en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张学英(1975—),女,河北易县人,高级工程师,从事煤层气开发研究。E-mail:yizx_zxying@petrochina.com.cn。

中图分类号:TE37

文献标识码:A

文章编号:1009-9603(2020)02-0137-06

DOI:10.13673/j.cnki.cn37-1359/te.2020.02.018

参考文献 1
邹才能,杨智,黄士鹏,等.煤系天然气的资源类型、形成分布与发展前景[J].石油勘探与开发,2019,46(3):433-442.ZOU Caineng,YANG Zhi,HUANG Shipeng,et al.Resource types,formation,distribution and prospects of coal-measure gas [J].Petroleum Exploration and Development,2019,46(3):433-442.
参考文献 2
胡海洋,赵凌云,金军,等.黔西煤层应力敏感性及对煤层气井排采的影响[J].断块油气田,2019,26(4):475-479.HU Haiyang,ZHAO Lingyun,JIN Jun,et al.Stress sensitivity of western Guizhou coal reservoir and its influence on drainage of CBM well[J].Fault-Block Oil and Gas Field,2019,26(4):475-479.
参考文献 3
温声明,文桂华,李星涛,等.地质工程一体化在保德煤层气田勘探开发中的实践与成效[J].中国石油勘探,2018,23(2):69-75.WEN Shengming,WEN Guihua,LI Xingtao,et al.Application and effect of geology-engineering integration in the exploration and development of Baode CBM field[J].China Petroleum Explo⁃ ration,2018,23(2):69-75.
参考文献 4
李相方,石军太,杜希瑶,等.煤层气藏开发降压解吸气运移机理[J].石油勘探与开发,2012,39(2):203-213.LI Xiangfang,SHI Juntai,DU Xiyao,et al.Transport mechanism of desorbed gas in coalbed methane reservoirs[J].Petroleum Ex⁃ ploration and Development,2012,39(2):203-213.
参考文献 5
胡志明,端祥刚,常进,等.页岩气与煤层气开发特征模拟实验研究[J].特种油气藏,2019,26(4):125-130.HU Zhiming,DUAN Xianggang,CHANG Jin,et al.Physical simu⁃ lation of shale gas and coalbed gas development[J].Special Oil & Gas Reservoirs,2019,26(4):125-130.
参考文献 6
康志勤,李翔,李伟,等.煤体结构与甲烷吸附/解吸规律相关性实验研究及启示[J].煤炭学报,2018,43(5):1 400-1 407.KANG Zhiqin,LI Xiang,LI Wei,et al.Experimental investigation of methane adsorption/desorption behavior in coals with different coal-body structure and its revelation[J].Journal of China Coal Society,2018,43(5):1 400-1 407.
参考文献 7
SEIDLE J.Fundamentals of coalbed methane reservoir engineering [M].Tulsa:PennWell Books,2011.
参考文献 8
原俊红,付玉通,宋昱.深部煤层气储层测井解释技术及应用 [J].油气地质与采收率,2018,25(5):24-31.YUAN Junhong,FU Yutong,SONG Yu.Logging interpretation technology and its application to deep coalbed methane reservoir [J].Petroleum Geology and Recovery Efficiency,2018,25(5):24-31.
参考文献 9
王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.
参考文献 10
陈彦君,苏雪峰,王钧剑,等.基于X射线微米CT扫描技术的煤岩孔裂隙多尺度精细表征——以沁水盆地南部马必东区块为例[J].油气地质与采收率,2019,26(5):66-72.CHEN Yanjun,SU Xuefeng,WANG Junjian,et al.Multi-scale fine characterization of coal pore-fracture structure based on Xray micro-CT scanning:A case study of Mabidong Block,south⁃ ern Qinshui Basin[J].Petroleum Geology and Recovery Efficien⁃ cy,2019,26(5):66-72.
参考文献 11
任闽燕,姜汉桥,李爱山,等.非常规天然气增产改造技术研究进展及其发展方向[J].油气地质与采收率,2013,20(2):103-107.REN Minyan,JIANG Hanqiao,LI Aishan,et al.Review on study process of unconventional gas stimulation technology[J].Petro⁃ leum Geology and Recovery Efficiency,2013,20(2):103-107.
参考文献 12
许露露,崔金榜,黄赛鹏,等.煤层气储层水力压裂裂缝扩展模型分析及应用[J].煤炭学报,2014,39(10):2 068-2 074.XU Lulu,CUI Jinbang,HUANG Saipeng,et al.Analysis and ap⁃ plication of fracture propagated model by hydraulic fracturing in coal-bed methane reservoir[J].Journal of China Coal Society,2014,39(10):2 068-2 074.
参考文献 13
焦春艳,刘华勋,刘鹏飞,等.低渗致密气藏开发动态物理模拟实验相似准则[J].大庆石油地质与开发,2019,38(1):155-161.JIAO Chunyan,LIU Huaxun,LIU Pengfei,et al.Similarity criteri⁃ on of the physical simulating experiment for the development per⁃ formances of low-permeability tight gas reservoirs[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(1):155-161.
参考文献 14
黄玉欣,胡望水,尹帅.基于动态弹性力学模型的煤系致密砂岩储层裂缝预测方法[J].石油钻探技术,2018,46(5):115-120.HUANG Yuxin,HU Wangshui,YIN Shuai.Fracture prediction method for coal-bearing tight sandstone reservoirs based on a dy⁃ namic elastic mechanics model[J].Petroleum Drilling Tech⁃ niques,2018,46(5):115-120.
参考文献 15
孟尚志,李勇,吴翔,等.煤层气和致密气合采产能方程及影响因素[J].煤炭学报,2018,43(6):1 709-1 715.MENG Shangzhi,LI Yong,WU Xiang,et al.Productivity equation and influencing factors of co-producing coalbed methane and tight gas[J].Journal of China Coal Society,2018,43(6):1 709-1 715.
参考文献 16
李勇,孟尚志,吴鹏,等.煤系气合采产出数值模拟研究[J].煤炭学报,2018,43(6):1 728-1 737.LI Yong,MENG Shangzhi,WU Peng,et al.Numerical simulation of coal measure gases co-production[J].Journal of China Coal So⁃ ciety,2018,43(6):1 728-1 737.
参考文献 17
李陈,赵刚,陈丽群.考虑基质收缩效应的煤层气藏产能评价 [J].特种油气藏,2019,26(1):106-110.LI Chen,ZHAO Gang,CHEN Liqun.Productivity evaluation of coalbed methane reservoir with matrix shrinkage effect[J].Spe⁃ cial Oil & Gas Reservoirs,2019,26(1):106-110.
参考文献 18
秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2006.QIN Jishun,LI Aifen.Reservoir physics[M].Dongying:China Uni⁃ versity of Petroleum Press,2006.
目录contents

    摘要

    为明确排采过程中煤层气的产出路径,以沁水盆地南部马必东区块3#煤层样品为研究对象,通过煤岩基质岩心与裂隙岩心的并联和串联实验,分析不同组合模式下气体体积流量、岩心渗透率与驱替压差的关系,探究压差作用下煤层气藏的产出机理。实验结果表明,煤层气在排采过程中存在由煤岩基质孔隙向天然微裂隙进而向人工裂隙运移的串联产出路径以及由煤岩基质孔隙+天然微裂隙+人工裂隙共同产出的并联产出路径。串联产出路径中气体产出主要受煤岩基质渗透率的影响,并联产出路径中气体产出主要受人工裂隙的影响。并联产出路径的等效渗透率远高于串联产出路径的等效渗透率。当岩心两端压差由4.5 MPa降至2 MPa时,并联产出路径的等效渗透率由串联等效渗透率的30倍降至16倍。因此,在煤层气井的排采过程中,需进一步考虑并联产出路径中煤层气的产出。

    Abstract

    In order to clarify the gas production path of coalbed methane in the process of drainage,samples that collected from No.3 coal seam of Mabidong Block,southern Qinshui Basin are studied,and the parallel and series experiments com- posed of fractured and matrix samples are designed to simulate the different combination mode of matrix and fractures. By analyzing the relationship between gas flow rate,core permeability and displacement pressure difference in each case,the mechanism of coalbed methane production at different driving pressure differences is explored. The experimental results show that the coalbed methane follows the series path from the matrix pores to the natural micro-fractures and then to the artificial fractures during the drainage process,and it also follows a parallel path that composed of the matrix,natural mi- cro-fractures and artificial fractures. The production of gas in the series path is mainly affected by the permeability of the matrix,and the production of gas in the parallel path is mainly affected by the artificial fractures. The equivalent permeabil- ity of the series path is much lower than that of the parallel path. When the pressure difference across the core is reduced from about 4.5 MPa to 2 MPa,the equivalent permeability of the parallel path is reduced from 30 times to 16 times the equivalent permeability of the series path. Therefore,in the process of drainage of coalbed methane wells,the influence of the parallel path on the production of coalbed methane should be further considered.

  • 中国煤层气资源丰富,勘探开发前景广阔[1]。近年来,煤层气勘探开发技术的不断进步以及水力压裂、水平井等技术的成功应用,将煤层气的勘探开发推向新高潮[2-3]。然而目前针对煤层气的产出机理研究仍处于探索阶段且存在争议[2]。已有研究结果表明对于已压裂的煤层气井,煤层气的产出存在一定的特殊性,解吸出的煤层气需要通过致密的煤岩基质孔隙、天然微裂隙、水力裂隙等多尺度介质后才能从井筒产出[4],同时气体的流动也存在多尺度效应,很难用单一的流动模型对其进行描述[5-6]

  • 煤层气储层通常为由基质孔隙和微裂隙组成的双重孔隙系统,其中基质孔隙是气体的主要储集场所,微裂隙是气体的运移通道[7-8]。煤层气储层结构复杂,发育从纳米级孔隙至天然微裂隙的多尺度储渗空间[9]。此外,与常规天然气储层相比,煤层气储层往往具有低孔超低渗透的特征,对煤层气采用衰竭模式开采不足以获得工业性产量。因此,为进一步提高煤层气井产能,水力压裂技术成为煤层气开采的主要增产措施[10]。煤层气储层经水力压裂后,产生较大规模的人工裂隙会进一步沟通天然微裂隙,形成以复杂缝网为主导的渗流通道,从而提高储层的渗透性[11-12]。对于压裂后煤层气井的产气路径,目前普遍认为在排采过程中,煤层气以从小尺度向大尺度逐步运移的串联方式流入大规模的人工裂隙及井筒。即在系统降压以后,储集在基质微纳米孔隙中的气体以渗流或者扩散的方式运移至天然微裂隙中,进而在压差的作用下从天然微裂隙渗流到人工裂隙并进一步流入井筒[13]。然而在实际开发过程中,考虑煤岩基质与天然裂隙有限的接触面积,除上述模式以外,理应存在基质孔隙、天然微裂隙和次一级裂隙共同向主裂隙/井筒产出的并联模式[14]。目前诸多学者对气体串联产出路径颇有研究,现提出的多数数学模型也都基于多尺度逐级渗流的概念模型[15-17]。然而针对煤层气并联产出路径现有研究较少,导致煤层气向井筒的主导产气模式尚未可知。

  • 针对在压差作用下煤层气产出路径这一关键问题,以沁水盆地马必东区块3#煤层样品为研究对象,通过设计裂隙岩心和基质岩心的串联及并联实验,分别模拟煤岩基质孔隙、天然微裂隙、人工裂隙不同的组合关系,进而建立煤层气的产出模式。根据研究区实际地层条件和地应力条件,通过分析气体体积流量、岩心渗透率及驱替压差的关系,集中探讨在不同压差下气体的产出路径及其影响因素。

  • 1 煤层气产出路径实验模拟

  • 煤层气从储层中的高效产出离不开天然微裂隙或人工裂隙所提供的快速通道,而致密的煤岩基质所提供的有效气源也制约着煤层气在储层中能否高效产出。因此探究裂隙网格与煤岩基质的合理配置,分析煤层气在储层中的产出行为,有利于优化煤层压裂改造方案,并极大地改善煤层气的开发效果。

  • 1.1 样品的采集与制备

  • 实验样品取自沁水盆地南部马必东区块的 3# 煤层。该煤层为研究区主要可采煤层,埋深约为 1 000 m,平均厚度约为6 m,具有厚度大、结构简单、分布稳定的特点。3#煤岩样品为半亮煤,成分以亮煤为主,暗煤次之,夹有少量镜煤条带。局部发育裂隙,煤体结构较完整,煤体坚硬,属于原生结构煤。

  • 由于煤岩中发育大量割理与微裂隙,使得通过传统的水钻法制样变得十分困难。水钻法在钻进过程中极易受人为扰动而破坏煤岩的结构使之发生破碎,为了提高制样的成功率,根据宏观煤岩描述结果,选取煤岩基质部位及含有天然微裂隙的部位,采用线切割技术,分别制取直径约为 2.5 cm、长度约为 5 cm 的煤岩柱样若干。为模拟煤层气在天然微裂隙中的渗流行为,通过CAD设计人工裂隙的空间形态,进而通过线切割技术制取人工裂隙样品 (图1)。

  • 图1 线切割制取人工裂缝样品示意

  • Fig.1 Illustration of artificially fractured sample by line cutting technique

  • 制作煤岩样品后,分别测定各样品的孔隙度和渗透率。根据渗透率依次增大的变化规律及样品中天然微裂隙的发育特征,从所制样品中选取 3 块典型岩样,分别代表煤岩基质孔隙、天然微裂隙和人工裂隙样品。由 3 块煤岩样品孔渗实验参数(表1)可见,经人工造缝的煤岩样品渗透率远高于天然微裂隙和煤岩基质孔隙样品。

  • 1.2 串、并联产出路径实验设计与步骤

  • 串联产出路径实验模拟在排采过程中气体由煤岩基质孔隙向天然微裂隙进而向人工裂隙逐渐产出的运移模式。实验装置如图2所示。

  • 表1 煤岩样品孔渗实验参数

  • Table1 Coal sample parameters

  • 图2 串联产出路径实验装置

  • Fig.2 Schematic of series flow experiment

  • 在串联产出路径实验过程中,将代表煤岩基质孔隙、天然微裂隙和人工裂隙的样品按顺序依次装入相应的岩心夹持器中,其中煤岩基质孔隙样品离注气端最近,人工裂隙样品离注气端最远,从而模拟实际过程中气体由基质孔隙逐步向裂隙运移的过程。考虑实验的安全性,选取氮气作为渗流介质,模拟实际生产过程中煤层气储层内部气体的流动。实验采用稳态法计算样品的渗透率,因此,可忽略气体吸附解吸所导致的渗透率动态变化。为分析各样品体积流量和渗透率的差异,分别在 3 个夹持器的两侧接入压力传感器,来监测整体压力变化时不同样品的两端压力变化,同时计量出口端的体积流量,用以计算在不同驱替压力下整体的渗透率变化。

  • 并联产出路径实验模拟在排采过程中气体由煤岩基质孔隙+天然微裂隙+人工裂隙共同产出模式,其实验装置见图3。与串联产出路径实验不同,并联产出路径实验使用气体体积流量计分别计量3 块岩心出口端的体积流量,同时监测装置出口端和入口端压力的变化。

  • 根据研究区煤层气储层的地层条件,将串、并联产出路径实验的围压设置为15 MPa,用以模拟研究区煤层气储层地应力情况。为明确在产出过程中气体体积流量和渗透率的变化,根据研究区煤层气储层的平均地层压力,分析在注入压力由4.5 MPa 下降至 2 MPa 时各实验组的压力、体积流量以及渗透率的变化情况。2 套实验的具体步骤包括:①按实验装置图接好仪器设备,调节各仪器设备使其进入实验状态。②将实验用岩心放入岩心夹持器,利用围压泵给夹持器的岩心提供稳定的围压15 MPa。 ③打开气源并给定相应的驱替压力,检查实验流程,保证无漏气后开始实验。④调节进口压力至设定值,等待一段时间,当出口端体积流量稳定后,记录相应的压力和体积流量。⑤根据实验需要,重复步骤④至所有测试点测试完毕。⑥通过达西定律计算渗透率,进行实验的后期整理分析。

  • 图3 并联产出路径实验装置

  • Fig.3 Schematic of parallel flow experiment

  • 2 结果分析

  • 2.1 串联产出路径实验

  • 利用人工裂隙样品和煤岩基质孔隙样品的串联,得到系统不同压力梯度下的体积流量。由于注气压力往往体现地层能量的大小,且随着注气压力的降低,地层压力逐渐衰减,有效应力逐渐增大,因此串联产出路径实验出口端体积流量随入口端注入压力的增大呈现近线性降低的趋势。压差由 4.5 MPa 降至 2 MPa 时,体积流量由 0.007 3 cm3 /s 降至 0.004 5 cm3 /s(图4)。

  • 图4 串联产出路径实验体积流量与压差的关系

  • Fig.4 Relationship between flow rate and pressure difference in series flow experiment

  • 为进一步分析串联产出路径中气体在各样品中的渗流行为,统计了实验中各样品两端压差与相对应的体积流量。结果(图5)表明,随串联产出路径实验压力的降低,各样品两端的压差与体积流量呈现负相关关系。当注入压力由4.5 MPa下降至2 MPa 时,串联产出路径中煤岩基质孔隙样品随地层能量的衰减两端压力降幅及降速最大,压差由 2.77 MPa 下降至 0.55 MPa,降幅为 80.1%;天然微裂隙样品次之,两端压差由 1.74 MPa 下降至 1.48 MPa,降幅为 14.9%;人工裂隙样品最小,两端压差均为 0.003 0 MPa左右。因此,在串联产出路径实验中,基质渗透率对煤层气的产出起决定性作用。由于煤岩基质渗透率较低,煤层气在基质孔隙中的流动能量消耗最大。当气体逐渐通过天然微裂隙流至人工裂隙以后,人工裂隙的入口压力几乎衰减至出口端压力,即使人工裂隙能够提供较高的渗透率和高渗流通道,但由于在串联产出路径实验中,当气体流至人工裂隙后,地层能量严重不足,因此人工裂隙对煤层气的产出贡献较小。

  • 图5 串联产出路径实验各样品体积流量与压差的关系

  • Fig.5 Relationship between flow rate and pressure difference for each sample in series flow experiment

  • 2.2 并联产出路径实验

  • 并联产出路径实验出口端体积流量与压差的关系(图6)表明,并联实验组产出气量与串联实验组出口端体积流量的变化规律类似,都随入口端压力的减小呈近线性降低。相比串联产出路径实验,并联实验组由于样品出口端截面较大且沿流动方向样品长度较小,因此在各个入口压力点下其出口端体积流量都高于串联实验组。当入口端压力由 4.5 MPa 降至 2.0 MPa 时,并联产出路径出口端体积流量由约25 cm3 /s降至约5 cm3 /s。

  • 并联产出路径实验中煤岩基质孔隙、天然微裂隙及人工裂隙的体积流量与压差之间的关系(图7) 表明,随整体地层压力或地层能量的降低,3块样品两端压差与体积流量均呈负相关。并联产出路径实验天然微裂隙样品体积流量下降最大,从 0.07 cm3 /s降至0.009 cm3 /s,降幅为87%;人工裂隙样品在地层能量衰减过程中气体体积流量下降次之,从23 cm3 /s下降至5.5 cm3 /s,降幅为76%;煤岩基质孔隙样品降幅最小,从0.005 4 cm3 /s降至0.002 5 cm3 /s,降幅为 60%。与此同时,煤岩基质孔隙样品体积流量远小于天然微裂隙样品两端体积流量,且远小于人工裂隙样品两端体积流量。在并联产出路径实验中,气体在人工裂隙中的快速流动形成优势通道,因此气体在人工裂隙中的渗流决定煤层气的产出,并限制气体在煤岩基质孔隙和天然微裂隙中的渗流。

  • 图6 并联产出路径实验出口端体积流量与压差的关系

  • Fig.6 Relationship between flow rate and pressure difference in parallel flow experiment

  • 图7 并联产出路径实验各样品体积流量与压差的关系

  • Fig.7 Relationship between flow rate and pressure difference for each sample in parallel flow experiment

  • 2.3 串联与并联产出路径实验结果对比

  • 为进一步比较串联产出路径和并联产出路径对煤层气产出的控制作用,考虑两系统出口端截面积及压力梯度不同,很难从测得体积流量的角度对两系统进行对比,因此,对2种产出路径的等效渗透率及各样品的渗透率变化进行分析。

  • 根据达西定律,对于串联产出路径实验,系统整体总压差为各样品两端压差之和,且通过各样品的体积流量相同,因此串联实验系统的等效渗透率满足条件为[18]

  • Ks=LiLiKi
    (1)
  • 对于并联产出路径实验,考虑系统总流量为各分支样品体积流量之和且各样品两端压差相同,因此并联实验系统的等效渗透率满足条件为[18]

  • Kp=KiDi2Di2
    (2)
  • 根据(1)式和(2)式计算串联产出路径和并联产出路径的等效渗透率,结果见图8。由于串联产出路径和并联产出路径中气体的产出分别以煤岩基质孔隙和天然微裂隙样品为主,使得串联产出路径的等效渗透率远低于并联产出路径的等效渗透率。当入口端压力为 4.5 MPa 时,并联产出路径的等效渗透率为串联产出路径的 30 倍左右。当入口端压力为 2 MPa 时,尽管两系统的渗透率均有所下降,但并联产出路径的等效渗透率仍为串联产出路径的 16 倍。因此,在已压裂煤层气井的排采过程中,近井地带主裂隙附近,在考虑串联产出路径的同时,需要进一步考虑并联产出路径中气体的产出。

  • 图8 串、并联产出路径等效渗透率与压差的关系

  • Fig.8 Relationship between equivalent permeability and pressure difference for series and parallel flow experiments

  • 由串联产出路径和并联产出路径的等效渗透率与初始渗透率之比与压差的关系(图9)可见,随地层压力的衰减,有效应力逐步增大,导致煤层中裂隙闭合且等效渗透率降低。相比于并联产出路径,串联产出路径任意样品渗透率的急剧下降都会对整体渗透率产生严重的影响,因此串联产出路径等效渗透率与初始渗透率之比要低于并联产出路径等效渗透率与初始渗透率之比。

  • 图9 串、并联产出路径等效渗透率与初始渗透率之比与压差的关系

  • Fig.9 Relationship between the ratio of equivalent permeability and initial permeability and the pressure difference for series and parallel flow experiments

  • 3 结论

  • 煤层气储层存在煤岩基质孔隙、天然微裂隙和水力裂隙等多尺度介质,煤层气的产出需要经历一系列串联或者并联耦合过程,合理有效的基质孔隙与裂隙的配置关系是煤层气有效产出的决定因素之一。通过建立煤层气储层串、并联配置关系模型,实验模拟了煤层气的产出过程,为深入研究煤层气的产气机理提供了理论基础。

  • 煤层气储层串、并联产出路径实验结果表明,串联产出路径中气体产出主要受煤岩基质渗透率的影响。并联产出路径中气体产出主要受人工裂隙的影响。不同路径中各样品的体积流量与压差的相关关系有显著差别。在相同条件下,串联产出路径的等效渗透率远低于并联产出路径的等效渗透率,在压裂煤层气井的排采过程中,要进一步考虑并联产出路径对煤层气产出的控制作用。

  • 符号解释

  • Ks ——串联等效渗透率,D;Li ——各岩心长度,m;i—— 样品数;Ki——各岩心样品的渗透率,D;Kp——并联等效渗透率,D;Di——岩心样品的直径,m[18]

  • 参考文献

    • [1] 邹才能,杨智,黄士鹏,等.煤系天然气的资源类型、形成分布与发展前景[J].石油勘探与开发,2019,46(3):433-442.ZOU Caineng,YANG Zhi,HUANG Shipeng,et al.Resource types,formation,distribution and prospects of coal-measure gas [J].Petroleum Exploration and Development,2019,46(3):433-442.

    • [2] 胡海洋,赵凌云,金军,等.黔西煤层应力敏感性及对煤层气井排采的影响[J].断块油气田,2019,26(4):475-479.HU Haiyang,ZHAO Lingyun,JIN Jun,et al.Stress sensitivity of western Guizhou coal reservoir and its influence on drainage of CBM well[J].Fault-Block Oil and Gas Field,2019,26(4):475-479.

    • [3] 温声明,文桂华,李星涛,等.地质工程一体化在保德煤层气田勘探开发中的实践与成效[J].中国石油勘探,2018,23(2):69-75.WEN Shengming,WEN Guihua,LI Xingtao,et al.Application and effect of geology-engineering integration in the exploration and development of Baode CBM field[J].China Petroleum Explo⁃ ration,2018,23(2):69-75.

    • [4] 李相方,石军太,杜希瑶,等.煤层气藏开发降压解吸气运移机理[J].石油勘探与开发,2012,39(2):203-213.LI Xiangfang,SHI Juntai,DU Xiyao,et al.Transport mechanism of desorbed gas in coalbed methane reservoirs[J].Petroleum Ex⁃ ploration and Development,2012,39(2):203-213.

    • [5] 胡志明,端祥刚,常进,等.页岩气与煤层气开发特征模拟实验研究[J].特种油气藏,2019,26(4):125-130.HU Zhiming,DUAN Xianggang,CHANG Jin,et al.Physical simu⁃ lation of shale gas and coalbed gas development[J].Special Oil & Gas Reservoirs,2019,26(4):125-130.

    • [6] 康志勤,李翔,李伟,等.煤体结构与甲烷吸附/解吸规律相关性实验研究及启示[J].煤炭学报,2018,43(5):1 400-1 407.KANG Zhiqin,LI Xiang,LI Wei,et al.Experimental investigation of methane adsorption/desorption behavior in coals with different coal-body structure and its revelation[J].Journal of China Coal Society,2018,43(5):1 400-1 407.

    • [7] SEIDLE J.Fundamentals of coalbed methane reservoir engineering [M].Tulsa:PennWell Books,2011.

    • [8] 原俊红,付玉通,宋昱.深部煤层气储层测井解释技术及应用 [J].油气地质与采收率,2018,25(5):24-31.YUAN Junhong,FU Yutong,SONG Yu.Logging interpretation technology and its application to deep coalbed methane reservoir [J].Petroleum Geology and Recovery Efficiency,2018,25(5):24-31.

    • [9] 王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.

    • [10] 陈彦君,苏雪峰,王钧剑,等.基于X射线微米CT扫描技术的煤岩孔裂隙多尺度精细表征——以沁水盆地南部马必东区块为例[J].油气地质与采收率,2019,26(5):66-72.CHEN Yanjun,SU Xuefeng,WANG Junjian,et al.Multi-scale fine characterization of coal pore-fracture structure based on Xray micro-CT scanning:A case study of Mabidong Block,south⁃ ern Qinshui Basin[J].Petroleum Geology and Recovery Efficien⁃ cy,2019,26(5):66-72.

    • [11] 任闽燕,姜汉桥,李爱山,等.非常规天然气增产改造技术研究进展及其发展方向[J].油气地质与采收率,2013,20(2):103-107.REN Minyan,JIANG Hanqiao,LI Aishan,et al.Review on study process of unconventional gas stimulation technology[J].Petro⁃ leum Geology and Recovery Efficiency,2013,20(2):103-107.

    • [12] 许露露,崔金榜,黄赛鹏,等.煤层气储层水力压裂裂缝扩展模型分析及应用[J].煤炭学报,2014,39(10):2 068-2 074.XU Lulu,CUI Jinbang,HUANG Saipeng,et al.Analysis and ap⁃ plication of fracture propagated model by hydraulic fracturing in coal-bed methane reservoir[J].Journal of China Coal Society,2014,39(10):2 068-2 074.

    • [13] 焦春艳,刘华勋,刘鹏飞,等.低渗致密气藏开发动态物理模拟实验相似准则[J].大庆石油地质与开发,2019,38(1):155-161.JIAO Chunyan,LIU Huaxun,LIU Pengfei,et al.Similarity criteri⁃ on of the physical simulating experiment for the development per⁃ formances of low-permeability tight gas reservoirs[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(1):155-161.

    • [14] 黄玉欣,胡望水,尹帅.基于动态弹性力学模型的煤系致密砂岩储层裂缝预测方法[J].石油钻探技术,2018,46(5):115-120.HUANG Yuxin,HU Wangshui,YIN Shuai.Fracture prediction method for coal-bearing tight sandstone reservoirs based on a dy⁃ namic elastic mechanics model[J].Petroleum Drilling Tech⁃ niques,2018,46(5):115-120.

    • [15] 孟尚志,李勇,吴翔,等.煤层气和致密气合采产能方程及影响因素[J].煤炭学报,2018,43(6):1 709-1 715.MENG Shangzhi,LI Yong,WU Xiang,et al.Productivity equation and influencing factors of co-producing coalbed methane and tight gas[J].Journal of China Coal Society,2018,43(6):1 709-1 715.

    • [16] 李勇,孟尚志,吴鹏,等.煤系气合采产出数值模拟研究[J].煤炭学报,2018,43(6):1 728-1 737.LI Yong,MENG Shangzhi,WU Peng,et al.Numerical simulation of coal measure gases co-production[J].Journal of China Coal So⁃ ciety,2018,43(6):1 728-1 737.

    • [17] 李陈,赵刚,陈丽群.考虑基质收缩效应的煤层气藏产能评价 [J].特种油气藏,2019,26(1):106-110.LI Chen,ZHAO Gang,CHEN Liqun.Productivity evaluation of coalbed methane reservoir with matrix shrinkage effect[J].Spe⁃ cial Oil & Gas Reservoirs,2019,26(1):106-110.

    • [18] 秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2006.QIN Jishun,LI Aifen.Reservoir physics[M].Dongying:China Uni⁃ versity of Petroleum Press,2006.

  • 参考文献

    • [1] 邹才能,杨智,黄士鹏,等.煤系天然气的资源类型、形成分布与发展前景[J].石油勘探与开发,2019,46(3):433-442.ZOU Caineng,YANG Zhi,HUANG Shipeng,et al.Resource types,formation,distribution and prospects of coal-measure gas [J].Petroleum Exploration and Development,2019,46(3):433-442.

    • [2] 胡海洋,赵凌云,金军,等.黔西煤层应力敏感性及对煤层气井排采的影响[J].断块油气田,2019,26(4):475-479.HU Haiyang,ZHAO Lingyun,JIN Jun,et al.Stress sensitivity of western Guizhou coal reservoir and its influence on drainage of CBM well[J].Fault-Block Oil and Gas Field,2019,26(4):475-479.

    • [3] 温声明,文桂华,李星涛,等.地质工程一体化在保德煤层气田勘探开发中的实践与成效[J].中国石油勘探,2018,23(2):69-75.WEN Shengming,WEN Guihua,LI Xingtao,et al.Application and effect of geology-engineering integration in the exploration and development of Baode CBM field[J].China Petroleum Explo⁃ ration,2018,23(2):69-75.

    • [4] 李相方,石军太,杜希瑶,等.煤层气藏开发降压解吸气运移机理[J].石油勘探与开发,2012,39(2):203-213.LI Xiangfang,SHI Juntai,DU Xiyao,et al.Transport mechanism of desorbed gas in coalbed methane reservoirs[J].Petroleum Ex⁃ ploration and Development,2012,39(2):203-213.

    • [5] 胡志明,端祥刚,常进,等.页岩气与煤层气开发特征模拟实验研究[J].特种油气藏,2019,26(4):125-130.HU Zhiming,DUAN Xianggang,CHANG Jin,et al.Physical simu⁃ lation of shale gas and coalbed gas development[J].Special Oil & Gas Reservoirs,2019,26(4):125-130.

    • [6] 康志勤,李翔,李伟,等.煤体结构与甲烷吸附/解吸规律相关性实验研究及启示[J].煤炭学报,2018,43(5):1 400-1 407.KANG Zhiqin,LI Xiang,LI Wei,et al.Experimental investigation of methane adsorption/desorption behavior in coals with different coal-body structure and its revelation[J].Journal of China Coal Society,2018,43(5):1 400-1 407.

    • [7] SEIDLE J.Fundamentals of coalbed methane reservoir engineering [M].Tulsa:PennWell Books,2011.

    • [8] 原俊红,付玉通,宋昱.深部煤层气储层测井解释技术及应用 [J].油气地质与采收率,2018,25(5):24-31.YUAN Junhong,FU Yutong,SONG Yu.Logging interpretation technology and its application to deep coalbed methane reservoir [J].Petroleum Geology and Recovery Efficiency,2018,25(5):24-31.

    • [9] 王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.

    • [10] 陈彦君,苏雪峰,王钧剑,等.基于X射线微米CT扫描技术的煤岩孔裂隙多尺度精细表征——以沁水盆地南部马必东区块为例[J].油气地质与采收率,2019,26(5):66-72.CHEN Yanjun,SU Xuefeng,WANG Junjian,et al.Multi-scale fine characterization of coal pore-fracture structure based on Xray micro-CT scanning:A case study of Mabidong Block,south⁃ ern Qinshui Basin[J].Petroleum Geology and Recovery Efficien⁃ cy,2019,26(5):66-72.

    • [11] 任闽燕,姜汉桥,李爱山,等.非常规天然气增产改造技术研究进展及其发展方向[J].油气地质与采收率,2013,20(2):103-107.REN Minyan,JIANG Hanqiao,LI Aishan,et al.Review on study process of unconventional gas stimulation technology[J].Petro⁃ leum Geology and Recovery Efficiency,2013,20(2):103-107.

    • [12] 许露露,崔金榜,黄赛鹏,等.煤层气储层水力压裂裂缝扩展模型分析及应用[J].煤炭学报,2014,39(10):2 068-2 074.XU Lulu,CUI Jinbang,HUANG Saipeng,et al.Analysis and ap⁃ plication of fracture propagated model by hydraulic fracturing in coal-bed methane reservoir[J].Journal of China Coal Society,2014,39(10):2 068-2 074.

    • [13] 焦春艳,刘华勋,刘鹏飞,等.低渗致密气藏开发动态物理模拟实验相似准则[J].大庆石油地质与开发,2019,38(1):155-161.JIAO Chunyan,LIU Huaxun,LIU Pengfei,et al.Similarity criteri⁃ on of the physical simulating experiment for the development per⁃ formances of low-permeability tight gas reservoirs[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(1):155-161.

    • [14] 黄玉欣,胡望水,尹帅.基于动态弹性力学模型的煤系致密砂岩储层裂缝预测方法[J].石油钻探技术,2018,46(5):115-120.HUANG Yuxin,HU Wangshui,YIN Shuai.Fracture prediction method for coal-bearing tight sandstone reservoirs based on a dy⁃ namic elastic mechanics model[J].Petroleum Drilling Tech⁃ niques,2018,46(5):115-120.

    • [15] 孟尚志,李勇,吴翔,等.煤层气和致密气合采产能方程及影响因素[J].煤炭学报,2018,43(6):1 709-1 715.MENG Shangzhi,LI Yong,WU Xiang,et al.Productivity equation and influencing factors of co-producing coalbed methane and tight gas[J].Journal of China Coal Society,2018,43(6):1 709-1 715.

    • [16] 李勇,孟尚志,吴鹏,等.煤系气合采产出数值模拟研究[J].煤炭学报,2018,43(6):1 728-1 737.LI Yong,MENG Shangzhi,WU Peng,et al.Numerical simulation of coal measure gases co-production[J].Journal of China Coal So⁃ ciety,2018,43(6):1 728-1 737.

    • [17] 李陈,赵刚,陈丽群.考虑基质收缩效应的煤层气藏产能评价 [J].特种油气藏,2019,26(1):106-110.LI Chen,ZHAO Gang,CHEN Liqun.Productivity evaluation of coalbed methane reservoir with matrix shrinkage effect[J].Spe⁃ cial Oil & Gas Reservoirs,2019,26(1):106-110.

    • [18] 秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2006.QIN Jishun,LI Aifen.Reservoir physics[M].Dongying:China Uni⁃ versity of Petroleum Press,2006.