • 驱油剂驱替结束后,取出玻璃棒束并观察其颜色。从图12 可以看出,水驱结束时无原油采出,玻璃棒束颜色为深黑色(图12a);具有强乳化能力驱油剂驱替结束后,玻璃棒束颜色变为浅灰黑色(图12b,12c),油膜驱替效果较好;而在具有弱乳化能力-超低界面张力驱油剂驱替结束后,玻璃棒束颜色变化较小,基本仍为深黑色(图12d),油膜驱替效果相对较差。

  • 从3种驱油剂与中黏原油的油膜驱替效率动态曲线(图13)可以看出,具有强乳化能力的驱油剂,不论其界面张力是否达到超低,其驱替效率都在83 % 左右;而弱乳化能力-超低界面张力驱油剂的驱替效率不足 65%。由此可见,对于中黏原油,只要乳化系数足够高就可以高效驱替残余油膜;乳化系数较低,即使界面张力达到超低,油膜的驱替效率也相对较低。

  • 图12 3种驱油剂驱替中黏原油油膜结束时玻璃棒束照片

  • Fig.12 Photographs of glass rod bundles after medium viscosity oil film displacement with three oil displacement agents

  • 图13 3种驱油剂与中黏原油的油膜驱替效率动态曲线

  • Fig.13 Dynamic displacement efficiency curves of oil film of three oil displacement agents and medium viscosity oil

  • 4 结论

  • 综合分析实验结果可知,对于低黏原油 A 和中黏原油B,不论其界面张力是否达到超低,只要乳化系数大于 0.5,油膜驱替效率就高于 80%;乳化系数较小,即使界面张力达到超低,对油膜的驱替效率也不足70%。

  • 在油藏中,驱油剂与原油的乳化能力是对油膜类残余油驱替起决定作用的性能指标。

  • 研究认识是在玻璃棒束油膜模型基础上得到的。在油藏多孔介质中,油膜的形成和性质与玻璃棒束油膜差异较大。下一步工作将以人造岩心为实验材料,结合 CT扫描技术,进一步研究多孔介质中油膜的形成和驱替机理。

  • 参考文献

    • [1] 岳湘安,王尤富,王克亮.提高石油采收率基础[M].北京:石油工业出版社,2007:37.YUE Xiang’an,WANG Youfu,WANG Keliang.Fundamental study on enhanced oil recovery[M].Beijing:Petroleum Industry Presss,2007:37.

    • [2] LI Kexing,JING Xueqi,QU Dan,et al.Pore-level investigations on the oil displacement mechanisms of a viscoelastic surfactant in porous media[J].Journal of Petroleum Science and Engineering,2019,173(2):748-757.

    • [3] 李俊键,姜汉桥,周代余,等.古油藏低矿化度水驱微观剩余油动用机理实验研究[J].油气地质与采收率,2018,25(5):104-109.LI Junjian,JIANG Hanqiao,ZHOU Daiyu,et al.Experimental study on the microscopic displacement mechanism of remaining oil by low salinity water flooding in the paleo-oil reservoir[J].Pe⁃ troleum Geology and Recovery Efficiency,2018,25(5):104-109.

    • [4] 贾忠伟,袁敏,张鑫璐,等.水驱微观渗流特征及剩余油启动机理[J].大庆石油地质与开发,2018,37(1):65-70.JIA Zhongwei,YUAN Min,ZHANG Xinlu,et al.Waterflooding microscopic flow characteristics and the remained oil starting mechnisms[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(1):65-70.

    • [5] 吴晨宇,侯吉瑞,赵凤兰,等.三元复合体系启动水驱后剩余油微观机理[J].油气地质与采收率,2015,22(5):84-88.WU Chenyu,HOU Jirui,ZHAO Fenglan,et al.Study on the micro⁃ scopic mechanism of driving remaining oil by ASP compound sys⁃ tem after water flooding[J].Petroleum Geology and Recovery Effi⁃ ciency,2015,22(5):84-88.

    • [6] 王国锋.低渗透油层低黏度聚驱微观剩余油动用机理[J].断块油气田,2018,25(6):776-780.WANG Guofeng.Microscopic residual oil utilization mechanism of low viscosity polymer flooding in low permeability reservoir[J].Fault-Block Oil and Gas Field,2018,25(6):776-780.

    • [7] 朱维耀,马启鹏,李兵兵,等.注采角度变化对驱油效率和微观剩余油的影响[J].断块油气田,2019,26(2):220-224.ZHU Weiyao,MA Qipeng,LI Bingbing,et al.Influence of injec⁃ tion-production angle variation on oil displacement efficiency and microscopic remaining oil[J].Fault-Block Oil and Gas Field,2019,26(2):220-224.

    • [8] 刘丽丽,王立辉,宋华,等.微孔道残余油膜的驱替机理[J].新疆石油地质,2019,40(4):460-463.LIU Lili,WANG Lihui,SONG Hua,et al.Displacement mecha⁃ nism analysis of residual oil film in micro-channels[J].Xinjiang Petroleum Geology,2019,40(4):460-463.

    • [9] 张立娟,岳湘安.亲油岩石壁面残余油膜的微观驱替机理[J].油气地质与采收率,2007,14(1):79-82,85.ZHANG Lijuan,YUE Xiang’an.Microscopic displacement mecha⁃ nism of oil segment remained on hydrophobic rock wall[J].Petro⁃ leum Geology and Recovery Efficiency,2007,14(1):79-82,85.

    • [10] 张立娟,岳湘安.油藏中分散非连续残余油膜的驱替机理分析[J].油田化学,2006,23(3):243-247.ZHANG Lijuan,YUE Xiang’an.On the displacement mechanism of residual oil film[J].Oilfield Chemistry,2006,23(3):243-247.

    • [11] 孙盈盈,岳湘安,张立娟,等.乳化作用对水驱后残余油膜效果的实验与评价[J].新疆石油地质,2014,35(1):73-76.SUN Yingying,YUE Xiang’an,ZHANG Lijuan,et al.Effect of emulation on displacement of residual oil film following water⁃ flooding:Experiment and evaluation[J].Xinjiang Petroleum Geol⁃ ogy,2014,35(1):73-76.

    • [12] 张立娟,岳湘安,孙盈盈.多孔介质中油膜驱替特性的实验模拟[J].油气地质与采收率,2015,22(6):80-84.ZHANG Lijuan,YUE Xiang’an,SUN Yingying.Experimental simulation on displacement of oil film in porous media[J].Petro⁃ leum Geology and Recovery Efficiency,2015,22(6):80-84.

    • [13] 张明安.二元复合体系微观驱油机理可视化实验[J].油气地质与采收率,2013,20(3):79-82.ZHANG Ming’an.Experiments on visualization of the microscopic mechanism of surfactant/polymer binary compound system[J].Pe⁃ troleum Geology and Recovery Efficiency,2013,20(3):79-82.

    • [14] 刘哲宇,魏秋帆,张菁,等.二元复合体系动用不同模态孔隙结构的剩余油[J].断块油气田,2019,26(3):337-341.LIU Zheyu,WEI Qiufan,ZHANG Jing,et al.Effect of modes of pore structure on pore-scale residual oil displacement in polymer/surfactant flooding[J].Fault-Block Oil and Gas Field,2019,26(3):337-341.

    • [15] PEI Haihua,ZHANG Guicai,GE Jijiang,et al.Analysis of micro⁃ scopic displacement mechanisms of alkaline flooding for en⁃ hanced heavy-oil recovery[J].Energy & Fuels,2011,25(10):4 423-4 429.

    • [16] 黄迎松.水驱速度对束缚型和油膜型剩余油动用的影响理论及实验[J].大庆石油地质与开发,2018,37(2):56-61.HUANG Yingsong.Theories and experiments of the water-flood⁃ ing-rate influences on the development of the captured and film type remained oil[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(2):56-61.

    • [17] PASA Gelu,TITAUD Olivier.A class of viscosity profiles for oil displacement in porous media or hele-shaw cell[J].Transport in Porous Media,2005,58(3):269-286.

    • [18] 李美蓉,娄来勇,庄岩,等.孤岛聚合物驱原油沥青质乳化能力研究[J].特种油气藏,2007,14(5):76-79,83.LI Meirong,LOU Laiyong,ZHUANG Yan,et al.Study on emulsifi⁃ cation of Gudao crude oil asphaltene in polymer flooding[J].Spe⁃ cial Oil & Gas Reservoirs,2007,14(5):76-79,83.

    • [19] 尚丹森,侯吉瑞,马云飞.基于乳化性能设计的驱油用新型三元复合体系评价[J].西安石油大学学报:自然科学版,2018,33(3):79-85. SHANG Dansen,HOU Jirui,MA Yunfei.Evaluation of new ASP system for oil displacement based on emulsification performance design[J].Journal of Xi’an Shiyou University:Natural Science Edition,2018,33(3):79-85.

    • [20] 葛际江,王东方,张贵才,等.稠油驱油体系乳化能力和界面张力对驱油效果的影响[J].石油学报:石油加工,2009,25(5):690-696.GE Jijiang,WANG Dongfang,ZHANG Guicai,et al.The effect of emulsifying power and interfacial tension on displacement charac⁃ teristics for displacement systems of heavy crude oil[J].Acta Petrolei Sinica:Petroleum Processing Section,2009,25(5):690-696.

    • [21] 王业飞,仲东,徐睿,等.二元复合体系乳化性能及其对普通稠油的驱替效果[J].油气地质与采收率,2019,26(5):79-85.WANG Yefei,ZHONG Dong,XU Rui,et al.Emulsification proper⁃ ties of binary composite system and their effect on displacement of conventional heavy oil[J].Petroleum Geology and Recovery Ef⁃ ficiency,2019,26(5):79-85.

    • [22] 罗莉涛,廖广志,刘卫东,等.Marangoni对流启动残余油微观机理[J].石油学报,2015,36(9):1 127-1 134.LUO Litao,LIAO Guangzhi,LIU Weidong,et al.Micromechanism of residual oil mobilization by Marangoni convection[J].Acta Petrolei Sinica,2015,36(9):1 127-1 134.

    • [23] GUO Yabing,YUE Xiang’an,FU Joseph Yuchun,et al.Relevance between emulsification capability and interfacial tension of chemi⁃ cal flooding agents[J].Energy & Fuels,2018,32(12):12 345-12 350.

    • [24] 岳湘安,杨长春,张立娟,等.高温乳化动态测试仪及测试方法:201720419344[P].2018-06-06.YUE Xiang’an,YANG Changchun,ZHANG Lijuan,et al.Hightemperature emulsification characterizer and test method:201720419344[P].2018-06-06.

    • [25] 杨长春.高温高盐油藏水平井深部吞吐-堵水方法研究[D].北京:中国石油大学(北京),2017:95-105.YANG Changchun.Method research of combining in-depth huff and puff with plugging in horizontal wells of high-temperature and high-salinity reservoirs[D].Beijing:China University of Pe⁃ troleum(Beijing),2017:95-105.

  • 参考文献

    • [1] 岳湘安,王尤富,王克亮.提高石油采收率基础[M].北京:石油工业出版社,2007:37.YUE Xiang’an,WANG Youfu,WANG Keliang.Fundamental study on enhanced oil recovery[M].Beijing:Petroleum Industry Presss,2007:37.

    • [2] LI Kexing,JING Xueqi,QU Dan,et al.Pore-level investigations on the oil displacement mechanisms of a viscoelastic surfactant in porous media[J].Journal of Petroleum Science and Engineering,2019,173(2):748-757.

    • [3] 李俊键,姜汉桥,周代余,等.古油藏低矿化度水驱微观剩余油动用机理实验研究[J].油气地质与采收率,2018,25(5):104-109.LI Junjian,JIANG Hanqiao,ZHOU Daiyu,et al.Experimental study on the microscopic displacement mechanism of remaining oil by low salinity water flooding in the paleo-oil reservoir[J].Pe⁃ troleum Geology and Recovery Efficiency,2018,25(5):104-109.

    • [4] 贾忠伟,袁敏,张鑫璐,等.水驱微观渗流特征及剩余油启动机理[J].大庆石油地质与开发,2018,37(1):65-70.JIA Zhongwei,YUAN Min,ZHANG Xinlu,et al.Waterflooding microscopic flow characteristics and the remained oil starting mechnisms[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(1):65-70.

    • [5] 吴晨宇,侯吉瑞,赵凤兰,等.三元复合体系启动水驱后剩余油微观机理[J].油气地质与采收率,2015,22(5):84-88.WU Chenyu,HOU Jirui,ZHAO Fenglan,et al.Study on the micro⁃ scopic mechanism of driving remaining oil by ASP compound sys⁃ tem after water flooding[J].Petroleum Geology and Recovery Effi⁃ ciency,2015,22(5):84-88.

    • [6] 王国锋.低渗透油层低黏度聚驱微观剩余油动用机理[J].断块油气田,2018,25(6):776-780.WANG Guofeng.Microscopic residual oil utilization mechanism of low viscosity polymer flooding in low permeability reservoir[J].Fault-Block Oil and Gas Field,2018,25(6):776-780.

    • [7] 朱维耀,马启鹏,李兵兵,等.注采角度变化对驱油效率和微观剩余油的影响[J].断块油气田,2019,26(2):220-224.ZHU Weiyao,MA Qipeng,LI Bingbing,et al.Influence of injec⁃ tion-production angle variation on oil displacement efficiency and microscopic remaining oil[J].Fault-Block Oil and Gas Field,2019,26(2):220-224.

    • [8] 刘丽丽,王立辉,宋华,等.微孔道残余油膜的驱替机理[J].新疆石油地质,2019,40(4):460-463.LIU Lili,WANG Lihui,SONG Hua,et al.Displacement mecha⁃ nism analysis of residual oil film in micro-channels[J].Xinjiang Petroleum Geology,2019,40(4):460-463.

    • [9] 张立娟,岳湘安.亲油岩石壁面残余油膜的微观驱替机理[J].油气地质与采收率,2007,14(1):79-82,85.ZHANG Lijuan,YUE Xiang’an.Microscopic displacement mecha⁃ nism of oil segment remained on hydrophobic rock wall[J].Petro⁃ leum Geology and Recovery Efficiency,2007,14(1):79-82,85.

    • [10] 张立娟,岳湘安.油藏中分散非连续残余油膜的驱替机理分析[J].油田化学,2006,23(3):243-247.ZHANG Lijuan,YUE Xiang’an.On the displacement mechanism of residual oil film[J].Oilfield Chemistry,2006,23(3):243-247.

    • [11] 孙盈盈,岳湘安,张立娟,等.乳化作用对水驱后残余油膜效果的实验与评价[J].新疆石油地质,2014,35(1):73-76.SUN Yingying,YUE Xiang’an,ZHANG Lijuan,et al.Effect of emulation on displacement of residual oil film following water⁃ flooding:Experiment and evaluation[J].Xinjiang Petroleum Geol⁃ ogy,2014,35(1):73-76.

    • [12] 张立娟,岳湘安,孙盈盈.多孔介质中油膜驱替特性的实验模拟[J].油气地质与采收率,2015,22(6):80-84.ZHANG Lijuan,YUE Xiang’an,SUN Yingying.Experimental simulation on displacement of oil film in porous media[J].Petro⁃ leum Geology and Recovery Efficiency,2015,22(6):80-84.

    • [13] 张明安.二元复合体系微观驱油机理可视化实验[J].油气地质与采收率,2013,20(3):79-82.ZHANG Ming’an.Experiments on visualization of the microscopic mechanism of surfactant/polymer binary compound system[J].Pe⁃ troleum Geology and Recovery Efficiency,2013,20(3):79-82.

    • [14] 刘哲宇,魏秋帆,张菁,等.二元复合体系动用不同模态孔隙结构的剩余油[J].断块油气田,2019,26(3):337-341.LIU Zheyu,WEI Qiufan,ZHANG Jing,et al.Effect of modes of pore structure on pore-scale residual oil displacement in polymer/surfactant flooding[J].Fault-Block Oil and Gas Field,2019,26(3):337-341.

    • [15] PEI Haihua,ZHANG Guicai,GE Jijiang,et al.Analysis of micro⁃ scopic displacement mechanisms of alkaline flooding for en⁃ hanced heavy-oil recovery[J].Energy & Fuels,2011,25(10):4 423-4 429.

    • [16] 黄迎松.水驱速度对束缚型和油膜型剩余油动用的影响理论及实验[J].大庆石油地质与开发,2018,37(2):56-61.HUANG Yingsong.Theories and experiments of the water-flood⁃ ing-rate influences on the development of the captured and film type remained oil[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(2):56-61.

    • [17] PASA Gelu,TITAUD Olivier.A class of viscosity profiles for oil displacement in porous media or hele-shaw cell[J].Transport in Porous Media,2005,58(3):269-286.

    • [18] 李美蓉,娄来勇,庄岩,等.孤岛聚合物驱原油沥青质乳化能力研究[J].特种油气藏,2007,14(5):76-79,83.LI Meirong,LOU Laiyong,ZHUANG Yan,et al.Study on emulsifi⁃ cation of Gudao crude oil asphaltene in polymer flooding[J].Spe⁃ cial Oil & Gas Reservoirs,2007,14(5):76-79,83.

    • [19] 尚丹森,侯吉瑞,马云飞.基于乳化性能设计的驱油用新型三元复合体系评价[J].西安石油大学学报:自然科学版,2018,33(3):79-85. SHANG Dansen,HOU Jirui,MA Yunfei.Evaluation of new ASP system for oil displacement based on emulsification performance design[J].Journal of Xi’an Shiyou University:Natural Science Edition,2018,33(3):79-85.

    • [20] 葛际江,王东方,张贵才,等.稠油驱油体系乳化能力和界面张力对驱油效果的影响[J].石油学报:石油加工,2009,25(5):690-696.GE Jijiang,WANG Dongfang,ZHANG Guicai,et al.The effect of emulsifying power and interfacial tension on displacement charac⁃ teristics for displacement systems of heavy crude oil[J].Acta Petrolei Sinica:Petroleum Processing Section,2009,25(5):690-696.

    • [21] 王业飞,仲东,徐睿,等.二元复合体系乳化性能及其对普通稠油的驱替效果[J].油气地质与采收率,2019,26(5):79-85.WANG Yefei,ZHONG Dong,XU Rui,et al.Emulsification proper⁃ ties of binary composite system and their effect on displacement of conventional heavy oil[J].Petroleum Geology and Recovery Ef⁃ ficiency,2019,26(5):79-85.

    • [22] 罗莉涛,廖广志,刘卫东,等.Marangoni对流启动残余油微观机理[J].石油学报,2015,36(9):1 127-1 134.LUO Litao,LIAO Guangzhi,LIU Weidong,et al.Micromechanism of residual oil mobilization by Marangoni convection[J].Acta Petrolei Sinica,2015,36(9):1 127-1 134.

    • [23] GUO Yabing,YUE Xiang’an,FU Joseph Yuchun,et al.Relevance between emulsification capability and interfacial tension of chemi⁃ cal flooding agents[J].Energy & Fuels,2018,32(12):12 345-12 350.

    • [24] 岳湘安,杨长春,张立娟,等.高温乳化动态测试仪及测试方法:201720419344[P].2018-06-06.YUE Xiang’an,YANG Changchun,ZHANG Lijuan,et al.Hightemperature emulsification characterizer and test method:201720419344[P].2018-06-06.

    • [25] 杨长春.高温高盐油藏水平井深部吞吐-堵水方法研究[D].北京:中国石油大学(北京),2017:95-105.YANG Changchun.Method research of combining in-depth huff and puff with plugging in horizontal wells of high-temperature and high-salinity reservoirs[D].Beijing:China University of Pe⁃ troleum(Beijing),2017:95-105.