en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王杰祥(1963—),男,山东烟台人,教授,博士,从事提高油气采收率及采油工程的科研和教学工作。E-mail:jiexiangwang@upc.edu.cn。

通讯作者:

马涛(1995—),男,江苏东海人,在读硕士研究生。E-mail:859992356@qq.com。

中图分类号:TE357.46

文献标识码:A

文章编号:1009-9603(2020)03-0079-06

DOI:10.13673/j.cnki.cn37-1359/te.2020.03.010

参考文献 1
宋考平,何金钢,杨晶.强碱三元复合驱对储层孔隙结构影响研究[J].中国石油大学学报:自然科学版,2015,39(5):164-172.SONG Kaoping,HE Jingang,YANG Jing.Influence of base ASP flooding on the reservoir pore structure[J].Journal of China Uni⁃ versity of Petroleum:Edition of Natural Sciences,2015,39(5):164-172.
参考文献 2
李艳春.油层中聚合物堵塞物推进轨迹模拟研究[J].石油化工高等学校学报,2019,32(5):56-61.LI Yanchun.Simulation study on propulsion trajectory of polymer blockage in oil reservoir[J].Journal of Petrochemical Universi⁃ ties,2019,32(5):56-61.
参考文献 3
蒲万芬,赵帅,王亮亮,等.聚合物微球粒径与喉道匹配性研究 [J].油气地质与采收率,2018,25(4):100-105.PU Wanfen,ZHAO Shuai,WANG Liangliang,et al.Investigation into the matching between the size of polymer microspheres and pore throats[J].Petroleum Geology and Recovery Efficiency,2018,25(4):100-105.
参考文献 4
王鸣川,石成方,朱维耀,等.优势渗流通道识别与精确描述 [J].油气地质与采收率,2016,23(1):79-84.WANG Mingchuan,SHI Chengfang,ZHU Weiyao,et al.Identifica⁃ tion and accurate description of preponderance flow path[J].Pe⁃troleum Geology and Recovery Efficiency,2016,23(1):79-84.
参考文献 5
殷义栋,鲁安怀,李艳,等.大庆油田三元复合驱液与储层矿物反应性研究[J].岩石矿物学杂志,2015,34(6):811-820.YIN Yidong,LU Anhuai,LI Yan,et al.A study of the reaction of alkali/surfactant/polymer and reservoir minerals in the Daqing oil⁃ field[J].Acta Petrologica et Mineralogica,2015,34(6):811-820.
参考文献 6
王洪涛.强碱三元体系对油层矿物的溶蚀特征研究[D].吉林:吉林大学,2012.WANG Hongtao.Study on the dissolution characteristics of oilbearing minerals by base ASP systems[D].Jilin:Jilin University,2012.
参考文献 7
夏惠芬,孙艳宇.弱碱三元体系对孔隙结构影响研究[J].当代化工,2017,46(2):226-228.XIA Huifen,SUN Yanyu.Influence of weak alkali ASP systems on the pore structure[J].Contemporary Chemical Industry,2017,46(2):226-228.
参考文献 8
刘向斌.强碱三元复合驱颗粒调剖剂强度和弹性评价方法[J].大庆石油地质与开发,2019,38(2):99-104.LIU Xiangbin.Evaluating method of the strength and elasticity of the particle profile-controlling agent for strong-alkali ASP flood⁃ ing[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(2):99-104.
参考文献 9
吕鑫,张健,姜伟.聚合物/表面活性剂二元复合驱研究进展 [J].西南石油大学学报:自然科学版,2008,30(3):127-130.LÜ Xin,ZHANG Jian,JIANG Wei.Progress in polymer/surfactant binary combination drive[J].Journal of Southwest Petroleum Uni⁃ versity:Science & Technology Edition,2008,30(3):127-130.
参考文献 10
卢祥国,王树霞,王荣健,等.深部液流转向剂与油藏适应性研究——以大庆喇嘛甸油田为例[J].石油勘探与开发,2011,38(5):576-582.LU Xiangguo,WANG Shuxia,WANG Rongjian,et al.Adaptabili⁃ ty of a deep profile control agent to reservoirs:Taking the Lamadi⁃ an Oilfield in Daqing as an example[J].Petroleum Exploration and Development,2011,38(5):576-582.
参考文献 11
于群.二元复合体系界面活性与乳化性能协同提高采收率实验研究[J].油气地质与采收率,2019,26(4):88-92.YU Qun.Laboratory study on synergistic effect of interfacial activi⁃ ty and emulsifying properties on enhanced oil recovery with bina⁃ ry compound system[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(4):88-92.
参考文献 12
钟会影,李园园,尹洪军,等.盲端孔道内黏弹性聚合物驱油两相渗流规律[J].特种油气藏,2019,26(1):100-105.ZHONG Huiying,LI Yuanyuan,YIN Hongjun,et al.Two-phase fluid flow of viscoelastic polymer flooding in dead end channels [J].Special Oil & Gas Reservoirs,2019,26(1):100-105.
参考文献 13
马海洋,夏遵义,温庆志,等.渤海湾盆地沾化凹陷页岩微观孔隙特征实验研究[J].石油实验地质,2019,41(1):149-156.MA Haiyang,XIA Zunyi,WEN Qingzhi,et al.Micro-pore charac⁃ teristics of shale in Zhanhua Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2019,41(1):149-156.
参考文献 14
张浩,仲向云,党永潮,等.鄂尔多斯盆地安塞油田长6储层微观孔隙结构[J].断块油气田,2018,25(1):34-38.ZHANG Hao,ZHONG Xiangyun,DANG Yongchao,et al.Micro⁃ scopic pore structure of Chang6 reservoir in Ansai Oilfield,Ordos Basin[J].Fault-Block Oil and Gas Field,2018,25(1):34-38.
参考文献 15
沈建军,唐洪明,王翼君,等.岐口18-1油田沙河街组储层结垢机理及对注水开发影响研究[J].油气藏评价与开发,2018,8(3):40-45.SHEN Jianjun,TANG Hongming,WANG Yijun,et al.Study on scaling mechanism and its effect on water flooding in Shahejie for⁃ mation of QK18-1 Oilfield[J].Reservoir Evaluation and Develop⁃ ment,2018,8(3):40-45.
参考文献 16
张春林,李剑,刘锐娥.鄂尔多斯盆地盒8段致密砂岩气储层微观特征及其形成机理[J].中国石油勘探,2019,24(4):476-484.ZHANG Chunlin,LI Jian,LIU Ruie.Microscopic characteristics and forming mechanisms of He 8th member tight sandstone gas reservoirs in Ordos Basin[J].China Petroleum Exploration,2019,24(4):476-484.
参考文献 17
王德民,程杰成,吴军政,等.聚合物驱油技术在大庆油田的应用[J].石油学报,2005,26(1):74-78. WANG Demin,CHENG Jiecheng,WU Junzheng,et al.Applica⁃ tion of polymer flooding technology in Daqing Oilfield[J].Acta Petrolei Sinica,2005,26(1):74-78.
参考文献 18
蒲万芬,赵帅,梅子来,等.非均质条件下聚合物微球/聚合物深部调驱实验研究[J].油气藏评价与开发,2018,8(3):61-65.PU Wanfen,ZHAO Shuai,MEI Zilai,et al.Experimental study on profile control and oil displacement of polymer microspheres/poly⁃ mer under heterogeneous conditions[J].Reservoir Evaluation and Development,2018,8(3):61-65.
参考文献 19
赵凤兰,李子豪,李国桥,等.三元复合驱后关键储层特征参数实验研究[J].西南石油大学学报:自然科学版,2016,38(5):157-164.ZHAO Fenglan,LI Zihao,LI Guoqiao,et al.Variation of key pa⁃ rameters of reservoir characteristics by ASP flooding[J].Journal of Southwest Petroleum University:Science & Technology Edi⁃ tion,2016,38(5):157-164.
参考文献 20
白永强,李娜,杨旭,等.基于原子力显微镜表征的含油储层微观孔隙结构分析及应用[J].东北石油大学学报,2013,37(1):45-50.BAI Yongqiang,LI Na,YANG Xu,et al.Analysis and applications of microscopic pore structure characterization of oil reservoir by atomic force microscopy[J].Journal of Northeast Petroleum Uni⁃ versity,2013,37(1):45-50.
参考文献 21
熊生春,刘卫东,杨烨,等.高岭石与碱性驱替剂反应实验研究 [J].西南石油大学学报:自然科学版,2009,31(3):130-133.XIONG Shengchun,LIU Weidong,YANG Ye,et al.Experimental study on the reaction between kaolinit and alkaline flooding agents [J].Journal of Southwest Petroleum University:Science & Tech⁃ nology Edition,2009,31(3):130-133.
参考文献 22
胡淑琼,李雪,卢祥国,等.三元复合驱对储层伤害及其作用机理研究[J].油田化学,2013,30(4):575-580.HU Shuqiong,LI Xue,LU Xiangguo,et al.Damage of alkali/sur⁃ factant/polymer flooding to reservoir rock[J].Oilfield Chemistry,2013,30(4):575-580.
目录contents

    摘要

    强碱三元体系注入油层后,碱与矿物组分发生化学反应及物理变化。强碱溶蚀岩石表面,溶蚀产物及黏土颗粒在油层渗流通道上运移沉淀,对渗流造成较大伤害。以A油田为研究对象,从碱对矿物组分的溶蚀性入手,通过渗流实验,借助扫描电镜及能谱分析仪等,分析了强碱对储层的伤害机理及溶蚀后的矿物组分变化,进而研究对岩心渗流能力的影响。岩心渗流实验结果表明,强碱三元体系长时间驱替后,注入压力上升约140 kPa,岩心渗透率平均下降18%。岩心原始孔隙结构在强碱的溶蚀和渗流冲刷下严重破坏,高岭石和蒙脱石等晶体结构被破坏。长时间驱替后,碱溶反应生成的沉淀物及脱落的黏土颗粒运移堵塞和附着在孔喉通道壁面,使岩心的渗流能力下降。扫描电镜结果表明,驱替前、后岩石矿物表面特征发生变化,颗粒运移,元素含量也随之变化,进一步验证了强碱三元体系对岩心渗透率的影响规律。

    Abstract

    After the strong-alkali ASP system is injected into the reservoirs,the chemical reactions and physical changes take place between the alkali and mineral composition. The strong alkali dissolves the rock surface,and the dissolution products and clay particles migrate and precipitate on the flow channel of the reservoir,which causes great damage to the fluid flow. Taking Block A of Daqing Oilfield as a case,through percolation experiment by using the scanning electron mi- croscope(SEM)and energy spectrum analysis,the damage mechanism of the strong alkali to formation and the change of mineral composition after dissolution are analyzed based on the dissolution of alkali to mineral composition,and then the in- fluence on the core percolation ability is discussed. The core percolation experiment shows that the injection pressure in- creases about 140 kPa and the core permeability decreases about 18% after the long-term displacement using strong-alkali ASP system. Due to the dissolution caused by the strong alkali and percolation erosion,the original pore structure of the core is strongly destroyed,and the crystal structures of the kaolinite and montmorillonite etc. are destroyed also. After longtime displacement,the sediment formed after the alkali solution reaction and the clay particles detached migrate and stick to the surface of the pore throat channel,which causes the decrease of the core permeability. The results of SEM show that the surface characteristics of the rock minerals change before and after displacement,and the element content changes with the particle migration,which further verifies the effect of the strong-alkali ASP system on core permeability.

  • 强碱三元复合驱是油田提高采收率重要的技术手段,广泛应用于大庆、胜利等油区。但在现场应用时,强碱三元体系对储层会造成伤害。强碱与储层矿物溶蚀反应,生成的沉淀物和脱落的黏土矿物分散、运移并堆积于孔喉,使储层渗流能力降低。经过强碱三元体系长期驱替,注入井的压力升高,储层流体进入生产井阻力增大,产液量减少,产能降低,影响油田生产的经济效益。为了有效认识强碱溶蚀储层后渗透率的变化,通过相关实验,着重分析强碱对岩心的伤害机理。强碱三元体系与储层矿物发生溶蚀作用生成沉淀是实际存在的,却很少有人做过对岩心渗透率变化影响的相关实验及研究,针对强碱三元体系在储层矿物驱替过程中对岩心渗透率影响现象未作过详细的探讨[1-2]。蒲万芬等对强碱三元体系驱替后储层孔隙结构的变化进行研究,但对岩心渗透率变化研究不够深入。仅在大庆油区对强碱三元体系中的强碱与硅成垢进行了一定的研究,而强碱对矿物组分及岩心渗流能力的影响未做更详细的探讨[3-9]。为此,综合考虑诸多影响因素,进行强碱三元体系驱替实验,通过扫描电镜及能谱仪分析驱替前、后岩石矿物成分和元素含量的变化。从微观角度研究强碱对地层的伤害机理及矿物溶蚀情况,进而分析其对储层岩心渗透率变化的影响规律。为后期强碱三元体系高效开发提供借鉴及理论支持[9-22]

  • 1 实验器材与方法

  • 1.1 实验器材与条件

  • 实验仪器主要包括:恒温箱、平流泵、压力表、压力传感器、岩心夹持器、中间容器和抽真空设备等 (图1)。

  • 图1 实验仪器

  • Fig.1 Experimental apparatus

  • 实验用岩心为取自 A 油田砂岩油藏的天然岩心,包括高岭石、伊利石、蒙脱石等黏土成分,直径约为 25 mm,长度约为 8~10 cm,气测渗透率约为200~500 mD。

  • 实验用水为模拟地层水(蒸馏水和氯化钠),总矿化度为4 000 mg/L。

  • 实验用强碱三元体系配方为:质量浓度为 1 000 mg/L 且相对分子质量为 1.5×107 的聚合物、质量分数为1.2%的氢氧化钠及质量分数为0.3%的烷基苯磺酸盐。

  • 实验温度为50℃。

  • 1.2 实验方法

  • 具体实验步骤主要包括:①先将岩心烘干并气测渗透率。②抽真空饱和地层水,计算孔隙体积。 ③水驱3 PV而形成较为稳定的渗流通道后,注入强碱三元体系 160 PV,并记录压力及产液量等数据,后续水驱 3 PV 将岩心内的大部分聚合物和表面活性剂驱替出来,直至压力平稳。④分析渗流数据,计算强碱三元体系驱替前、驱替中及驱替后岩心渗透率的变化。⑤在保证样品清洁的情况下将驱替前和驱替后的岩心均烘干切片加工至厚度为 2~4 mm 的薄片,应用扫描电镜和 X-射线能谱仪对薄片进行对比、测定及评价。

  • 选用 3 组渗透率相差较大的岩心,研究强碱三元体系长期驱替后对不同岩心渗透率的影响规律。根据聚合物相对分子质量和岩心渗透率匹配关系[2],选用相对分子质量较小和低质量浓度的聚合物配制成的强碱三元体系,防止聚合物长分子链缠连或者相对分子质量过大堵塞孔隙喉道,且在强碱三元体系驱替前不对岩心进行饱和原油,也避免了聚合物与原油中沥青质吸附阻碍渗流对实验的干扰,重点研究强碱对储层岩心渗流能力的影响规律[2-3]。在强碱三元体系驱替后,继续水驱,驱替出残留在孔隙及喉道中的聚合物和表面活性剂,避免其他化学剂对实验的影响,最后对岩心烘干测得最终渗透率。驱替前将岩心切成薄片,通过扫描电镜观察孔喉大小、孔隙内的矿物类型和晶体结构。强碱三元体系驱替后,再对岩心切片扫描电镜测定,能清晰有效地观察强碱对矿物组分的影响及孔隙喉道及晶体结构的变化。应用 X-射线能谱仪对驱替前、后孔隙内组分元素含量变化进行评价。结合扫描电镜图,可分析溶蚀后的主要产物和孔隙喉道的变化,能直观认识强碱对岩心渗透率的影响因素。

  • 2 实验结果及分析

  • 2.1 渗流实验

  • 开展室内强碱三元体系模拟渗流实验,模拟注入渗流速度为0.3 mL/min,3组实验岩心渗透率变化见表1。

  • 表1 3组实验岩心渗透率变化

  • Table1 Permeability change of 3 groups experimental cores

  • 根据实验分析强碱三元体系驱替后岩石孔隙表面矿物组分和孔喉的变化,结合压力变化情况,进而判断强碱三元体系对岩心渗透率的影响。

  • 从注入压力和渗透率曲线(图2,图3)可以看出,强碱三元体系驱替初期,注入压力波动,渗流不稳定。因岩石孔隙大小不规则,强碱溶蚀的产物通过孔喉的阻力大小不定,所以使岩心渗透率产生波动[13-14]。长期渗流时,岩石矿物组分与强碱反应产生的沉淀物及碱在孔隙表面的滞留、部分黏土颗粒的运移,导致储层受到伤害,从而使三元体系驱替时渗流阻力增大。在注入60 PV后,3组岩心的渗透率均明显下降。在后续强碱三元体系驱替时,渗透率变化幅度小,总体呈下降趋势。在强碱三元体系注入后期,岩心压力和渗透率趋于稳定。渗流一定时间后,3组岩心渗透率平均下降18%,注入压力较驱替前增大140 kPa。

  • 图2 注入压力随注入量的变化

  • Fig.2 Change of injection pressure with increase of injected pore volume

  • 图3 岩心渗透率随注入量的变化

  • Fig.3 Change of core permeability with increase of injected pore volume

  • 强碱三元体系长期驱替时,选用 3 组渗透率为 300~500 mD 的岩心,注入压力后期上升明显,渗流能力受到不同程度影响。其中渗透率较低的岩心3 伤害最大,渗透率下降幅度最大,约降低 23.9%,岩心 1 和岩心 2 分别降低约 13.3% 和 17.7%。对于现场渗透率较低、非均质性较强的油田,长期驱替时,强碱对储层影响较大。后续生产应采取相关技术措施改善近井地带的渗流能力,提高生产井的产液量。对于即将采用三元复合驱的油田也应重视碱及聚合物质量浓度和储层渗透率的匹配关系,优化注入体系参数。

  • 强碱对岩心的矿物组分溶蚀,破坏了岩心孔道,黏土颗粒和溶蚀物附着在孔道。反应产物及微粒在孔隙中堆积和运移,不仅对储层岩心的孔隙造成伤害,而且渗流能力也会随着碱溶反应的进行而降低。在强碱三元体系驱替后,生成较多的溶蚀产物和黏土颗粒运移堆积在孔隙喉道,严重时会堵塞岩心孔喉。在长时间强碱三元驱替过程中,岩心的渗流能力下降。

  • 2.2 扫描电镜及能谱分析

  • 通过扫描电镜和 X-射线能谱分析仪等主流实验设备,能有效定位矿物类型,分析储层矿物驱替前、后的矿物表面变化规律和元素含量变化[19-21]

  • 岩心驱替前、后的电镜图分析  由岩心 1 驱替前、后电镜图(图4)可知,岩心 1的矿物组分以石英和高岭石为主,高岭石呈书页状,中间部分白色蜂窝状和棉絮状为蒙脱石附有少量伊利石,孔隙喉道无明显堆积物。强碱三元体系驱替后,晶层结构明显破坏,棱角较为明显的石英和高岭石等在强碱的溶蚀下变得圆滑,溶蚀产物及脱落的颗粒物堆积孔喉。

  • 由岩心 2 驱替前、后电镜图(图5)可知,岩石表面絮状物较少,孔隙发育成熟,结构清晰。该岩石矿物组分以石英和高岭石为主,附有少量蜂巢状、棉絮状的蒙脱石及伊利石等。强碱三元体系驱替后,孔道周围颗粒状物质堆积较多,孔隙喉道变得窄小。原本较为光滑的岩石表面被强碱溶蚀变得凹凸不平,附着生成的颗粒物。

  • 图4 岩心1驱替前、后电镜图

  • Fig.4 Electron micrograph of core1 before and after displacement

  • 图5 岩心2驱替前、后电镜图

  • Fig.5 Electron micrograph of core2 before and after displacement

  • 由岩心 3 驱替前、后电镜图(图6)可知,驱替前岩心断面规则,石英颗粒表面凸起较多、结构清晰,溶蚀后岩心表面及孔隙结构大部分遭到破坏,岩心断面有大量颗粒堆积。高岭石、石英等矿物均被不同程度溶蚀,部分黏土颗粒发生运移,断面大部分被新物质覆盖,强碱三元体系对油层矿物造成了溶蚀作用。岩心喉道对比可见,驱替前明显被溶蚀产物堆积堵塞,致使渗流能力下降。结合 3 组岩心驱替前、后电镜图分析,驱替前岩石轮廓和孔隙结构以及附着在表面的晶体结构较清晰,驱替后岩心孔隙内部表面大部分被颗粒物覆盖,岩石棱角被溶蚀平缓,原本清晰的孔隙喉道被溶蚀运移的溶蚀物堆积附着在喉道周边。

  • 图6 岩心3驱替前、后电镜图

  • Fig.6 Electron micrograph of core3 before and after displacement

  • 岩心驱替前、后矿物表面元素含量变化分析  通过能谱仪,选取岩心驱替前、后孔喉内主要溶蚀物表面的元素变化,进而分析驱替前、后强碱对矿物元素的影响(表2)。

  • 因能谱仪无法准确定位岩心驱替前、后的位置,不同岩心驱替前、后元素变化略有差异。由元素含量变化和电镜图可知,强碱三元体系驱替前、后,高岭石和长石均有溶蚀,C,O,Na,Ca 等元素增加,其中碳和氧元素增加量主要来自碳酸盐沉淀,碱液与矿物反应过程中,钠、钙离子与黏土矿物中元素发生交换反应,沉积在矿物表面。孔隙壁面其他组分(如 Al,Si,K)含量下降,表明碱液与岩石组分发生溶蚀化学反应,反应产物被三元体系携带运移,含量降低较多的主要是硅、铝、钾;同时,孔隙壁面钙离子含量增加,表明有含钙化合物在孔隙表面沉积。

  • 由矿物组分和化学反应式可知,溶蚀前、后镁和铝等元素减少,镁、钾、铝等离子溶于地层中的强碱三元体系中,继续与碱反应生成沉淀。生成的氢氧化铝和硅酸盐等沉淀物滞留在渗流通道壁面,长期运移堆积在孔隙喉道。沉淀物运移堆积在渗流通道上,且在碱性条件下,黏土矿物发生溶解,破坏了其微组构而形成微粒、分散运移。溶蚀过程中黏土矿物的高岭石和蒙脱石等发生化学反应,从扫描岩心驱替前、后的电镜图可知,岩石孔隙表面微粒发生变化,分布杂乱。生成物包括氢氧化物、硅酸盐及碳酸盐等沉淀颗粒,结合岩心驱替前、后的电镜图验证了强碱与储层发生反应生成沉淀颗粒物的形态。

  • 碱液与高岭石、伊利石等矿物及各种离子发生反应的机理主要包括:①伊利石的碱溶反应,其化学反应式为:

  • 表2 岩心驱替前、后矿物元素含量变化

  • Table2 Changes of mineral element content before and after core displacement

  • K,H3O+(Al,Mg,Fe)2(Si,Al)4O10(OH)2+OH-K++Al(OH)3+Fe3++Mg2++SiO32-
    (1)
  • ②石英的碱溶反应,其化学反应式为:

  • SiO2+2OH-SiO32-+H2O
    (2)
  • ③高岭石的碱溶反应,其化学反应式为:

  • Al4SiO4(OH)8nH2O+OH-Al(OH)3+SiO32-+H2O
    (3)
  • ④蒙脱石的碱溶反应,其化学反应式为:

  • (Na,Ca)m(Al,Mg,Fe)2[(Si,Al)]4O10(OH)2nH2O+OH-Al(OH)3+SiO32-+H2O+Na++K++Ca2++Fe2++Mg2+
    (4)
  • ⑤钙、铁、镁等离子的碱溶反应,其主要化学反应式为:

  • Ca2++2OH-Ca(OH)2
    (5)
  • Fe2++2OH-Fe(OH)2
    (6)
  • Fe3++3OH-Fe(OH)3
    (7)
  • Mg2++2OH-Mg(OH)2
    (8)
  • CO2+2OH-CO32-+H2O
    (9)
  • Ca2++CO32-CaCO3
    (10)
  • Ca(OH)2+CO32-CaCO3+2OH-
    (11)
  • Mg(OH)2+CO32-MgCO3+2OH-
    (12)
  • 硅酸物的生成,主要以多聚硅酸、硅酸凝胶及无定型和有定型二氧化硅等沉淀为主,反应较为复杂。

  • 根据岩心驱替前、后的电镜图和元素含量分析可知,驱替前岩心矿物组分分布规则、晶体类型清晰、高岭石和石英表面光滑。因A油田以石英、长石和黏土矿物(高岭石和蒙脱石)等为主,强碱易与高岭石、蒙脱石等矿物发生反应。结合电镜图可知,生成物包括硅铝酸盐、氢氧化铝等沉淀物和溶于体系中的钙、镁、铁等离子。长期渗流时,地层孔隙中流体的 pH 值增加,流体中的钙、铁、镁等离子继续与碱发生反应生成氢氧化物和碳酸盐沉淀。三元体系驱替后,矿物表面颗粒杂乱,矿物类型的晶层结构难以分辨,溶蚀物沉淀在孔隙喉道和壁面上,岩石孔径变小。

  • 渗透率较低和黏土矿物含量高的油田,储层孔隙度低,孔喉及渗流通道窄小,对于细小的孔喉,反应生成的颗粒物及脱落的黏土颗粒易沉淀,从而堵塞孔隙喉道。强碱三元体系易与其发生反应,生成硅铝酸盐等颗粒物沉淀,长时间驱替过程中渗流能力明显下降。此类油田,强碱三元驱更易伤害储层,使岩心渗透率降低。现场进行强碱三元体系选择时,应参考油田的黏土矿物含量和储层渗透率大小,在碱的用量上谨慎选择,避免长期强碱三元体系驱替溶蚀矿物组分对储层渗流能力的影响。合理的聚合物分子大小及浓度有助于提高油藏储层的波及体积,但是聚合物相对分子质量过大与储层渗透率不匹配造成的严重堵塞对渗流能力影响的问题,也将是油田生产中需要关注的。

  • 3 结论

  • 岩心渗流实验可知强碱三元体系对岩心造成伤害,溶蚀过程较为平稳。表明强碱与矿物组分发生溶蚀化学反应,反应产物及部分黏土颗粒被三元体系携带运移,阻碍及堵塞渗流通道。强碱三元体系长时间驱替后,岩心注入压力升高约 140 kPa,渗透率平均下降 18%。扫描电镜及能谱分析表明,驱替后储层矿物的晶体结构被侵蚀破坏,矿物组成中的元素含量发生了变化。由矿物的组成可知,碱能与矿物中硅、铝、钙、镁、铁等发生碱溶化学反应,使岩石孔隙表面被溶蚀破坏。油田的现场生产不仅要关注聚合物堵塞对渗流能力的影响,对于黏土矿物(高岭石、伊利石和蒙脱石)含量较高且渗透率较低的油田,更应重视三元体系长时间驱替时强碱对储层矿物的溶蚀及渗流能力下降的问题。

  • 参考文献

    • [1] 宋考平,何金钢,杨晶.强碱三元复合驱对储层孔隙结构影响研究[J].中国石油大学学报:自然科学版,2015,39(5):164-172.SONG Kaoping,HE Jingang,YANG Jing.Influence of base ASP flooding on the reservoir pore structure[J].Journal of China Uni⁃ versity of Petroleum:Edition of Natural Sciences,2015,39(5):164-172.

    • [2] 李艳春.油层中聚合物堵塞物推进轨迹模拟研究[J].石油化工高等学校学报,2019,32(5):56-61.LI Yanchun.Simulation study on propulsion trajectory of polymer blockage in oil reservoir[J].Journal of Petrochemical Universi⁃ ties,2019,32(5):56-61.

    • [3] 蒲万芬,赵帅,王亮亮,等.聚合物微球粒径与喉道匹配性研究 [J].油气地质与采收率,2018,25(4):100-105.PU Wanfen,ZHAO Shuai,WANG Liangliang,et al.Investigation into the matching between the size of polymer microspheres and pore throats[J].Petroleum Geology and Recovery Efficiency,2018,25(4):100-105.

    • [4] 王鸣川,石成方,朱维耀,等.优势渗流通道识别与精确描述 [J].油气地质与采收率,2016,23(1):79-84.WANG Mingchuan,SHI Chengfang,ZHU Weiyao,et al.Identifica⁃ tion and accurate description of preponderance flow path[J].Pe⁃troleum Geology and Recovery Efficiency,2016,23(1):79-84.

    • [5] 殷义栋,鲁安怀,李艳,等.大庆油田三元复合驱液与储层矿物反应性研究[J].岩石矿物学杂志,2015,34(6):811-820.YIN Yidong,LU Anhuai,LI Yan,et al.A study of the reaction of alkali/surfactant/polymer and reservoir minerals in the Daqing oil⁃ field[J].Acta Petrologica et Mineralogica,2015,34(6):811-820.

    • [6] 王洪涛.强碱三元体系对油层矿物的溶蚀特征研究[D].吉林:吉林大学,2012.WANG Hongtao.Study on the dissolution characteristics of oilbearing minerals by base ASP systems[D].Jilin:Jilin University,2012.

    • [7] 夏惠芬,孙艳宇.弱碱三元体系对孔隙结构影响研究[J].当代化工,2017,46(2):226-228.XIA Huifen,SUN Yanyu.Influence of weak alkali ASP systems on the pore structure[J].Contemporary Chemical Industry,2017,46(2):226-228.

    • [8] 刘向斌.强碱三元复合驱颗粒调剖剂强度和弹性评价方法[J].大庆石油地质与开发,2019,38(2):99-104.LIU Xiangbin.Evaluating method of the strength and elasticity of the particle profile-controlling agent for strong-alkali ASP flood⁃ ing[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(2):99-104.

    • [9] 吕鑫,张健,姜伟.聚合物/表面活性剂二元复合驱研究进展 [J].西南石油大学学报:自然科学版,2008,30(3):127-130.LÜ Xin,ZHANG Jian,JIANG Wei.Progress in polymer/surfactant binary combination drive[J].Journal of Southwest Petroleum Uni⁃ versity:Science & Technology Edition,2008,30(3):127-130.

    • [10] 卢祥国,王树霞,王荣健,等.深部液流转向剂与油藏适应性研究——以大庆喇嘛甸油田为例[J].石油勘探与开发,2011,38(5):576-582.LU Xiangguo,WANG Shuxia,WANG Rongjian,et al.Adaptabili⁃ ty of a deep profile control agent to reservoirs:Taking the Lamadi⁃ an Oilfield in Daqing as an example[J].Petroleum Exploration and Development,2011,38(5):576-582.

    • [11] 于群.二元复合体系界面活性与乳化性能协同提高采收率实验研究[J].油气地质与采收率,2019,26(4):88-92.YU Qun.Laboratory study on synergistic effect of interfacial activi⁃ ty and emulsifying properties on enhanced oil recovery with bina⁃ ry compound system[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(4):88-92.

    • [12] 钟会影,李园园,尹洪军,等.盲端孔道内黏弹性聚合物驱油两相渗流规律[J].特种油气藏,2019,26(1):100-105.ZHONG Huiying,LI Yuanyuan,YIN Hongjun,et al.Two-phase fluid flow of viscoelastic polymer flooding in dead end channels [J].Special Oil & Gas Reservoirs,2019,26(1):100-105.

    • [13] 马海洋,夏遵义,温庆志,等.渤海湾盆地沾化凹陷页岩微观孔隙特征实验研究[J].石油实验地质,2019,41(1):149-156.MA Haiyang,XIA Zunyi,WEN Qingzhi,et al.Micro-pore charac⁃ teristics of shale in Zhanhua Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2019,41(1):149-156.

    • [14] 张浩,仲向云,党永潮,等.鄂尔多斯盆地安塞油田长6储层微观孔隙结构[J].断块油气田,2018,25(1):34-38.ZHANG Hao,ZHONG Xiangyun,DANG Yongchao,et al.Micro⁃ scopic pore structure of Chang6 reservoir in Ansai Oilfield,Ordos Basin[J].Fault-Block Oil and Gas Field,2018,25(1):34-38.

    • [15] 沈建军,唐洪明,王翼君,等.岐口18-1油田沙河街组储层结垢机理及对注水开发影响研究[J].油气藏评价与开发,2018,8(3):40-45.SHEN Jianjun,TANG Hongming,WANG Yijun,et al.Study on scaling mechanism and its effect on water flooding in Shahejie for⁃ mation of QK18-1 Oilfield[J].Reservoir Evaluation and Develop⁃ ment,2018,8(3):40-45.

    • [16] 张春林,李剑,刘锐娥.鄂尔多斯盆地盒8段致密砂岩气储层微观特征及其形成机理[J].中国石油勘探,2019,24(4):476-484.ZHANG Chunlin,LI Jian,LIU Ruie.Microscopic characteristics and forming mechanisms of He 8th member tight sandstone gas reservoirs in Ordos Basin[J].China Petroleum Exploration,2019,24(4):476-484.

    • [17] 王德民,程杰成,吴军政,等.聚合物驱油技术在大庆油田的应用[J].石油学报,2005,26(1):74-78. WANG Demin,CHENG Jiecheng,WU Junzheng,et al.Applica⁃ tion of polymer flooding technology in Daqing Oilfield[J].Acta Petrolei Sinica,2005,26(1):74-78.

    • [18] 蒲万芬,赵帅,梅子来,等.非均质条件下聚合物微球/聚合物深部调驱实验研究[J].油气藏评价与开发,2018,8(3):61-65.PU Wanfen,ZHAO Shuai,MEI Zilai,et al.Experimental study on profile control and oil displacement of polymer microspheres/poly⁃ mer under heterogeneous conditions[J].Reservoir Evaluation and Development,2018,8(3):61-65.

    • [19] 赵凤兰,李子豪,李国桥,等.三元复合驱后关键储层特征参数实验研究[J].西南石油大学学报:自然科学版,2016,38(5):157-164.ZHAO Fenglan,LI Zihao,LI Guoqiao,et al.Variation of key pa⁃ rameters of reservoir characteristics by ASP flooding[J].Journal of Southwest Petroleum University:Science & Technology Edi⁃ tion,2016,38(5):157-164.

    • [20] 白永强,李娜,杨旭,等.基于原子力显微镜表征的含油储层微观孔隙结构分析及应用[J].东北石油大学学报,2013,37(1):45-50.BAI Yongqiang,LI Na,YANG Xu,et al.Analysis and applications of microscopic pore structure characterization of oil reservoir by atomic force microscopy[J].Journal of Northeast Petroleum Uni⁃ versity,2013,37(1):45-50.

    • [21] 熊生春,刘卫东,杨烨,等.高岭石与碱性驱替剂反应实验研究 [J].西南石油大学学报:自然科学版,2009,31(3):130-133.XIONG Shengchun,LIU Weidong,YANG Ye,et al.Experimental study on the reaction between kaolinit and alkaline flooding agents [J].Journal of Southwest Petroleum University:Science & Tech⁃ nology Edition,2009,31(3):130-133.

    • [22] 胡淑琼,李雪,卢祥国,等.三元复合驱对储层伤害及其作用机理研究[J].油田化学,2013,30(4):575-580.HU Shuqiong,LI Xue,LU Xiangguo,et al.Damage of alkali/sur⁃ factant/polymer flooding to reservoir rock[J].Oilfield Chemistry,2013,30(4):575-580.

  • 参考文献

    • [1] 宋考平,何金钢,杨晶.强碱三元复合驱对储层孔隙结构影响研究[J].中国石油大学学报:自然科学版,2015,39(5):164-172.SONG Kaoping,HE Jingang,YANG Jing.Influence of base ASP flooding on the reservoir pore structure[J].Journal of China Uni⁃ versity of Petroleum:Edition of Natural Sciences,2015,39(5):164-172.

    • [2] 李艳春.油层中聚合物堵塞物推进轨迹模拟研究[J].石油化工高等学校学报,2019,32(5):56-61.LI Yanchun.Simulation study on propulsion trajectory of polymer blockage in oil reservoir[J].Journal of Petrochemical Universi⁃ ties,2019,32(5):56-61.

    • [3] 蒲万芬,赵帅,王亮亮,等.聚合物微球粒径与喉道匹配性研究 [J].油气地质与采收率,2018,25(4):100-105.PU Wanfen,ZHAO Shuai,WANG Liangliang,et al.Investigation into the matching between the size of polymer microspheres and pore throats[J].Petroleum Geology and Recovery Efficiency,2018,25(4):100-105.

    • [4] 王鸣川,石成方,朱维耀,等.优势渗流通道识别与精确描述 [J].油气地质与采收率,2016,23(1):79-84.WANG Mingchuan,SHI Chengfang,ZHU Weiyao,et al.Identifica⁃ tion and accurate description of preponderance flow path[J].Pe⁃troleum Geology and Recovery Efficiency,2016,23(1):79-84.

    • [5] 殷义栋,鲁安怀,李艳,等.大庆油田三元复合驱液与储层矿物反应性研究[J].岩石矿物学杂志,2015,34(6):811-820.YIN Yidong,LU Anhuai,LI Yan,et al.A study of the reaction of alkali/surfactant/polymer and reservoir minerals in the Daqing oil⁃ field[J].Acta Petrologica et Mineralogica,2015,34(6):811-820.

    • [6] 王洪涛.强碱三元体系对油层矿物的溶蚀特征研究[D].吉林:吉林大学,2012.WANG Hongtao.Study on the dissolution characteristics of oilbearing minerals by base ASP systems[D].Jilin:Jilin University,2012.

    • [7] 夏惠芬,孙艳宇.弱碱三元体系对孔隙结构影响研究[J].当代化工,2017,46(2):226-228.XIA Huifen,SUN Yanyu.Influence of weak alkali ASP systems on the pore structure[J].Contemporary Chemical Industry,2017,46(2):226-228.

    • [8] 刘向斌.强碱三元复合驱颗粒调剖剂强度和弹性评价方法[J].大庆石油地质与开发,2019,38(2):99-104.LIU Xiangbin.Evaluating method of the strength and elasticity of the particle profile-controlling agent for strong-alkali ASP flood⁃ ing[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(2):99-104.

    • [9] 吕鑫,张健,姜伟.聚合物/表面活性剂二元复合驱研究进展 [J].西南石油大学学报:自然科学版,2008,30(3):127-130.LÜ Xin,ZHANG Jian,JIANG Wei.Progress in polymer/surfactant binary combination drive[J].Journal of Southwest Petroleum Uni⁃ versity:Science & Technology Edition,2008,30(3):127-130.

    • [10] 卢祥国,王树霞,王荣健,等.深部液流转向剂与油藏适应性研究——以大庆喇嘛甸油田为例[J].石油勘探与开发,2011,38(5):576-582.LU Xiangguo,WANG Shuxia,WANG Rongjian,et al.Adaptabili⁃ ty of a deep profile control agent to reservoirs:Taking the Lamadi⁃ an Oilfield in Daqing as an example[J].Petroleum Exploration and Development,2011,38(5):576-582.

    • [11] 于群.二元复合体系界面活性与乳化性能协同提高采收率实验研究[J].油气地质与采收率,2019,26(4):88-92.YU Qun.Laboratory study on synergistic effect of interfacial activi⁃ ty and emulsifying properties on enhanced oil recovery with bina⁃ ry compound system[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(4):88-92.

    • [12] 钟会影,李园园,尹洪军,等.盲端孔道内黏弹性聚合物驱油两相渗流规律[J].特种油气藏,2019,26(1):100-105.ZHONG Huiying,LI Yuanyuan,YIN Hongjun,et al.Two-phase fluid flow of viscoelastic polymer flooding in dead end channels [J].Special Oil & Gas Reservoirs,2019,26(1):100-105.

    • [13] 马海洋,夏遵义,温庆志,等.渤海湾盆地沾化凹陷页岩微观孔隙特征实验研究[J].石油实验地质,2019,41(1):149-156.MA Haiyang,XIA Zunyi,WEN Qingzhi,et al.Micro-pore charac⁃ teristics of shale in Zhanhua Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2019,41(1):149-156.

    • [14] 张浩,仲向云,党永潮,等.鄂尔多斯盆地安塞油田长6储层微观孔隙结构[J].断块油气田,2018,25(1):34-38.ZHANG Hao,ZHONG Xiangyun,DANG Yongchao,et al.Micro⁃ scopic pore structure of Chang6 reservoir in Ansai Oilfield,Ordos Basin[J].Fault-Block Oil and Gas Field,2018,25(1):34-38.

    • [15] 沈建军,唐洪明,王翼君,等.岐口18-1油田沙河街组储层结垢机理及对注水开发影响研究[J].油气藏评价与开发,2018,8(3):40-45.SHEN Jianjun,TANG Hongming,WANG Yijun,et al.Study on scaling mechanism and its effect on water flooding in Shahejie for⁃ mation of QK18-1 Oilfield[J].Reservoir Evaluation and Develop⁃ ment,2018,8(3):40-45.

    • [16] 张春林,李剑,刘锐娥.鄂尔多斯盆地盒8段致密砂岩气储层微观特征及其形成机理[J].中国石油勘探,2019,24(4):476-484.ZHANG Chunlin,LI Jian,LIU Ruie.Microscopic characteristics and forming mechanisms of He 8th member tight sandstone gas reservoirs in Ordos Basin[J].China Petroleum Exploration,2019,24(4):476-484.

    • [17] 王德民,程杰成,吴军政,等.聚合物驱油技术在大庆油田的应用[J].石油学报,2005,26(1):74-78. WANG Demin,CHENG Jiecheng,WU Junzheng,et al.Applica⁃ tion of polymer flooding technology in Daqing Oilfield[J].Acta Petrolei Sinica,2005,26(1):74-78.

    • [18] 蒲万芬,赵帅,梅子来,等.非均质条件下聚合物微球/聚合物深部调驱实验研究[J].油气藏评价与开发,2018,8(3):61-65.PU Wanfen,ZHAO Shuai,MEI Zilai,et al.Experimental study on profile control and oil displacement of polymer microspheres/poly⁃ mer under heterogeneous conditions[J].Reservoir Evaluation and Development,2018,8(3):61-65.

    • [19] 赵凤兰,李子豪,李国桥,等.三元复合驱后关键储层特征参数实验研究[J].西南石油大学学报:自然科学版,2016,38(5):157-164.ZHAO Fenglan,LI Zihao,LI Guoqiao,et al.Variation of key pa⁃ rameters of reservoir characteristics by ASP flooding[J].Journal of Southwest Petroleum University:Science & Technology Edi⁃ tion,2016,38(5):157-164.

    • [20] 白永强,李娜,杨旭,等.基于原子力显微镜表征的含油储层微观孔隙结构分析及应用[J].东北石油大学学报,2013,37(1):45-50.BAI Yongqiang,LI Na,YANG Xu,et al.Analysis and applications of microscopic pore structure characterization of oil reservoir by atomic force microscopy[J].Journal of Northeast Petroleum Uni⁃ versity,2013,37(1):45-50.

    • [21] 熊生春,刘卫东,杨烨,等.高岭石与碱性驱替剂反应实验研究 [J].西南石油大学学报:自然科学版,2009,31(3):130-133.XIONG Shengchun,LIU Weidong,YANG Ye,et al.Experimental study on the reaction between kaolinit and alkaline flooding agents [J].Journal of Southwest Petroleum University:Science & Tech⁃ nology Edition,2009,31(3):130-133.

    • [22] 胡淑琼,李雪,卢祥国,等.三元复合驱对储层伤害及其作用机理研究[J].油田化学,2013,30(4):575-580.HU Shuqiong,LI Xue,LU Xiangguo,et al.Damage of alkali/sur⁃ factant/polymer flooding to reservoir rock[J].Oilfield Chemistry,2013,30(4):575-580.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告