-
油气井智能完井(IWC)是指完井系统具有收集、传输和分析生产数据、油藏数据和井筒完整性数据的能力,并能够通过远程手段对油藏和油气井的生产过程进行控制和调整[1]。20 世纪 90 年代中期开始,Baker 油田服务公司基于井下监测技术的功能和发展设想提出了智能完井(IC)[2] 的概念。油气井智能完井系统一般由井下实时监测和流动控制系统组成,目前井下实时监测的主要参数是压力、温度、流量和流体密度。其中压力、流量和流体密度监测均是通过安装单点或多点传感器实现的,其解释方法和计算模型相对成熟;温度的实时监测除了可以进行单点和多点传感器测量外,还可以通过分布式光纤温度传感器(DTS)实现分布式测量。近年来,随着深水、非常规油气和地热等资源的开发规模不断扩大[3-7] 和石油工程数字化、智能化的产业需求,井下数据监测和分析技术越来越受到重视,但与井下压力监测技术相比,井下实时温度监测技术出现较晚,相应的理论模型和解释技术尚未完善,更好地了解智能完井条件下的温度监测理论模型的研究进展对于温度监测技术在未来获得更快的发展具有重要意义。
-
近 10 a来,温度监测理论模型的最新进展主要体现在温度试井和油气井增产作业温度监测2大应用领域。温度试井理论也称为瞬态温度分析方法 (TTA),是与压力试井和瞬态压力分析(PTA)相对应的理论方法,且随着智能完井温度监测技术的大规模应用,诸多学者提出了新理论、新技术。温度试井理论以井下多点或分布式光纤温度传感器实时监测的瞬态温度数据分析为基础,结合井下压力测试数据,通过建立油藏、井筒、地层之间的流动、传热正模型和反模型,求解储层属性参数(如渗透率、流动系数、表皮系数、伤害半径、伤害渗透率等) 和热力学参数,以达到地层测试的目的。油气井增产作业温度监测是指在对油气井进行酸化和水力压裂等增产作业过程中,利用井下温度传感器监测作业时流体流经传感器的温度变化,建立相应的温度变化解释模型,从而对增产作业效果如压裂裂缝缝长、起裂位置、酸化半径、酸液分布及转向等进行评估分析。近年来,随着页岩气资源开发中水平井多段水力压裂技术的大规模实施,分布式光纤这一载体在进行温度监测的同时又实现了分布式声波监测功能,该技术可对水力压裂过程中沿井筒的声学信号响应进行实时监测,从而与 DTS 信号结合,更好地进行水力压裂的压后评估分析,以期能对智能完井温度监测和相关的最新理论模型进行梳理,为油气井智能完井数字化和非常规资源的有效开发提供支持。
-
1 井下温度传感器类型与特点
-
油气井井下的温度测量早期是通过生产测井仪器上安装的热电偶温度计进行的[8]。温度数据一般用于生产井和注入井产液剖面和水泥环固井质量的辅助定性分析,不足以单独作为定量解释的依据。为了实现对井下压力和温度长时间的实时监测,20世纪 60年代起,即在井下尝试安装永久式井下电子压力/温度计(PDG)[3-6]。由于传感器长期工作的失败率较高,测量准确性受井况影响较大,其进一步应用受到阻碍[9]。从 20 世纪七八十年代开始分别使用石英和热电阻作为压力和温度的传感元件,PDG 的精确性和稳定性得以提高,温度测量精度可达到 0.3℃[10],同时安装技术明显进步。但是井下温度传感器大多是为了寒冷地区冻土层的生产井测试而开发的,因此温度测量范围较小,一般不超过140℃,且只能测量井筒内单点温度,对于深井和热采井均不适用。分布式光纤温度传感器于 1993 年首次在壳牌(挪威)石油公司的 Brunei 油田海上生产平台进行安装应用[11]。近 20 a来,井下传感器功能进一步提升,在海上生产井和陆上高产井获得广泛应用,并逐步实现了对压力、温度、流量和多相流监测,同时与多种类型的井下流动控制装备(ICV)组成智能完井系统,试图实现对油气井生产的远程监测和自动控制[12]。
-
1.1 永久式井下电子压力/温度计
-
最初的井下温度实时监测功能是和压力实时监测技术共同由永久式井下电子压力/温度计实现的。永久式井下电子压力/温度计采用电缆将压力和温度测试信号传到地面接收装置来实现对井底的压力和温度的实时监控,整体测试系统由筒体、压力温度计、程序控制面板、通信电缆和电缆等组成,井下设备由主外筒、下盖(引压头)、上盖(电缆绝缘头)和内部安装板等组成[13]。
-
目前应用较多的是由永久式石英或硅晶作为传感元件的电子井下压力/温度计,可同时测量所在井筒深度的压力和温度,既可以单个安装也可以同时在不同深度多个安装,其温度测量分辨率可达 0.01℃。由于异常点、噪声等因素会影响监测数据的准确性,所以PDG数据处理非常关键[14]。斯坦福大学的 ATHICHANAGORN 等针对 PDG 数据处理提出消除异常点、降噪、瞬态识别、数据精简、流量历史重建、行为滤波和移动窗口分析等7个步骤,成为该领域的代表性处理方法[15]。以 WellDynamics, Schlumberger和Halliburton等油田服务公司为代表,开发的SmartWell,InForce和InCharge等智能完井系统中均应用了 PDG 来实现对于压力和温度实时监测的功能。
-
1.2 分布式光纤温度传感器
-
分布式光纤温度传感器系统的工作原理是:将光纤作为温度感应和数据传递元件,通过激光发射器以10 ns频次发射激光,在光纤传导过程中发生拉曼散射,拉曼反向散射光谱中包含斯托克斯峰和反斯托克斯峰 2 个组分,其中反斯托克斯峰的强度与温度的相关性较强,而斯托克斯峰的强度则与温度的相关性较弱。通过计算反斯托克斯峰与斯托克斯峰信号的强度比,可获得精确的温度[16]。
-
DTS测量实时温度的时间间隔最小为 2 s,最大为数小时。通常的温度测量分辨率为 0.1℃,温度数据取样间距一般为 1 m,总的光纤测量距离可达 12 km,耐高温特性可达 300℃。DTS的安装位置和时间较为灵活,与PDG相比其最大的优点在于可实现分布式的温度测量,且无电子元件,不受电磁辐射的干扰,耐高温,化学反应呈惰性,性质稳定,抗破坏能力强,不易损坏等[17]。
-
随着 DTS的发展,光纤作为测量和数据传输载体又实现了分布式声波传感(DAS)。DAS基于瑞利散射原理,用来测量长距离的声波应变信号,有效地将光纤电缆变成一连串的检波器(麦克风)。当采集到声波应变数据后,通过频率滤波、时间域和深度域堆叠等技术进行处理,以获得各种有用的信息[18]。DAS可以在每个点同时以高达 100 kHz的速率进行测量,空间分辨率约为1 m,总测量距离可达数十公里,为整个井筒的声学监测提供可能[19]。 2009 年 Shell公司首次将 DAS 应用于致密气井水力压裂作业监测[20],目前DTS/DAS联合监测正成为水力压裂监测和评估的最新技术,从而对压裂作业效果进行评估分析。
-
2 井下温度监测在油气田开发中的应用
-
2.1 气举监测
-
根据焦耳-汤普森效应,气举井注入气体由气举阀进入井筒时,压力的下降将会引起温度降低,因此 DTS 可应用于气举井中对气举阀进行实时监测。由于气体与液体相比其焦耳-汤普森系数较大,因此对于气举阀处气体是否正常注入能够做出明确的判断,DTS 监测效果较好。但是考虑到 DTS 完井成本较高,所以 DTS应用于气举监测一般在海上油田较多[21]。
-
2.2 流动剖面解释
-
利用井下温度数据对注入井或生产井的吸入或产出剖面进行解释分析是井下温度传感器的传统应用。早期的生产测井流动剖面解释方法相对直接,由于注入井注入流体温度大大低于地层温度,因此可观察停注关井过程中各层位的温度响应,认为温度升高恢复最慢的层位其流体吸入量最大;对于生产井可根据不同产层流体入井时温度的不同,对井筒与地层流体混合过程进行简单的能量守恒方程计算,从而判断其产出剖面[22-23]。由于受到生产测井作业次数的限制,温度数据不具有连续性和分布性特征,解释模型也不够准确,因此局限性较大。
-
随着近年来 DTS 等永久式井下温度传感器的推广应用,井下温度的连续性和分布性监测成为可能,根据温度数据进行流动剖面特别是产出剖面解释又成为热点问题,如Schulumberger公司利用针对 DTS 温度监测编制的 Therma 软件,对阿塞拜疆、北海等油田的生产井长时间温度监测数据进行分析,获得油、气的产出剖面[24-25],提出的产出剖面解释模型与之前相比有较大的进步,均将地层流体流动时由于生产压差产生的焦耳-汤普森效应对温度的影响作为重要因素进行计算,同时能够考虑井身结构、完井方式的差异对温度数据的影响,可以对正常生产或开/关井以及生产制度改变造成的瞬态温度变化进行模拟,有的模型还考虑了流体物性参数变化对于温度模拟结果的影响。
-
根据研究结果分析可知,应用 DTS温度数据进行流动剖面解释主要应注意:①由于焦耳-汤普森系数的差异,一般气井比油井、高产井比低产井在产层部位温度变化更为明显,流动剖面解释准确性更高;但对于埋深 3 000 m 以下的深井,由于高温高压条件下气体性质越来越接近液体,产出剖面解释难度增加。②产出剖面解释问题的本质为反演问题,模型一般均具有多解性和不确定性,其中储层的渗透率、热传导率等参数分布与解释结果密切相关。因此在解释工作中需密切配合测井、地层测试等其他测试结果进行分析。
-
2.3 气水锥进诊断
-
利用 DTS 温度监测来预测和诊断水平井气水锥进位置是与流动剖面解释较相似的应用,其本质是考虑侵入流体与产层流体温度差异对井筒温度监测数据的影响。从底水或气顶向井筒侵入的水、气温度由于地温梯度和焦耳-汤普森效应的影响,进入井筒时其温度与产层流体具有差异,会引起监测温度数据的变化。YOSHIOKA 等建立了多相流的瞬态水平井井筒温度预测模型,预测水平井在有不同气/水流量流入时的井筒温度分布,并利用北海油井的实际温度测井资料,验证了温度预测模型的有效性[26]。
-
2.4 稠油热采监测
-
由于 DTS 的耐高温特性和对复杂井条件的适用性,DTS 自问世以来一直被应用于稠油热采开发中[27],在中国的新疆、辽河等油田均取得较好效果。利用热采过程中地层和注入、采出流体温度的明显变化,通过 DTS 监测的温度数据来进行分析解释。常见的应用包括蒸汽突破前缘监测、储层连通性解释、判断蒸汽注入泄露点、蒸汽腔发展情况分析等[28-34]。由于蒸汽突破位置或蒸汽注入泄露点与周围环境相比温度变化幅度较大,因此监测难度相对较低,解释方法较直接。
-
目前在该领域最新的应用进展是对于水平注蒸汽井采用 DTS和 DAS进行联合监测,并对沿井筒蒸汽注入均匀性和具体的注入剖面进行分析解释。 SHIRDEL等在 2019年现场解释实例中[29],2口安装了 DTS 和 DAS 的水平注汽井的注入剖面解释结果由11口近距离观察井的数据得到验证,解释效果吻合程度高,但若进行蒸汽注入均匀性和整体注入剖面分析,则需要有较完备的储层信息和较完善理论模型的计算支持。
-
2.5 增产作业监测评价
-
随着页岩气等非常规资源开发中水平井多级压裂技术的广泛应用,DTS 和 DAS 联合监测已成为继小型压裂测试、示踪剂监测、微地震监测之后进行压裂效果监测评估的有力手段之一。Halliburton 公司于 2006 年在印度尼西亚苏门答腊油田中的 1 口井深为230 m的直井中首次应用DTS监测小型压裂施工,通过对泵注、地层破裂、关井、再次泵注压开地层等施工过程中实时温度剖面变化进行定性分析,获得了关于压裂裂缝扩展高度的信息[30]。 Halliburton公司于2008年针对直井压裂施工同时监测 DTS 温度分布、井口流量和井底压力,讨论了根据 DTS 温度曲线的斜率反演不同射孔层段进液剖面的方法,同时根据瞬态 DTS温度曲线可以判断出地层起裂后进液剖面的变化情况[31]。2011 年 Shell公司应用DAS对1口致密气井进行了水力压裂监测与诊断分析[32]。2014 年 DTS 与 DAS 首次由 Maersk 公司在丹麦北海 Halfdan 油田的 1 口水平井中同时安装并对水力压裂过程进行了监测[33]。试验结果表明:DAS 与 DTS 的联合监测可同时捕捉温度和声波信号,能更好地对各级裂缝进液、裂缝延伸等情况进行压裂效果的评价分析。Schlumberger 公司 2016年在1口压裂井作业过程中进行DTS和DAS联合监测,通过压后综合分析DTS数据、DAS数据和施工泵图,可以明显看出第二、三簇裂缝起裂效果不佳[34]。目前该领域的应用已成为温度监测技术的最新增长点,虽然配套的理论解释模型还不成熟,但现场应用效果已较明显。
-
在酸化增产作业过程中,确定注入酸液在井筒中的分布对增产措施进行评价及优化极为重要。 Halliburton 公司做了大量的相关现场实例分析[35-36],现场数据表明,地面压力监测数据不足以反映酸液在井筒中的分布和转向情况,DTS 温度监测可有效地分析和改善酸化作业效果。当酸液注入地层,酸岩反应释放热量,导致地层温度升高出现峰值,在酸液注入速率及注入量不同时,温度分布曲线的峰值不同,因此根据地层温度曲线监测可确定注入酸液的分布情况并获得酸液注入体积,从而对注入速率及注入时间段进行优化,使增产措施效果达到最佳。
-
2.6 储层物性参数反演分析
-
井下温度监测数据应用于储层物性参数反演方面的研究时间较短,但近几年也取得了诸多研究成果,有望成为温度监测数据应用的新增长点。目前的研究主要分为 2 个方向:①在油藏数值模拟历史拟合工作中,将生产数据与温度数据相结合,从而提高储层物性参数反演的精度。2008 年 DURU 等通过建立一维径向井筒/油藏耦合瞬态温度模型,针对单相流或两相流,考虑焦耳-汤普森效应、黏性耗散、地层参数、流体物性、流量和压力等因素,通过对孔隙度、渗透率、焦耳-汤普森系数等进行敏感性分析,提供了确定油藏孔隙度及饱和度分布的方法[37]。2010年 OBINNA 等在原有模型的基础上,利用联合拟线性贝叶斯方法和综合卡尔曼滤波方法,对油藏的流动-传热模型进行反演,获得油藏渗透率及孔隙度的分布情况[38]。从计算获得的渗透率、孔隙度与实际值的相关系数发现,同时应用生产数据和温度数据反演与只应用生产数据反演相比,孔隙度场的相关系数精度提高 83%。②提出温度试井和瞬态温度分析的试井新方法。针对油气井生产过程中的温度变化建立瞬态温度分析模型,采用反演或特征参数求解方法确定储层渗透率、表皮系数等特征参数。目前理论方法发展较快,现场应用较少,但考虑到今后油田智能完井和数字化发展的大趋势,油气井正常生产时记录的大量温度监测数据如何与压力等其他数据有机结合、有效利用必将成为工作重点,因此温度试井技术推广具有较大的发展前景和重要性。
-
3 温度监测理论模型研究
-
3.1 基础理论模型
-
1962年RAMEY建立的井筒传热模型是针对直井生产或注入流体的过程,假设井筒中为稳态热对流过程,地层中为非稳态径向热传导过程,基于能量方程和机械能守恒方程,针对井筒流体为单相不可压缩液体或单相理想气体的情况,建立了井筒-地层传热模型[39],提出了预测井筒温度的经典解析方法,表明井筒温度是深度和时间的函数,但是在 RAMEY 的井筒传热模型中井筒与地层之间的传热过程被简化处理并用总传热系数来替代,同时假设该系数与井深无关,忽略了摩阻损失与动能的影响。基于RAMEY建立的模型,SATTER建立了注蒸汽过程中的井筒温度计算模型[40],并提出了与井深相关的总传热系数计算方法,考虑了相态与温度变化对井筒内流体性质的影响。HOLST等在 RAMEY 和 SATTER 模型的基础上,考虑了摩阻损失与动能对温度的影响[41]。1967 年 WILHITE 关于计算总传热系数的方法中,明确了油管、套管、环空、水泥环和地层之间的传热过程与总热传系数之间的关系[42],该计算方法至今广泛应用于温度监测模型中。WITTERHOLT等分别研究了地层热力学参数、井眼尺寸、流体注入速度、注入深度以及注入时间等对井筒和地层温度分布的影响[43]。
-
1973年焦耳-汤普森效应首次在油气田开发中被提出[44],诸多学者开始将流体在储层或井筒中由于压力变化引起的温度变化考虑到温度监测模型中,所给出的解释结果也更接近实际情况。SAGAR 等在 RAMEY 的基础上,建立了两相流条件下的井筒温度模型,并计算了流体焦耳-汤姆森系数的变化[45]。HASAN 等的改进模型考虑了井筒流体在流动早期的不稳定传热,也应用叠加原理考虑了井筒和地层之间随时间不断变化的热流量的计算方法[46]。KABIR 等建立了适用于高温高压条件下的气藏模型[47],其中正模型用于给定油藏和完井参数情况下,计算温度和压力随时间的变化,反模型是根据测量的井口压力和温度得到井底压力。在进一步研究中,KABIR等又提出了油套环空中热对流的重要性,建立了考虑井筒和地层间热传导及热对流的两相流温度预测模型。
-
2004 年,HAGOORT 论证了 RAMEY 经典模型对于长时间(7 d以上)生产或注入井筒温度预测准确性较高[48],但对于生产或注入初期的井筒温度预测存在较大误差,诸多学者对这一观点表示认同。与此同时,永久式井下温度监测方法从 20 世纪 90 年代开始在油田投入使用以来,已积累了大量实时的瞬态变化的井下温度数据,因此理论和现场均迫切需求非稳态的井筒温度模型成为研究的重点。 2008 年 LIVESCU 等建立了非稳态多相流井筒传热数值模型[49],在该模型中井筒流动模型与传热模型并非全隐式耦合求解,而是进行了顺序迭代解耦求解,同时证明了解耦求解的合理性是由于井筒流体密度随温度的变化比压力变化小很多,而且解耦求解有利于减少模拟计算的时间并增加稳定性,这种顺序迭代求解井筒模型沿用至今。
-
传统上关于井下温度监测相关理论研究大多是针对注水或注蒸汽井进行的,研究的关注点在于注入过程中井筒与地层之间的热交换对于井筒流体温度和相态的影响,因此这一阶段的模型更注重于井筒中流动-传热模型的研究,油藏部分一般只考虑传热模型和其中的热传导效应。进入 21 世纪以来,同样是由于井下永久式温度传感器的大规模应用,使得生产井正常生产过程中的温度变化监测变为重点,因此相应的理论模型开始关注流体在储层中流动过程的传热,并开发了井筒和油藏部分的耦合模型。MAUBEUGE 等提出了对于考虑瞬态温度变化和焦耳-汤普森效应的油藏非等温数值模型[50]。YOSHIOKA 等首次提出了水平井井下温度监测的井筒和油藏耦合流动-传热模型[51],其中井筒和油层部分均为稳态传热模型,研究给出了油藏温度分布的一维解析解。LI 等将 YOSHIOKA 的井筒传热模型与非等温三维油藏模拟器相耦合,作为正模型来反演水平井流动剖面[52]。
-
3.2 温度试井理论模型
-
温度试井或瞬态温度分析方法是井下温度监测最新应用之一,其技术原理是通过建立适应于油气井实际生产或测试制度的井筒、油藏耦合的流动-传热数值模型,综合考虑油、气在储层和井筒中的温度变化因素,利用井下温度传感器监测获得的实时数据,与井下压力监测数据有机结合,从而反演获取储层渗透率、地层系数、近井地带表皮系数等储层参数。温度试井理论的建立和发展与瞬态压力试井分析方法的契机非常相似,都是基于井下传感器测量分辨率与准确性的提高而产生的。
-
2008年SUI等针对直井多层合采单相油流正常生产条件建立了井筒-油藏耦合的非稳态流动-传热数值模型[53],首次证明了井筒流体瞬态温度变化与产层物性(渗透率、表皮系数、伤害半径、伤害渗透率)的相关性,并给出了温度变化导数与表皮系数的关系。SUI等利用瞬态温度与产层物性的相关性,建立反演模型,计算获得了各产层的渗透率和表皮系数[54]。2010年SUI等也将该方法应用到多层合采气井的温度监测中[55]。
-
2016年DADA等对圆形地层中心1口直井产气状况下储层温度分布变化进行研究[56],获得了产层向井筒流入气体温度的解析解,并提出了瞬态温度变化的线性分析方法,对温度变化半对数曲线的线性段进行分析,根据斜率和截距求解地层系数、渗透率、伤害半径等储层参数,并对实际油田数据进行了分析解释,验证了该方法的有效性。
-
2016 至 2017 年 ONUR 等对温度试井问题进行了较详尽的分析方法研究[57],提出可利用温度半对数曲线、温度变化导数曲线和压力试井相结合的方法,分析解释定流量压降及压恢试井中井底瞬态温度数据,从而求解地层伤害渗透率和伤害半径。该模型中能量守恒方程求解温度与流动方程求解压力的过程采用的是解耦方式求解,并对其合理性进行了论证。后期,ONUR将上述模型进行了改进,进一步考虑了井筒存储效应、储层与上下相邻地层的热交换以及井口产量变化对测试结果的影响[58]。温度变化导数曲线比温度变化曲线更能显示近井伤害区域表皮系数和流度的敏感性。此外,压降测试的温度数据较之压恢测试具有更多的信息,压降和压恢测试早期温度变化导数曲线的水平段反映了储层流体在伤害区域内部瞬态绝热膨胀或压缩的现象,与伤害区域流度有关;压降测试中期温度变化导数曲线的水平段反映了储层流体在伤害区域内的焦耳-汤普森效应,与伤害区域流度有关;压降测试晚期温度变化导数曲线的水平段反映了储层流体在伤害区域以外储层中的焦耳-汤普森效应,与非伤害区域流度有关。
-
2016 年 RIBEIRO 等提出了水平井多级压裂条件下的温度试井模型,并讨论了如何利用温度数据判断裂缝的穿层问题[59]。研究证实了沿井筒的温度数据具有更强的与裂缝扩展、储层非均质性有关的局部特征,而压力数据仅反映沿井筒的平均状况,此外较长期的温度监测还可反映水力裂缝与储层天然裂缝或断层的沟通程度。
-
2018 年 MAO 等提出温度试井理论目前解析解中的流体物性参数一般为常数而非温度压力的函数,对于流体物性参数变化对解释结果的影响进行了研究[60]。结果表明对于高生产压差、温度变化较大的生产井,影响较明显,因此必须对流体参数进行迭代修正。其中4种影响最大的流体物性参数分别为流体密度、比热容、焦耳-汤普森系数和黏度。
-
2019 年,GALVAO 等基于 ONUR 的温度试井解析模型进行了改进,摒弃了之前解析模型中井筒温度梯度项所采用的近似稳态解或地温梯度,采用了真正的瞬态温度梯度[61]。通过改进后解析模型与商用热模拟器和 ONUR 及 CINAR 提供的产层温度解结果进行了比较[62],证明新模型对于早、晚生产和关井时期可以获得更精确的沿井筒瞬变温度分布(表1)。
-
综上所述,从 2008 年至今,对于油井或气井生产初期的压降或压恢测试条件下的温度试井形成了较完善的基础理论和分析方法,能够作为压力试井方法的有利补充,其中对于近井伤害区域的流度、渗透率、伤害半径的求解具有重要意义。但温度试井方法目前还没有复杂完井及储层条件下的模型,如多相流动模型、水平井多级压裂模型等,因此还需研究更完善的模型来增加温度试井的应用范围。同时考虑到油藏的非均质性和页岩油气等更为复杂的渗流机理,温度试井的数值模型以及更为先进的反演分析方法的研究还有待发展。
-
3.3 增产作业温度监测评价理论模型
-
油气田开发中早期对于水力压裂增产作业中的温度问题的关注是由于作业过程中井筒和裂缝中的流体温度变化对于压裂液黏性及携砂能力、破胶剂效果等影响显著,因此需要在压裂施工设计过程中较准确地预测温度的变化和影响。随着永久式井下温度传感器的推广应用,发现水力压裂作业过程中的温度变化与压裂裂缝扩展密切相关,特别是针对目前非常规油气开发中的水平井多级压裂技术来说,水力压裂作业温度监测提供了压后评估的又一重要手段。基于现场对于水力压裂作业过程温度监测、解释分析技术的迫切需求,从 20 世纪 90年代至今,已发展了与温度监测技术各阶段相匹配的压裂温度变化理论模型。
-
最早的水力压裂温度理论模型是 1993 年由 KAMPHUIS 等提出的,研究针对压裂注入和关井过程中人工裂缝内部流体的温度分布和随时间的变化建立数值模型进行求解[65]。研究显示,裂缝形态对于裂缝内流体温度影响显著,水平缝内的流体温度要远远低于垂直平面缝内温度。DAVIS 等 1997 年提出了对于直井或斜井适用的压后温度测井解释方法来确定裂缝高度[66]。
-
2006 年首次在水力压裂作业中采用了 DTS 温度监测技术[30],随着压裂过程中的 DTS温度监测技术的初步应用,SETH 等于 2010 年提出了针对压裂作业和关井阶段的温度数值模型来模拟井筒内DTS 监测位置的温度分布和变化状况,其中裂缝扩展是基于简单的压裂液体积守恒方法计算的[67]。值得注意的是,以上提到的压裂温度模型研究均是基于直井压裂情况进行的。
-
近 10 a 来,DTS 温度监测在水平井多级压裂中广泛应用,相应的温度监测理论模型也在不断进步。2012 年 TABATABAEI 等对于多级压裂水平井在注入和关井回暖期的井筒温度变化进行了初步的理论研究[68-69],研究中考虑了压裂液沿井筒分布情况对温度的影响。2013 年 RIBEIRO 等讨论了水平井压裂压降测试中压裂和关井阶段裂缝内部压力、温度变化并进行了温度试井分析方法的研究[70],2016年将该项研究扩展为单级多簇性的。同年,YOSHIOKA 等讨论了水平井多级多簇条件下压裂和停泵过程的温度模拟问题,采用了油藏和井筒瞬态耦合数值模型,考虑单相和两相流动情况,研究井筒内流体温度和产层与井筒衔接处的流体温度,说明 DTS传感器的安装位置对温度监测结果有明显区别,套管外安装模式能够更清楚地观察到相应的温度变化,但是该模型未考虑水力裂缝在此过程中的扩展,水力裂缝是根据等效渗透率方法设置在油藏中的高渗透率条带[71]。LI 等对 YOSHIOKA 模型进行了改进,增加了压裂中的裂缝扩展过程,同时考虑了水平井多级压裂时从趾部到跟部的压裂施工流程,讨论了压裂液排量、压裂液滤失系数、油藏热传导性以及 DTS 安装位置等因素对监测温度的影响[72]。当 DTS安装在井筒内和套管外时,其温度变化差异较大。泵注开始时井筒内监测的温度与泵入的温度较低的压裂液相等,而套管外监测的温度则与储层原始温度相等,当 DTS能够在套管外安装时,能够减少数据噪音、降低井筒内流体流动的干扰,可最大程度地监测压裂过程的流体温度变化,因此推荐DTS在套管外安装。
-
2014 年 CUI 等建立了水平井多裂缝单相产气条件下的井筒-油藏耦合的半解析温度模型[73],并将其应用于 Eagle Ford 2 口气井的温度监测解释中估算产量剖面;2016年半解析模型改进为由快速追踪算法进行求解,从而节省了模型计算时间,并研究了天然裂缝与人工裂缝共同作用对温度变化的影响[74];2017 年 ZHANG 等将 CUI 建立的模型作为正模型,同时应用 Levenberg Marquardt 梯度优化方法,建立更为高效的反演模型,对水平井压后生产条件下的 DTS数据进行了反演分析,获得了多级多簇条件下的产量剖面、压裂裂缝缝长分布和导流能力分布,并应用到 MARCELLUS 页岩气藏的 1 口生产井解释中。
-
酸化增产作业中 DTS 温度监测模型与水力压裂有相似之处,其中区别最大在于地层传热模型部分需考虑酸岩反应造成的化学放热。TAN 等论述了针对多产层直井和非均质地层水平井进行基质酸化作业条件下,酸液注入、关井和返排过程中井筒中流体温度变化的模拟方法[75-76],井筒-油藏耦合流动传热瞬态数值模型可以考虑热对流、热传导及酸岩反应化学放热等重要热效应。基于这一正模型和相应的反演模型,可以实时对 DTS温度监测数据进行解释分析,获得酸液沿井筒注入分布剖面和酸液实时转向状况。
-
4 结论
-
目前在油气井智能完井中应用的主流温度传感器包括电子式和光纤式 2 种,其中分布式光纤温度传感器的发展和应用较广,同时也呈现出与其他分布式光纤传感器如分布式声波传感器共同安装使用,实现监测特性优势互补的技术应用趋势。高精度、实时、分布式的温度监测数据使瞬态井筒和油藏温度分析的可能性加强,建立了温度试井理论方法,以及瞬态温度数据与储层参数相关性,并提出了温度半对数曲线、温度变化导数曲线的分析方法。随着非常规油气的开发,DTS/DAS 将成为水平井多级压裂监测评估的重要技术手段。对水平井多级多簇水力压裂的注入、停泵关井、返排及生产过程进行模拟,并配合反演算法,可实现对压裂缝长和导流能力分布、压后产液剖面分布的解释分析。
-
储层物性参数反演分析和增产作业监测评价还将是井下温度监测的热点应用领域,温度试井理论方法可转型为数值温度试井方法,以更加适应更复杂的油藏、井筒以及生产流体相态条件,同时也会进一步与长时期压力、产量数据分析相结合,成为油气井大数据时代的重要工作基础;增产监测特别是水力压裂及后续生产过程的温度监测和解释模型将会耦合更准确的裂缝扩展模型并采用更高效的求解算法。
-
参考文献
-
[1] ROBINSON M.Intelligent well completions[J].Journal of Petro⁃ leum Technology,2003,55(8):57-59.
-
[2] DENNEY D.Intelligent completion systems:reservoir rationale[J].Journal of Petroleum Technology,1998,50(10):50-51.
-
[3] 张春池,彭文泉,高兵艳,等.山东省页岩气有利勘探层系与资源评价[J].油气地质与采收率,2019,26(2):7-13.ZHANG Chunchi,PENG Wenquan,GAO Bingyan,et al.Favor⁃ able exploration strata and resource evaluation of shale gas in Shandong Province[J].Petroleum Geology and Recovery Efficien⁃ cy,2019,26(2):7-13.
-
[4] 杨兆中,陈倩,李小刚,等.鄂尔多斯盆地低渗透致密砂岩气藏水平井分段多簇压裂布缝优化研究[J].油气地质与采收率,2019,26(2):120-126.YANG Zhaozhong,CHEN Qian,LI Xiaogang,et al.Optimization of multi-cluster staged fracturing for horizontal well in low-per⁃ meability tight sandstone gas reservoir,Ordos Basin[J].Petro⁃ leum Geology and Recovery Efficiency,2019,26(2):120-126.
-
[5] 宋明水.济阳坳陷页岩油勘探实践与现状[J].油气地质与采收率,2019,26(1):1-12.SONG Mingshui.Practice and current status of shale oil explora⁃ tion in Jiyang Depression[J].Petroleum Geology and Recovery Ef⁃ ficiency,2019,26(1):1-12.
-
[6] 金之钧,蔡勋育,刘金连,等.中国石油化工股份有限公司近期勘探进展与资源发展战略[J].中国石油勘探,2018,23(1):14-25.JIN Zhijun,CAI Xunyu,LIU Jinlian,et al.The recent exploration progress and resource development strategy of China Petroleum and Chemical Corporation[J].China Petroleum Exploration,2018,23(1):14-25.
-
[7] 王强,胡永全,任岚,等.水力压裂裂缝及近缝储层温度场[J].大庆石油地质与开发,2018,37(1):98-102.WANG Qiang,HU Yongquan,REN Lan,et al.Fractures and tem⁃ perature fields for the reservoir near the fractures during the hy⁃ draulic fracturing[J].Petroleum Geology & Oilfield Development in Daqing,2018,37(1):98-102.
-
[8] HILL A D.Production logging:theoretical and interpretive ele⁃ ments[M].Texas:SPE Monograph Series,1990.
-
[9] HANSEN H.The evolution of wellbore monitoring and active com⁃ pletion systems[OL].http://www.hansenenergy.biz/activecomple⁃ tions/the_long_and_wingding_road_towards_the_intelligent_com⁃ pletion/the_early_days.html.
-
[10] JUDGE A,DUGUID A,TAYLOR A,et al.The automatic well tem⁃ perature measuring system installed at Cape Allison C-47,off⁃ shore well,Arctic Islands of Canada:Part1-concept and deploy⁃ ment[J].Journal of Canadian Petroleum Technology,1989,28(2):89-94.
-
[11] KRAGAS T K,PRUETT E,WILLIAMS B.Installation of in-well fiber-optic monitoring systems[C].San Antonio:Society of Petro⁃ leum Engineers,2002.
-
[12] DENNEY D.Intelligent-well completions in Agbami:value added and execution performance[J].Journal of Petroleum Technology,2010,62(5):49-51.
-
[13] 张冰.智能井井下数据采集与处理分析技术研究[D].成都:西南石油大学,2017.ZHANG Bing.Research on downhole data acquisition and process⁃ ing technology of intelligent well[D].Chengdu:Southwest Petro⁃ leum University,2017.
-
[14] UNNELAND T,MANIN Y,KUCHUK F.Permanent gauge pres⁃ sure and rate measurements for reservoir description and well monitoring:field cases[J].SPE Reservoir Evaluation & Engineer⁃ ing,1998,1(3):224-230.
-
[15] ATHICHANAGORN S.Development of an interpretation method⁃ ology for long-term pressure data from permanent downhole gaug⁃ es[R].SPE 80287-PA,2002.
-
[16] 薛野.分布式光纤温度传感器关键技术研究[D].武汉:武汉邮电科学研究院,2012.XUE Ye.Research on key technology of distributed fiber optic temperature sensor[D].Wuhan:Wuhan Research Institute of Posts and Telecommunications,2012.
-
[17] 隋微波,张士诚.井下实时温度监测现场应用及理论模型研究新进展[J].测井技术,2011,35(6):502-507.SUI Weibo,ZHANG Shicheng.Advances in field applications and theory model of downhole real-time temperature monitoring tech⁃ nique[J].Well Logging Technology,2011,35(6):502-507.
-
[18] 蔡海文,叶青,王照勇,等.分布式光纤声波传感技术研究进展 [J].应用科学学报,2018,36(1):41-58.CAI Haiwen,YE Qing,WANG Zhaoyong,et al.Progress in re⁃ search of distributed fiber acoustic sensing techniques[J].Journal of Applied Sciences,2018,36(1):41-58.
-
[19] XIAO J,FARHADIROUSHAN M,CLARKE A,et al.Inflow moni⁃ toring in intelligent wells using distributed acoustic sensor[C].SPE 167447-MS,2013.
-
[20] HUCKABEE P.Optic fibre distributed temperature for fracture stimulation diagnostics and well performance evaluation[C].Tex⁃ as:SPE Hydraulic Fracturing Technology Conference,2009.
-
[21] LAURENCE O S,BROWN G A.Using real-time fibre optic dis⁃ tributed temperature data for optimizing reservoir performance [C].Calgary:SPE/Petroleum Society of CIM International Confer⁃ ence on Horizontal Well Technology,2000.
-
[22] COCANOWER R D,MORRIS B P,DILLINGHAM M.Computer⁃ ized temperature decay an asset to temperature logging[J].Journal of Petroleum Technology,1969,21(8):933-941.
-
[23] ROMERO J A.A note on the theory of temperature logging[J].SPE Journal,1969,9(4):375-377.
-
[24] BROWN G,STORER D,MCALLISTER K,et al.Monitoring hori⁃ zontal producers and injectors during cleanup and production us⁃ ing fiber-optic-distributed temperature measurements[C].SPE 84379-MS,2003.
-
[25] BROWN G A,PINZON I D,DAVIES J E,et al.Monitoring produc⁃ tion from gravel-packed sand-screen completions on BP’s azeri field wells using permanently installed distributed temperature sensors[C].Anaheim:SPE Annual Technical Conference and Ex⁃ hibition,2007.
-
[26] YOSHIOKA K,ZHU D,HILL A D,et al.Prediction of temperature changes caused by water or gas entry into a horizontal well[J].SPE Production & Operations,2007,22(4):425-433.
-
[27] 于紧昌,胡传龙.分布式光纤温度传感器在稠油开采中的应用 [J].传感器与微系统,2015,34(3):158-160.YU Jinchang,HU Chuanlong.Application of distributed optical fi⁃ ber temperature sensor in heavy oil mining[J].Transducer and Mi⁃ crosystem Technologies,2015,34(3):158-160.
-
[28] JOHNSON D O,SUGIANTO R,MOCK P H.Identification of steam breakthrough intervals using DTS technology[C].San Anto⁃ nio:SPE Annual Technical Conference and Exhibition,2002.
-
[29] SHIRDEL M,BUELL R S,WELLS M J,et al.Horizontal-steaminjection-flow profiling using fiber optics[J].SPE Journal,2019,24(2):431-451.
-
[30] NATH D K,FINLEY D B,KAURA J D.Real-time fiber-optic dis⁃ tributed temperature sensing(DTS)-new applications in the oil field[C].San Antonio:SPE Annual Technical Conference and Ex⁃ hibition,2006.
-
[31] SIERRA J R,KAURA J D,GUALTIERI D,et al.DTS monitoring of hydraulic fracturing:experiences and lessons learned[C].Den⁃ ver:SPE Annual Technical Conference and Exhibition,2008.
-
[32] MOLENAAR M M,HILL D,WEBSTER P,et al.First downhole application of distributed acoustic sensing(DAS)for hydraulic fracturing monitoring and diagnostics[C].Woodlands:SPE Hy⁃ draulic Fracturing Technology Conference,2011.
-
[33] DANARDATU H,GREGERSEN S H H,ALTERN E,et al.Data acquisition and processing of carbon rod conveyed DTS and DAS in very long horizontal wells:first trial in North Sea Danish sector [C].Amsterdam:SPE Annual Technical Conference and Exhibi⁃ tion,2014.
-
[34] DICKENSON P,BRANTS M S,TELSEY M,et al.Real-time inter⁃ active remote display of DTS and DAS data for well treatment opti⁃ mization[C].Aberdeen:SPE Intelligent Energy International Con⁃ ference and Exhibition,2016.
-
[35] GLASBERGEN G,GUALTIERI D,VAN D M S,et al.Real-time fluid distribution determination in matrix treatments using DTS [J].SPE Production & Operations,2009,24(1):135-146.
-
[36] GLASBERGEN G,YEAGER V J,REYES R P,et al.Fluid-diver⁃ sion monitoring:the key to treatment optimization[J].SPE Produc⁃ tion & Operations,2010,25(3):262-274.
-
[37] DURU O O,HORNE R N.Modeling reservoir temperature tran⁃ sients and matching to permanent downhole gauge data for reser⁃ voir parameter estimation[R].SPE 115791-MS,2008.
-
[38] OBINNA O D,ROLAND N H.Joint inversion of temperature and pressure measurements for estimation of permeability and porosity fields[C].Florence:SPE Annual Technical Conference and Exhi⁃ bition,2010.
-
[39] RAMEY H J.Wellbore heat transmission[J].Journal of Petroleum Technology,1962,14(4):427-435.
-
[40] SATTER A.Heat losses during flow of steam down a wellbore[J].Journal of Petroleum Technology,1965,17(7):845-851.
-
[41] HOLST P H,FLOCK D L.Wellbore behavior during saturated steam injection[J].Journal of Canadian Petroleum Technology,1965,5(4):184-193.
-
[42] WILHITE G P.Over-all heat transfer coefficients in steam and hot water injection wells[J].Journal of Petroleum Technology,1967,19(5):607-615.
-
[43] WITTERHOLT E J,TIXIER M R.Temperature logging in injec⁃ tion wells[R].SPE 4022-MS,1972.
-
[44] STEFFENSEN R J,SMITH R C.The importance of Joule-Thom⁃ son heating(or cooling)in temperature log interpretation[C].Las Vegas:Society of Petroleum Engineers,1973.
-
[45] SAGAR R,DOTY D R,SCHMIDT Z.Predicting temperature pro⁃ files in a flowing well[J].SPE Production Engineering,1991,6(4):441-448.
-
[46] HASAN A R,KABIR C S.Aspects of wellbore heat transfer during two-phase flow[J].SPE Production & Facilities,1994,9(3):211-216.
-
[47] KABIR C S,HASAN A R,JORDAN D L,et al.A wellbore/reser⁃ voir simulator for testing gas wells in high-temperature reservoirs [J].SPE Formation Evaluation,1996,11(2):128-134.
-
[48] HAGOORT J.Ramey’s wellbore heat transmission revisited[J].SPE Journal,2004,9(4):465-474.
-
[49] LIVESCU S,DURLOFSKY L J,AZIZ K.Application of a new ful⁃ ly-coupled thermal multiphase wellbore flow model[C].Tulsa:SPE/DOE Symposium on Improved Oil Recovery,2008.
-
[50] MAUBEUGE F,DIDEK M P,BEARDSELL M B,et al.Tempera⁃ ture model for flow in porous media and wellbore[R].SPWLA1994-N.Tulsa:SPWLA 35th Annual Logging Symposium,1994.
-
[51] YOSHIOKA K,ZHU D,HILL A D,et al.A comprehensive model of temperature behavior in a horizontal well[C].Dallas:Society of Petroleum Engineers,2005.
-
[52] LI Z,ZHU D.Predicting flow profile of horizontal well by down⁃ hole pressure and distributed temperature data for water drive res⁃ ervoir[J].SPE Production & Operations,2010,25(3):296-304.
-
[53] SUI W,ZHU D,HILL A D,et al.Model for transient temperature and pressure behavior in commingled vertical wells[C].Moscow:SPE Russian Oil and Gas Technical Conference and Exhibition,2008.
-
[54] SUI W,ZHU D,HILL A D,et al.Determining multilayer formation properties from transient temperature and pressure measurements [C].Denver:SPE Annual Technical Conference and Exhibition,2008.
-
[55] SUI W B,EHLIG E C,ZHU D,et al.Determining multilayer for⁃ mation properties from transient temperature and pressure mea⁃ surements in commingled gas wells[C].Beijing:International Oil and Gas Conference and Exhibition in China,2010.
-
[56] DADA A O,MURADOV K M,DAVIES D R.Novel solutions and interpretation methods for transient sandface temperature in verti⁃ cal,dry gas producing wells[C].Aberdeen:SPE Intelligent Energy International Conference and Exhibition,2016.
-
[57] ONUR M,ULKER G,KOCAK S,et al.Interpretation and analysis of transient sandface and wellbore temperature data[J].SPE Jour⁃ nal,2017,22(4):1 156-1 177.
-
[58] ONUR M.Modeling and interpretation of the bottom hole tempera⁃ ture transient data[C].Buenos Aires:SPE Latin America and Ca⁃ ribbean Petroleum Engineering Conference,2017.
-
[59] RIBEIRO P M,HORNE R N.Detecting fracture growth out of zone by use of temperature analysis[J].SPE Journal,2016,21(4):1 263-1 278.
-
[60] MAO Y,ZEIDOUNI M.Accounting for fluid-property variations in temperature-transient analysis[J].SPE Journal,2018,23(3):868-884.
-
[61] GALVAO M S C,CARVALHO M S,BARRETO A B.A coupled transient wellbore/reservoir-temperature analytical model[J].SPE Journal,2019,24(5):2 235-2 361.
-
[62] ONUR M,CINAR M.Analysis of sandface-temperature-transient data for slightly compressible,single-phase reservoirs[J].SPE Journal,2017,22(4):1 134-1 155.
-
[63] RAMAZANOV A S,NAGIMOV V M.Analytical model for the cal⁃ culation of temperature distribution in the oil reservoir during un⁃ steady fluid inflow[J].Oil and Gas Business Journal,2007,1(1):1-8.
-
[64] APP J F.Nonisothermal and productivity behavior of high-pres⁃ sure reservoirs[J].SPE Journal,2010,15(1):50-63.
-
[65] KAMPHUIS H,DAVIES D R,ROODHART L P.A new simulator for the calculation of the in situ temperature profile during well stimulation fracturing treatments[J].Journal of Canadian Petro⁃ leum Technology,1993,32(5):38-47.
-
[66] DAVIS E R,ZHU D,HILL A D.Interpretation of fracture height from temperature logs-the effect of wellbore/fracture separation [J].SPE Formation Evaluation,1997,12(2):119-124.
-
[67] SETH G,REYNOLDS A C,MAHADEVAN J.Numerical model for interpretation of distributed-temperature-sensor data during hydraulic fracturing[C].Florence:SPE Annual Technical Confer⁃ ence and Exhibition,2010.
-
[68] TABATABAEI M,ZHU D,HILL D.Interpretation of temperature data during acidizing treatment of horizontal wells for stimulation optimization[C].Bangkok:International Petroleum Technology Conference,2011.
-
[69] TABATABAEI M,ZHU D,HILL A D.Theoretical basis for inter⁃ pretation of temperature data during acidizing treatment of hori⁃ zontal wells[J].SPE Production & Operations,2013,28(2):168-180.
-
[70] RIBEIRO P M,HORNE R N.Pressure and temperature transient analysis:hydraulic fractured well application[C].Louisiana:SPE Technical Conference and Exhibition,2013.
-
[71] YOSHIOKA N,ZHU D,HILL A D.Temperature-prediction model for a horizontal well with multiple fractures in a shale reservoir[J].SPE Production & Operations,2013,29(4):261-273.
-
[72] LI X,ZHU D.Temperature behavior during multistage fracture treatments in horizontal wells[J].SPE Production & Operations,2017,33(3):522-538.
-
[73] CUI J,ZHU D.Diagnosis of multiple fracture stimulation in hori⁃ zontal wells by downhole temperature measurements[C].Doha:In⁃ ternational Petroleum Technology Conference,2014.
-
[74] ZHANG S,ZHU D.Inversion of downhole temperature measure⁃ ments in multistage fracture stimulation in horizontal wells[C].San Antonio:SPE Annual Technical Conference and Exhibition,2017.
-
[75] TAN X,ZHU D,HILL A D.Determining acid distribution using distributed temperature measurements[C].New Orleans:SPE An⁃ nual Technical Conference and Exhibition,2009.
-
[76] TABATABAEI M,ZHU D,HILL A D.Interpretation of tempera⁃ ture data during acidizing treatment of horizontal wells for stimula⁃ tion optimization[C].Bangkok:International Petroleum Technolo⁃ gy Conference,2011.
-
摘要
智能完井条件下的温度监测技术发展历程特别是最新的温度监测理论模型的研究现状,可为井下温度监测技术的进一步应用和深入开展理论研究提供参考。目前油田使用的主流温度传感器包括永久式井下电子压力/温度计和分布式光纤温度传感器2种类型,其中分布式光纤温度传感器由于其特别的环境适应性和采集温度数据的分布式特点使其应用更广泛。温度监测技术的6大应用主要包括气举监测、流动剖面解释、气水锥进诊断、稠油热采监测、增产作业监测评价和储层物性参数反演分析等,其中增产作业监测评价和储层物性参数反演分析2个领域的理论研究进展迅速,不仅研究了温度试井的理论分析方法,而且在传统温度监测模型的基础上,针对水平井多级多簇压裂监测的具体情况进行了大幅度的改进,实现了温度模拟和压裂评估反演的双重功能。
Abstract
The development process of the temperature monitoring technology under the intelligent well completion (IWC) conditions,especially the latest research works of the theoretical models for the temperature monitoring technology,pro- vides reference for further application and in-depth theoretical research of the downhole temperature monitoring technology. The mainstream temperature sensors currently used in oilfields include the permanent downhole electronic pressure/temper- ature sensors and distributed optical fiber temperature sensors. Due to the strong environmental adaptability and the distrib- uted characteristics of temperature data,the distributed optical fiber temperature sensors have been more widely used. Six major application for the temperature monitoring technology include:gas lift monitoring,flow profile interpretation,gas-wa- ter coning diagnostics,heavy oil thermal recovery monitoring,stimulation monitoring and evaluation,and reservoir property inversion analysis and so on. The theoretical research works showed the rapid progresses in stimulation monitoring and eval- uation as well as reservoir property inversion analysis. The transient temperature analysis has been established gradually. The temperature models for multi-stage,multi-cluster horizontal fractured well have also been improved greatly based on the conventional temperature model in fractured wells,which could be used for both temperature simulation and fracturing evaluation inversion.