-
印度尼西亚南苏门答腊盆地北部J区油气资源丰富,是盆地 3 个主力油气区之一,已在渐新统、中新统发现7个油气田、3个含油气构造[1-2],仍具有进一步发现油气资源的前景[3],区内大型构造圈闭已基本勘探落实,主要勘探战略目标将从构造油气藏转向地层-岩性油气藏[3-6]。J区中新统进积三角洲水下分流河道及河口坝为有利储集体[7-9]。不同湖盆类型进积三角洲的成因单元有一定差异。断陷湖盆进积三角洲主要发育三角洲前缘水下分流河道及河口坝砂体[10-11],而坳陷湖盆进积三角洲则以三角洲前缘水下分流河道为主[12]。这些研究主要涉及进积三角洲的宏观沉积特征[13],尚未深入揭示各类成因砂体的空间展布、结构及演化。目前,已有学者根据砂体接触关系或者成因,建立了辫状河三角洲和浅水三角洲砂体叠置模式[14-16];或者应用正演-反演方法识别河流相砂体配置模式[17]。但这些砂体叠置模式没有综合考虑砂体的沉积动力学背景、成因类型、建筑结构及空间演化规律,对高精度地震储层预测的指导性不明显。
-
为此,笔者基于高精度层序地层学理论,综合研究区区域地质背景、岩石相类型、测井响应及地震相特征,描述目的层高频成因地层单元特征,识别进积三角洲的成因单元类型,表征各成因单元的空间分布,分析其演化规律,建立反映进积三角洲砂体结构的沉积模式;根据砂体的成因类型和接触关系,提出进积三角洲砂体成因-结构分类方法,总结进积三角洲不同沉积时期成因砂体叠置样式、空间演化,指出砂体结构模式约束下提高地震储层预测精度的方法,以期为该区地层-岩性油气藏勘探提供技术支持。
-
1 区域地质背景
-
J区位于南苏门答腊盆地,面积为 1 643 km2,呈西断东超的箕状断陷盆地结构[18],先后经历断陷发育期、断拗过渡期、拗陷发育期、构造反转期等 4 个构造演化阶段[19-20],包括西部隆起、中部凹陷和东部斜坡(图1)。西部隆起发育断背斜圈闭和构造-岩性圈闭;中部凹陷 BETARA 和 GERAGAI凹陷提供 J 区最主要的油源;东部斜坡发育岩性圈闭、低幅度构造圈闭和断块圈闭[19]。
-
J 区前古近系为花岗岩基岩,中新统发育 BatuRaja 组、Intra-Gumai 组、Gumai 组、Air Benakat 组和 Muara Enim 组,古近系 Lahat 组湖相泥岩是南苏门答腊盆地主要烃源岩[21-22]。始新统—中新统可分为 SQ1—SQ7 共 7 个三级层序[23]。SQ4 发育浅海及进积三角洲沉积体系[9],岩性为滨浅海相厚层灰色泥岩、三角洲相砂岩,地层厚度约为400 m(图2)。
-
图1 J区构造纲要(据文献[4]修改)
-
Fig.1 Structure outline of Block J(Modified according to Reference[4])
-
2 高精度成因地层分析
-
高精度成因地层分析是在三级层序基础上,基于精细露头、岩心、测井和地震信息,识别描述四级和五级层序的空间展布[24-25]。四级层序相当于四级沉积旋回,与高频海/湖平面变化、物源供给和构造升降的叠加有关。五级层序大致与准层序相对应,代表一次单一的进积到退积的沉积单元[26]。
-
研究区平行于物源方向的地震剖面(图3)显示,目的层有底部下超和前积反射结构,揭示沉积体向浅海推进;最大海泛面(MFS)的同相轴连续性好;三级层序顶界面(SB5)见上超反射结构。
-
SQ4 高位体系域可识别出 SSQ1—SSQ3 共 3 个四级层序、10个五级层序(图4),四级层序界面同相轴相对连续,反映 3 期进积三角洲沉积。高频层序界面附近的测井曲线幅度和形态差异较大,呈突变接触关系[26-27]。
-
3 进积三角洲成因单元展布
-
3.1 成因单元类型
-
研究区进积三角洲发育水下分流河道、河口坝、席状砂、分流河道间和前三角洲泥等成因单元(图4)。
-
图2 J区地层综合柱状图(据文献[9]修改)
-
Fig.2 Stratigraphic composite histogram of Block J(Modified according to Reference[9])
-
图3 WN-9—WN-2井平行物源方向四级层序地震剖面特征
-
Fig.3 Well WN-9-WN-2 seismic section characteristics of the fourth-order sequence in direction parallel to provenance
-
水下分流河道是三角洲平原分流河道在三角洲前缘水下的延伸。主要岩性为板状交错层理中细砂岩、含砾砂岩,纵向上呈正粒序沉积序列。GR 和 SP 曲线呈中幅箱形、钟形、齿化复合钟形或箱形[28]。
-
河口坝处于水下分流河道的河口处,是三角洲入海后因流速降低和波浪的簸选作用而形成,呈现下细上粗的反粒序[29]。岩性主要为中—厚层细砂岩和粉砂岩,发育楔形交错层理、平行层理、S 形前积纹理和水平层理等沉积构造[30-31]。GR和 SP曲线呈顶部突变、底部渐变的漏斗形,略有齿化。
-
图4 J区WN-2井SQ4高位体系域进积三角洲沉积演化柱状图
-
Fig.4 Sedimentary evolution histogram of progradational delta in high-stand systems tract of SQ4 of Well WN-2 in Block J
-
席状砂分布于三角洲前缘远端,是远砂坝、河口坝沉积物经海浪或湖浪改造后沉积形成[32]。分布面积较广,粒度较细,岩性主要为薄层粉砂岩和泥质粉砂岩,局部存在泥质薄层。GR 和 SP 曲线呈中低幅指状。
-
分流河道间是介于各分流河道之间的区域,与浅海连通。沉积物粒度较细,主要岩性为泥岩或泥质粉砂岩。GR和SP曲线较为平直,幅度较低,有时曲线略齿化。
-
前三角洲泥是前三角洲的主要成因单元,岩性为泥岩、粉砂质泥岩,沉积物颗粒细。GR和SP曲线基本呈平直状,电阻率较低而声波时差较大[33]。
-
3.2 成因单元平面展布
-
从 SSQ1 到 SSQ3 沉积时期,席状砂的占比逐渐减少,河口坝、水下分流河道的占比逐渐增多,三角洲的平面展布范围逐渐增大,呈现自东向西进积的特点。
-
SSQ1沉积时期前三角洲的厚度较大,以粉砂质泥岩为主;三角洲前缘发育薄层席状砂、河口坝。南、北 2 个朵叶体互不相接,北部朵叶体规模较小,南部朵叶体的规模相对较大,单个河口坝及水下分流河道砂体的厚度为 10 m左右(图5a)。SSQ2沉积时期前三角洲发育薄层泥岩;三角洲前缘以河口坝、水下分流河道沉积为主,可见河口坝叠置复合体,地层厚度较大。南、北 2 个朵叶体向海进积,北部朵叶体发育多个河口坝;南部朵叶体水下分流河道砂体叠置形成复合砂体(图5b)。SSQ3沉积时期前三角洲厚度较小;三角洲前缘仍以河口坝、水下分流河道为主,且出现水下分流河道与河口坝叠置砂体。南、北2个朵叶体均继续向浅海推进,平面展布范围达到最大(图5c)。
-
3.3 沉积模式
-
J区 SQ4 进积三角洲沉积模式反映各成因单元的几何形态、展布规模逐步向浅海扩大推进的特点 (图6)。在垂直物源方向,分流河道砂体呈顶平底凸形,而河口坝砂体呈底平顶凸形。初期主要发育薄层席状砂,小规模分流河道、河口坝砂体。后期,分流河道及河口坝砂体的规模逐渐增大、数量逐渐增多,出现了分流河道-分流河道、分流河道-河口坝复合砂体。在平行物源方向,初期小规模席状砂、分流河道砂体的分布范围小,更靠近物源。后期,分流河道及河口坝砂体向浅海推进,平面展布规模变大,三角洲前缘及前三角洲的范围逐渐向浅海扩展。
-
4 成因砂体叠置样式
-
4.1 砂体类型
-
辫状河三角洲、浅水三角洲、河流成因砂体叠置类型侧重于砂体描述,虽然考虑了砂体的接触关系、形态、成因机制等因素[14-17],但没有系统考虑砂体的沉积动力学背景、成因机制和建筑结构的耦合关系,无法深入认识不同成因-结构砂体的类型、形态及空间分布。按砂体成因-结构划分,J区 SQ4进积三角洲砂体可分为单成因孤立砂体、双成因叠加砂体和多成因切叠砂体 3种,并可进一步细分为 14 类(表1)。
-
图5 J区SQ4各四级层序成因单元平面分布
-
Fig.5 Planar distribution of the fourth-order sedimentary genetic units of SQ4 in Block J
-
图6 J区SQ4进积三角洲沉积演化模式
-
Fig.6 Sedimentary evolution mode of SQ4 progradational delta in Block J
-
单成因孤立砂体是在可容纳空间相对较大(高 A/S值)条件下,单一成因砂体被有成因联系的泥岩包围而形成。研究区发育席状砂、河口坝及水下分流河道3类单成因孤立砂体(图7a,7b),平均砂体厚度分别为 1.1,5.0 和 7.1 m;单成因孤立砂体平均厚度为 4.4 m。A/S 值较高[34] 导致这种砂体厚度薄,呈透镜状、树枝状[35],砂体连续性中等-低,属于低孔低渗透—中孔中渗透储层[36]。
-
双成因叠加砂体是指在可容纳空间有所减小 (中等A/S值)的条件下,2种相同或不同成因砂体直接拼接、且后期砂体未冲刷侵蚀前期砂体而形成。研究区主要发育席状砂-席状砂、河口坝-河口坝、水下分流河道-河口坝、水下分流河道-水下分流河道4类双成因叠加砂体(图7a,7d),平均砂体厚度分别为2.6,7.8,13.3和18.6 m;双成因叠加砂体平均厚度为 10.6 m。在 A/S 值中等的沉积背景下[34],这种复合砂体内部存在厚度不等且物性较差的低渗透层,砂体呈朵叶状、条带状,连续性中等[35]。储层质量变化大,涵盖低孔低渗透、中孔中渗透及高孔高渗透[36]。
-
多成因切叠砂体是指在可容纳空间较小(低 A/S 值)条件下,多个相同或不同成因砂体纵横向叠置、且后期砂体不同程度冲刷侵蚀前期砂体而形成。研究区发育席状砂-席状砂-席状砂、河口坝-河口坝-席状砂、水下分流河道-河口坝-河口坝、水下分流河道-河口坝-席状砂、河口坝-河口坝-河口坝、水下分流河道-水下分流河道-河口坝、水下分流河道-水下分流河道-水下分流河道7类多成因切叠砂体(图7b,7c),平均砂体厚度为4.2~53 m;多成因切叠砂体平均厚度为 21.9 m。低 A/S值沉积背景导致这类复合砂体内部基本不发育低渗透层,砂体呈叶片状、朵叶状及宽带状等,连续性中等-高[35]。储层类型包括高孔高渗透、中孔中渗透和低孔低渗透等多种[36]。
-
4.2 砂体叠置样式
-
J区 SQ4 进积三角洲从沉积初期到后期整体呈单成因孤立砂体-双成因叠加砂体-多成因切叠砂体叠置样式(图8)。SSQ1沉积时期可容纳空间相对较大,A/S 值高,主要发育小规模席状砂、水下分流河道、河口坝等单成因孤立砂体,向上出现少量双成因叠加砂体[34]。泥岩相对较发育,呈现“泥包砂” 沉积序列。单成因孤立砂体占比达 73.3%,其中席状砂单成因孤立砂体占53.3%,为主要砂体类型(图9a);双成因叠加砂体占比为 20%,相对较少(图9b)。SSQ2沉积时期可容纳空间有所减小,A/S值中等,水下分流河道、河口坝砂体直接覆盖或低幅度侵蚀下伏砂体[34]。砂体叠置样式从下部的单成因孤立砂体逐渐向上演化为双成因叠加砂体。双成因叠加砂体占比为 50%,相对占优(图9b),其中席状砂-席状砂双成因叠加砂体占比达 20%;单成因孤立砂体占比为 30%(图9a)。SSQ3 沉积时期可容纳空间相对最小,A/S 值低,后期水下分流河道、河口坝砂体冲刷侵蚀下伏水下分流河道、河口坝砂体,形成多成因砂体纵向切割叠置、横向搭接、展布范围较广的复合砂体[34]。砂体叠置样式从下部的双成因叠加砂体逐渐向上演化为多成因切叠砂体。 SSQ3 沉积时期以多成因切叠砂体为主,占比为 63.1%,但各类多成因切叠砂体占比相对分散(图9c);双成因叠加砂体占比仅为21%(图9b)。
-
图7 J区SQ4进积三角洲不同成因-结构砂体地球物理响应
-
Fig.7 Geophysical responses of sandbodies with different genetic-architecture in SQ4 progradational delta in Block J
-
图8 J区SQ4进积三角洲砂体叠置样式
-
Fig.8 Superimposed patterns of genetic sandbody in SQ4 progradational delta in Block J
-
图9 J区SQ4进积三角洲不同成因-结构砂体分布
-
Fig.9 Distribution ratio of different genetic-architecture sandbody in SQ4 progradational delta in Block J
-
4.3 砂体叠置样式约束下的储层预测
-
进积三角洲沉积初期(SSQ1),单成因孤立砂岩较薄而泥岩较厚。在砂体叠置样式约束下,首先可以应用地震沉积学小时窗地层切片、地震属性优选来预测薄层砂体边界[37-39],通过精度更高的叠前地震同步反演联合多点地质统计反演[40-41]、优势频段内分频属性融合[42-43] 以及BP神经网络[44]、多元线性回归[45] 等方法,再结合储层成因结构模式,可以对薄层砂体(2~6 m)边界进行精细刻画。在此基础上,根据频率等特征地震属性与砂体厚度的关系[46],可以对砂体厚度分布进行预测。进积三角洲沉积初期发育的薄层透镜状、朵叶状、树枝状砂体在封闭性断层及周围泥岩侧向封堵下,形成砂体上倾尖灭岩性圈闭、多层薄砂反向断块-岩性圈闭[47]。
-
进积三角洲沉积中期(SSQ2),双成因叠加砂体与泥岩互层。在砂体叠置样式约束下,可以应用地震沉积学地层切片[37-38]、地震分频拓频[42-43]、多点地质统计反演[41] 等方法精准预测砂体边界,再结合特征地震属性与砂体厚度的关系[46],可以更精准预测砂体的厚度。这一沉积时期发育的朵叶状、条带状砂体在封闭性断层和泥岩侧向封堵下,形成具有一定规模的多层反向断块-岩性圈闭[48]。
-
进积三角洲沉积后期(SSQ3),多成因切叠砂体厚度大,泥岩较薄,储层从低孔低渗透变化到高孔高渗透,差异较大。在这种砂体叠置样式和储层非均质变化约束下,应用叠前弹性参数反演等技术,获取与储层物性及岩性敏感的拉梅系数、泊松比、密度、纵横波速度比等多种弹性参数,再结合叠前/ 叠后地震联合反演等技术,可以精细预测优势储层的边界、厚度等特征[49-50]。这一沉积时期层序顶部不整合面、复杂断层和侧向泥岩的封堵可形成多层断块-地层不整合圈闭、块状地层不整合圈闭、多层复杂断块-岩性圈闭等[51]。
-
5 结论
-
J 区中新统三级层序 SQ4 高位体系域包括 3 个四级层序和 10 个五级层序。SQ4 进积三角洲沉积体系平面上分为南、北2个朵叶体,发育水下分流河道、河口坝、席状砂、分流河道间和前三角洲泥等成因单元,水下分流河道与河口坝是主要的砂体成因单元。进积三角洲沉积初期的可容纳空间较大,发育小规模席状砂、水下分流河道单成因孤立砂体,可形成规模较小的上倾尖灭岩性圈闭、多层薄砂反向断块-岩性圈闭;沉积中期的可容纳空间减小,水下分流河道、河口坝砂体较发育,砂体叠置样式以双成因叠加砂体为主,能形成一定规模的多层反向断块-岩性圈闭;沉积后期的可容纳空间最小,砂体叠置样式以多成因切叠砂体为主、双成因叠加砂体为辅,可形成较大规模的多层复杂断块-岩性圈闭、块状地层不整合圈闭,是重点勘探目标。
-
参考文献
-
[1] 薛良清,杨福忠,马海珍,等.南苏门达腊盆地中国石油合同区块成藏组合分析[J].石油勘探与开发,2005,32(3):130-134.XUE Liangqing,YANG Fuzhong,MA Haizhen,et al.Petroleum play analysis of the PetroChina Contract Blocks in the South Su⁃ matra Basin[J].Petroleum Exploration and Development,2005,32(3):130-134.
-
[2] 童晓光,杨福忠.印尼油气资源及中国石油合同区块现状[J].中国石油勘探,2005,10(2):58-62.TONG Xiaoguang,YANG Fuzhong.Oil and gas resource and oc⁃ currence of PetroChina’s block in Indonesia[J].China Petroleum Exploration,2005,10(2):58-62.
-
[3] 田鑫.印尼南苏门答腊盆地油气成藏规律研究及油气藏精细勘探[D].成都:成都理工大学,2016.TIAN Xin.Study of the hydrocarbon accumulation rules and fine exploration of hydrocarbon reservoirs of South Sumatra Basin,In⁃ donesia[D].Chengdu:Chengdu University of Technology,2016.
-
[4] 田鑫,王绪本,郭维华,等.Jabung区块层序地层格架及岩性油气藏勘探潜力[J].岩性油气藏,2017,29(2):99-106.TIAN Xin,WANG Xuben,GUO Weihua,et al.Sequence strati⁃ graphic framework and lithologic reservoir potential in Jabung block[J].Lithologic Reservoirs,2017,29(2):99-106.
-
[5] 陈亮,庞雄,韩晋阳,等.珠江口盆地白云深水区构造-岩性油气藏特征及成藏模式[J].特种油气藏,2019,26(1):30-36.CHEN Liang,PANG Xiong,HAN Jinyang,et al.Structural-litho⁃ logic hydrocarbon reservoir characterization and accumulation patterns in the Baiyun deep-water area of the Pearl River Mouth Basin[J].Special Oil & Gas Reservoirs,2019,26(1):30-36.
-
[6] 于翠玲,李宝刚.渤海湾盆地东营凹陷牛庄洼陷岩性油气藏平面富集主控因素[J].吉林大学学报:地球科学版,2019,49(1):240-247.YU Cuiling,LI Baogang.Main factors controlling planar enrich⁃ ment of lithologic reservoirs in Niuzhuang sub-sag,Dongying De⁃ pression,Bohai Bay Basin[J].Journal of Jilin University:Earth Science Edition,2019,49(1):240-247.
-
[7] 王德英,于娅,张藜,等.渤海海域石臼坨凸起大型岩性油气藏成藏关键要素[J].岩性油气藏,2020,32(1):1-10.WANG Deying,YU Ya,ZHANG Li,et al.Key factors for reservoir formation of large lithologic reservoirs in Shijiutuo uplift,Bohai Sea[J].Lithologic Reservoirs,2020,32(1):1-10.
-
[8] 曲英杰,樊太亮,毛治国,等.南苏门答腊盆地Jabung区块新生代沉积演化特征[J].内蒙古石油化工,2008,18(10):195-197.QU Yingjie,FAN Tailiang,MAO Zhiguo,et al.Sedimentary evolu⁃ tion characteristics of Jabung block in the South Sumatra Basin in Cenozoic era[J].Inner Mongolia Petrochemical Industry,2008,18(10):195-197.
-
[9] 蔡少林,唐友军,张兴阳,等.南苏门答腊盆地J区块中新统In⁃ tra-Gumai 组三角洲前缘砂体精细描述[J].石油天然气学报,2014,36(12):47-50.CAI Shaolin,TANG Youjun,ZHANG Xingyang,et al.Fine de⁃ scription of delta front sand body in Miocene Intra-Gumai Forma⁃ tion of J Block in the Southern Sumatra Basin[J].Journal of Oil and Gas Technology,2014,36(12):47-50.
-
[10] 陈杰,刘传虎,谭明友,等.进积型三角洲交汇区沉积模式—— 以东营凹陷沙三中亚段为例[J].沉积学报,2016,34(6):1 187-1 197.CHEN Jie,LIU Chuanhu,TAN Mingyou,et al.Depositional model of prograding delta confluences:a case from Es3 m Members in the Paleogene Dongying Sag[J].Acta Sedimentologica Sinica,2016,34(6):1 187-1 197.
-
[11] 杨勇.东营凹陷永安镇油田永3断块沙二段进积三角洲沉积体系[J].油气地质与采收率,2009,16(2):27-29.YANG Yong.The representative prograded delta depositional sys⁃ tem in Yong3 fault-block,Yonganzhen Oilfield,Dongying Depres⁃ sion[J].Petroleum Geology and Recovery Efficiency,2009,16(2):27-29.
-
[12] 汪伶俐,淡卫东,辛红刚,等.姬塬地区长6油层组进积型三角洲识别及古地理演化[J].石油天然气学报,2013,35(2):11-15.WANG Lingli,DAN Weidong,XIN Honggang,et al.The recogni⁃ tion of prograded delta and palaeogeographic evolution of 6th mem⁃ ber of Yanchang Formation in Jiyuan Area of Ordos Basin[J].Journal of Oil and Gas Technology,2013,35(2):11-15.
-
[13] 苏玉山,王桐,李程,等.尼日尔三角洲的沉积-构造特征[J].岩石学报,2019,35(4):1 238-1 256.SU Yushan,WANG Tong,LI Cheng,et al.The sedimentary and tectonic features of the Niger Delta[J].Acta Petrologica Sinica,2019,35(4):1 238-1 256.
-
[14] 徐波,廖保方,冯晗,等.南堡 1-1区东一段浅水三角洲水下分流河道单砂体叠置关系[J].大庆石油地质与开发,2019,38(1):51-59.XU Bo,LIAO Baofang,FENG Han,et al.Superimposition relation⁃ ships of the individual sandbody in the shallow-water-delta un⁃ derwater distributary channel of Member Ed1 in Block Nanpu1-1 [J].Petroleum Geology & Oilfield Development in Daqing,2019,38(1):51-59.
-
[15] 陈佩佩,胡望水,黄鑫,等.川西坳陷SDG地区浅水三角洲沉积特征及沉积成因模式[J].油气地质与采收率,2018,25(2):20-28.CHEN Peipei,HU Wangshui,HUANG Xin,et al.Sedimentary characteristics and sedimentary genetic models of shallow water delta in the SDG area,west Sichuan Depression[J].Petroleum Ge⁃ ology and Recovery Efficiency,2018,25(2):20-28.
-
[16] 于腾飞.浅层近源扇三角洲砂砾岩沉积充填模式及其对储层分布的影响——以车排子凸起沙一段为例[J].油气地质与采收率,2018,25(4):54-60.YU Tengfei.Sedimentary models for near-source shallow glutenite fan delta and their effects on reservoir distribution:A case of the first member of Shawan Formation in Chepaizi Uplift[J].Petro⁃leum Geology and Recovery Efficiency,2018,25(4):54-60.
-
[17] 刘丽.埕岛油田馆陶组曲流河砂体叠置模式[J].岩性油气藏,2019,31(1):40-48.LIU Li.Sandbody superimposed pattern of meandering river facies of Guantao Formation in Chengdao Oilfield[J].Lithologic Reser⁃ voirs,2019,31(1):40-48.
-
[18] SHAW J H,HOOK SC,SITOHANG E P.Extensional fault-bend folding and synrift deposition:An example from the central Suma⁃ tra Basin,Indonesia[J].AAPG Bulletin,1997,81(3):367-379.
-
[19] SUTA I N,LU X G.Complex stratigraphic and structural evolution of Jabung Subbasin and its hydrocarbon accumulation:Case study from Talang Akar reservoir,South Sumatra Basin,Indonesia[C].Doha:2005 International Petroleum Technology Conference,2005.
-
[20] RASHID H,SOSROWIDJOJO I,WILDIARTO F X.Musi platform and Palembang high:A new look at the petroleum system[C].In⁃ donesian Petroleum Association,1998:265-276.
-
[21] SUSENO P H,ZAKARIA,MUJAHIDIN N,et al.Contribution of Lahat Formation as hydrocarbon source rock in south Palembang area,South Sumatra,Indonesia[C].Jakarta:Indonesia Petroleum Association,1992:325-337.
-
[22] BISHOP M G.South Sumatra Basin province,Indonesia:The La⁃ hat/Talang Akar-Cenozoic total petroleum system[R].USGS Open-file report 99-50S,2000.
-
[23] ALAMSYAH M N,MARMOSUWITO S,SUTJININGSIH W,et al.Seismic reservoir characterization of Indonesia’s Southwest Beta⁃ ra Field[J].Leading Edge,2008,27(12):1 598-1 607.
-
[24] 夏景生,刘晓,李文华,等.南堡凹陷西斜坡中深层高精度层序地层及沉积体系研究[J].中国石油勘探,2017,22(5):72-81.XIA Jingsheng,LIU Xiao,LI Wenhua,et al.Study on high-resolu⁃ tion sequence stratigraphy and sedimentary system of middledeepbeds on western slope,Nanpu sag[J].China Petroleum Explo⁃ ration,2017,22(5):72-81.
-
[25] AITKEN J F,HOWELL J.High resolution sequence stratigraphy:innovations,applications and future prospects[J].Geological Soci⁃ ety London Special Publication,1996,104(1):1-9.
-
[26] 李全,林畅松,吴伟,等.辽中凹陷东营组高精度层序地层及沉积体系[J].西南石油大学学报:自然科学版,2011,33(2):43-50.LI Quan,LIN Changsong,WU Wei,et al.The characteristics of se⁃ quence stratigraphy and depositional systems of the Palaeogene Dongying Formation in Liaozhong Sag[J].Journal of Southwest Pe⁃ troleum University:Science & Technology Edition,2011,33(2):43-50.
-
[27] 刘海青.高柳斜坡带高精度层序地层及有利储层分布[J].特种油气藏,2018,25(6):77-82.LIU Haiqing.High-precision sequence stratigraphy and favorable reservoir distribution in Gaoliu slope zone[J].Special Oil & Gas Reservoirs,2018,25(6):77-82.
-
[28] 单敬福,张彬,赵忠军,等.复合辫状河道期次划分方法与沉积演化过程分析——以鄂尔多斯盆地苏里格气田西区苏X区块为例[J].沉积学报,2015,33(4):773-785.SHAN Jingfu,ZHANG Bin,ZHAO Zhongjun,et al.Single stage and sedimentary evolution process analysis of braided river:A Case from SuX block of western Sulige gas field in Ordos Basin [J].Acta Sedimentologica Sinica,2015,33(4):773-785.
-
[29] 姜在兴.沉积学[M].北京:石油工业出版社,2003:170-196.JIANG Zaixing.Sedimentology[M].Beijing:Petroleum Industry Press,2003:170-196.
-
[30] 张兴强,尹太举,宋亚开,等.叠覆式浅水三角洲储层结构分析——以东濮凹陷文79南断块沙二下亚段为例[J].断块油气田,2019,26(5):555-560.ZHANG Xingqiang,YIN Taiju,SONG Yakai,et al.Reservoir ar⁃ chitecture analysis of overlying shallow water delta:a case study of lower Member of Sha2 in south block of W79 in Dongpu Sag [J].Fault-Block Oil and Gas Field,2019,26(5):555-560.
-
[31] 陈欢庆,王珏,胡海燕,等.扇三角洲前缘沉积特征及对油藏有效开发的影响——以辽河西部凹陷某试验区于楼油层油藏为例[J].海洋地质与第四纪地质,2018,38(5):156-170.CHEN Huanqing,WANG Jue,HU Haiyan,et al.Depositional characteristics of fan delta deposits and their impacts to reservoir development-An example from Liaohe Basin[J].Marine Geology & Quaternary Geology,2018,38(5):156-170.
-
[32] 雒斌.马岭地区长81储层沉积微相的测井识别[J].国外测井技术,2018,39(5):48-50.LUO Bin.Logging identification of sedimentary microfacies of Chang81 reservoir in Maling area[J].World Well Logging Tech⁃ nology,2018,39(5):48-50.
-
[33] 赵欢欢.尼日尔三角洲OML64区块沉积微相研究及其砂体刻画[D].北京:中国地质大学(北京),2011.ZHAO Huanhuan.Study on sedimentary micro-facies and sand body in OML64 block,Niger Delta[D].Beijing:China University of Geosciences(Beijing),2011.
-
[34] 邓宏文,王红亮,祝永军,等.高分辨率层序地层学-原理及应用[M].北京:地质出版社,2002.DENG Hongwen,WANG Hongliang,ZHU Yongjun,et al.High resolution sequence stratigraphy-principles and applications[M].Beijing:Geological Publishing House,2002.
-
[35] 裘亦楠,薛叔浩,应凤祥,等.油气储层评价技术[M].北京:石油工业出版社,1997.QIU Yinan,XUE Shuhao,YING Fengxiang,et al.Evaluation tech⁃ niques of oil and gas reservoir[M].Beijing:Petroleum Industry Press,1997.
-
[36] 王永祥,孙广伯,黄薇,等.石油天然气控制储量计算方法:Q/SY 179—2007[S].北京:石油工业出版社,2008.WANG Yongxiang,SUN Guangbo,HUANG Wei,et al.Methods for petroleum probable reserves estimation:Q/SY 179-2007[S].Beijing:Petroleum Industry Press,2008.
-
[37] 陈旭,陈红汉,董玉文,等.地震沉积学研究方法评析[J].沉积与特提斯地质,2010,30(1):54-60. CHEN Xu,CHEN Honghan,DONG Yuwen,et al.Methods and ap⁃ plication of seismic sedimentology:An overview[J].Sedimentary Geology and Tethyan Geology,2010,30(1):54-60.
-
[38] 杜家元,丁琳,张向涛,等.珠江口盆地惠州凹陷西南部新近系岩性油气藏勘探思路与关键技术[J].石油实验地质,2017,39(6):858-864.DU Jiayuan,DING Lin,ZHANG Xiangtao,et al.Exploration approach and techniques for the Neogene lithologic reservoirs in the southwestern Huizhou Sag,Pearl River Mouth Basin[J].Petro⁃ leum Geology & Experiment,2017,39(6):858-864.
-
[39] 米立军,张向涛,丁琳,等.海上成熟探区中浅层岩性油气藏分布特点与勘探策略——以珠江口盆地惠州凹陷为例[J].中国石油勘探,2018,23(6):10-19.MI Lijun,ZHANG Xiangtao,DING Lin,et al.Distribution charac⁃ teristics and exploration strategy of middle-shallow lithologic res⁃ ervoirs in offshore mature exploration areas:a case study on Hui⁃ zhou sag in the Pearl River Mouth Basin[J].China Petroleum Ex⁃ ploration,2018,23(6):10-19.
-
[40] 梁立锋,张宏兵,刘秀娟,等.惠州某区薄储层反演技术研究及应用[J].河海大学学报:自然科学版,2017,45(3):230-234.LIANG Lifeng,ZHANG Hongbing,LIU Xiujuan,et al.Thin reser⁃ voir inversion technology in an area in Huizhou and its application [J].Journal of Hohai University:Natural Sciences,2017,45(3):230-234.
-
[41] 尹艳树,赵学思,王立鑫.一种基于多点地质统计的储层反演新方法[J].长江大学学报:自科版,2018,15(5):22-26.YIN Yanshu,ZHAO Xuesi,WANG Lixin.A new reservoir inver⁃ sion method based on multiple-point geostatistics[J].Journal of Yangtze University:Natural Science Edition,2018,15(5):22-26.
-
[42] 吴勇,聂凯轩,任金礼,等.拓频技术在砂体预测中的应用[J].石油地球物理勘探,46(增刊1):80-83.WU Yong,NIE Kaixuan,REN Jinli,et al.Frequency-extension in oil sand prediction[J].Oil Geophysical Prospecting,46(S1):80-83.
-
[43] 刘静静,刘震,齐宇,等.地震分频处理技术预测深水储集体 [J].石油学报,2016,37(1):80-87.LIU Jingjing,LIU Zhen,QI Yu,et al.Prediction of deep-water res⁃ ervoir by seiemic frequency division technology[J].Acta Petrolei Sinica,2016,37(1):80-87.
-
[44] 杨士明,潘晓慧,葛善良.利用地震分频属性预测薄砂岩储层——以塔里木盆地塔中隆起带顺9井区为例[J].石油天然气学报,2014,36(1):45-49.YANG Shiming,PAN Xiaohui,GE Shanliang.Predicting thin sandstone reservoir by using seismic separate frequency attributeBy taking wellblock Shun9 of Tazhong Uplift in Tarim Basin for example[J].Journal of Oil and Gas Technology,2014,36(1):45-49.
-
[45] 马世忠,何伟,王昭.基于地震分频技术的河道砂体精细刻画 [J].黑龙江科技大学学报,2015,25(4):411-416.MA Shizhong,HE Wei,WANG Zhao.Fine characterization of channel sand body based on seismic frequency dividing technique [J].Journal of Heilongjiang University of Science & Technology,2015,25(4):411-416.
-
[46] 陈东.地震拓频与属性降维在滩坝砂岩储层预测中的应用[J].长江大学学报:自科版,2015,12(14):26-28.CHEN Dong.The application of seismic frequency expansion and attribute reduction in estimating beach-bar sand reservoirs[J].Journal of Yangtze University:Natural Science Edition,2015,12(14):26-28.
-
[47] 王德英,于海波,王启明,等.渤海海域湖盆萎缩期浅水三角洲岩性油气藏差异成藏模式[J].东北石油大学学报,2018,42(3):16-25,112.WANG Deying,YU Haibo,WANG Qiming,et al.Differences of hydrocarbon accumulation models of extremely shallow water del⁃ ta in lacustrine basin shrinking period,Bohai sea[J].Journal of Northeast Petroleum University,2018,42(3):16-25,112.
-
[48] 曹忠祥,张宇,蔡攀,等.济阳坳陷精细勘探新成果与启示[J].中国石油勘探,2016,21(3):14-23.CAO Zhongxiang,ZHANG Yu,CAI Pan,et al.New achievements and recognitions of fine exploration in Jiyang depression[J].Chi⁃ na Petroleum Exploration,2016,21(3):14-23.
-
[49] 孟卫工,李晓光,刘宝鸿,等.辽河坳陷中浅层精细勘探做法与启示[J].中国石油勘探,2018,23(5):12-20.MENG Weigong,LI Xiaoguang,LIU Baohong,et al.Fine explora⁃ tion practice and enlightenment of middle and shallow reservoirs in Liaohe depression[J].China Petroleum Exploration,2018,23(5):12-20.
-
[50] 吴俊,白雨,余兴,等.玛湖凹陷南斜坡MH1井区百口泉组岩性油气藏成藏模式[J].新疆石油地质,2018,39(1):70-75.WU Jun,BAI Yu,YU Xing,et al.Hydrocarbon accumulation mod⁃ el of lithological reservoirs in Baikouquan Formation of Wellblock MH ⁃1 on the southern slope of Mahu sag[J].Xinjiang Petroleum Geology,2018,39(1):70-75.
-
[51] 高长海,彭浦,李本琼.不整合类型及其控油特征[J].岩性油气藏,2013,25(6):1-7.GAO Changhai,PENG Pu,LI Benqiong.Unconformity types and their constraints on hydrocarbon behavior[J].Lithologic Reser⁃ voirs,2013,25(6):1-7.
-
摘要
南苏门答腊盆地J区中新统进积三角洲成因砂体叠置样式及空间演化规律认识不清,制约了该区非构造油气藏的精细勘探。基于高精度成因地层分析,结合区域地质背景、岩石相类型、测井响应及地震特征,识别进积三角洲成因单元类型,根据其空间展布规律建立反映进积三角洲砂体结构的沉积模式,并提出三角洲砂体成因-结构分类方法和砂体叠置样式约束下的储层预测方法。研究区可识别出水下分流河道、河口坝、席状砂、分流河道间和前三角洲泥等5种成因单元。进积三角洲沉积初期发育单成因孤立砂体,可形成上倾尖灭岩性圈闭、多层薄砂反向断块-岩性圈闭;沉积中期以双成因叠加复合砂体为主、单成因孤立砂体为辅,可形成多层反向断块-岩性圈闭;沉积后期以多成因切叠复合砂体为主、双成因叠加复合砂体为辅,可形成多层复杂断块-岩性圈闭、块状地层不整合圈闭;从下到上呈单成因孤立-双成因叠加-多成因切叠砂体叠置样式。
Abstract
The detail exploration of non-structure hydrocarbon reservoirs in Miocene progradational delta in Block J of South Sumatra Basin is restricted by the unclear understanding of the superimposition patterns and spatial evolution law of sandbodies. Based on the analysis of the high-resolution sequence stratigraphy,regional geological setting,lithofacies,log- ging response,and seismic features,the genetic unit types of progradational delta are identified. A depositional model re- flecting the sandstone architectures of progradational delta is established according to their spatial distribution. The genet- ic-architecture sandbody classification and reservoir prediction methods restricted by the sandbody superimposition pat- terns are further proposed. The results show that five genetic unit types are identified in study area,including underwater distributary channel,mouth bar,sheet sand,distributary inter-channel and pre-delta mud in the deltaic depositional sys- tem. At early stage of progradational delta sedimentation,the isolated mono-genetic sandbodies were developed and the up- dip tip-out lithologic trap and multi-layered thin sand reverse block-lithologic trap formed. At the middle stage,the super- imposed bi-genetic sandbodies were mainly developed and followed by isolated mono-genetic sandbody,and multi-layered reverse block-lithologic trap formed. At the final stage,the multi-genetic incised superimposed sandbodies were mainly de- veloped and followed by bi-genetic sandbodies,and multilayer complex fault block-lithologic trap and block formation un- conformity trap formed.From bottom to top,the superimposed pattern shows as the isolated mono-genetic sandbody-super- imposed bi-genetic sandbodies-multi-genetic incised superimposed sandbodies.