-
油水相对渗透率综合反映了储层中油、水相的渗流规律,提供了一种表征多孔介质中两相流体流动特征的方法,是油田开发及油藏数值模拟技术中较重要的参数和热点研究问题[1-7]。目前,低渗透油藏油水相对渗透率的主要获取方法包括实验室估算[8-10]、理论模型预测[11-14] 和历史拟合法[15-17]。实验室估算是获取油水相对渗透率的最直接方法,主要采用的是稳态法和非稳态法。随着低渗透率油藏水驱开发研究的深入,非稳态法因其能更好地模拟实际储层得以开发而被广泛采用。非稳态法的主要理论基础是达西渗流规律和 BUCKLEY-LEVER⁃ ETT 一维水驱油方程,常用的实验数据处理方法包括 JBN 方法及考虑毛细管力、重力和非线性流动的改进的 JBN 方法[18-23],但均未考虑流动的非线性特征以及油水相间的渗流干扰现象。同时,实验测量低渗透油藏油水相对渗透率需消耗大量的实验测试时间和准确的实验数据的计量,对低渗透油藏的油水相对渗透率的实验估算难度较大。
-
油水相对渗透率的历史拟合方法是指将油藏数值模拟技术与岩心驱替实验技术相结合,利用岩心和流体的物性参数以及驱替实验数据计算油水相对渗透率的一种方法[24-30]。油水相对渗透率的历史拟合法不仅对低渗透油藏岩心的驱替实验提出了较高的要求,同时要求所采用的油水相对渗透率的理论模型能够反映低渗透油藏的油水渗流规律。因此,预测低渗透油藏的油水相对渗透率采用理论模型法[11-14,31-35]。
-
分形理论最初由 MANDELBROT 提出[36],并被广泛用于描述具有自相似性特征的复杂几何结构,天然多孔岩石已被证明具有分形特征[37-38]。目前,诸多学者应用分形理论预测多孔介质的绝对渗透率和相对渗透率[39-46],明确了经典的相对渗透率理论模型中参数的物理意义。相比中、高渗透油藏,低渗透油藏具有更细、更小的孔喉半径,受储层孔喉分布及地层油边界层效应的影响,流体在低渗透储层中的流动存在明显非线性渗流特征,油水两相渗流过程中存在较强烈的干扰现象。理论研究及物理实验结果表明,低渗透油藏中的流体渗流特征不再服从达西渗流理论,应用常规相渗理论模型计算低渗透油藏的油水相对渗透率必然产生较大的误差[47-51]。因此,建立低渗透油藏油水相对渗透率模型,明确油水相对渗透率的影响因素对认识低渗透油藏的油水两相渗流规律具有重要意义。
-
研究结果表明,低渗透油藏油水相对渗透率不仅是含水饱和度的函数,同时受储层孔隙结构、驱替压力和油水两相间的毛细管力的影响[52],但有关非线性渗流和油水相间渗流干扰对油水相对渗透率的影响还没有相关讨论。为此,笔者在多孔介质分形理论的基础上,提出了考虑非线性渗流特征和油水相间渗流干扰的新型的低渗透油藏油水相对渗透率理论模型,对模型计算结果与实验测试结果和经典的理论模型的计算结果进行了对比,研究孔隙结构、驱替压力、毛细管力、非线性渗流和相间干扰等因素对油水相对渗透率的影响,深化了低渗透油藏油水渗流规律认识。
-
1 分形理论
-
根据多孔介质分形理论,多孔介质被视为由一束弯曲毛细管束组成的。毛细管半径和弯曲长度具有自相似特征,可采用分形理论进行描述。取实际长度为 L 0(即最大毛细管半径对应的分形长度)、横截面积为 A 的正方形岩心,单元横截面积上的毛细管半径不小于r min的毛细管总数[40-43] 为:
-
根据(2)式得到不同含水饱和度下的水相和油相的分形维数分别为:
-
2 低渗透油藏油水相对渗透率理论模型
-
2.1 模型假设
-
模型假设条件为:①低渗透油藏由 N 根不等径的毛细管组成,且毛细管孔隙尺寸满足多孔介质的分形理论。②流体在毛细管内的流动符合牛顿流体流动特征。③水相为润湿相,油相为非润湿相。 ④水相和油相具有相同的静态边界层厚度。⑤考虑水相、油相的最小启动压力梯度。⑥水相、油相的非线性渗流不仅与驱替压力相关,同时与含水饱和度相关。⑦考虑油水相间的毛细管力作用,不考虑油水流动过程中重力作用和温度变化。
-
2.2 油水相对渗透率模型
-
流体在毛细管中的流动是由毛细管两端的外部压力、毛细管力和油水相最小启动压力共同作用下,则流体在单个毛细管中的水相、油相流量公式[51-52] 分别为:
-
f w,f o可以定义为相饱和度的函数,即
-
将(7)式、(12)式和(13)式代入到(10)式和 (11)式中,得到水相、油相流量公式的分形表征模型分别为:
-
根据毛细管渗流模型和多孔介质的分形理论,通过横截面积为 A 的多孔介质的水相、油相总流量分别为:
-
因此,根据(16)式和(17)式可得到水相、油相相对渗透率分别为:
-
将(20)式和(21)式代入到(18)式和(19)式中,并考虑束缚水和残余油,得到低渗透油藏水相、油相相对渗透率模型分别为:
-
其中:
-
其中:
-
(22)式和(24)式为基于多孔介质分形理论建立的低渗透油藏水相、油相相对渗透率模型,是通过水、油的相渗透率与储层绝对渗透率之间的关系建立的。该模型反映出流体通过低渗透油藏的非线性渗流特征、毛细管力、含水饱和度分布和储层孔隙结构对油水相对渗透率的影响。当流体的相对静态边界层厚度为 0 时,油水两相渗流干扰参数均为0,即不考虑流体边界层效应、油水两相的非线性渗流特征和毛细管力效应时,本文建立的模型即为基于达西渗流规律的油水相对渗透率分形模型[42]。
-
残余油条件下的水相相对渗透率:
-
其中:
-
束缚水条件下的油相相对渗透率:
-
其中:
-
因此,(22)式除以(27)式,得到归一化的水相相对渗透率模型为:
-
其中:
-
(24)式除以(29)式,得到归一化的油相相对渗透率模型为:
-
其中:
-
将(20)式和(21)式代入到(3)式和(4)式,得到:
-
(31)式和(34)式为归一化的水相、油相相对渗透率模型。从模型中可以看出,归一化的油水相对渗透率与油水两相非线性渗流指数相关,与边界层效应引起的非线性渗流无关。低渗透油藏归一化的油水相对渗透率是含水饱和度的函数,同时也与驱替压力、毛细管力、储层孔隙结构和油水两相的渗流干扰相关。
-
因此,当已知岩心水相、油相的最大相对渗透率情况下,即可根据(31)式和(34)式得到反映岩心渗流特征且在不同含水饱和度下的油水相对渗透率为:
-
3 参数敏感性分析
-
对于一低渗透多孔介质,给定其初始含油饱和度为0.8,束缚水饱和度为0.2,残余油饱和度为0.2。最小孔隙半径为 0.528 μm,最大孔隙半径为 315 μm,迂曲度分形维数为 1.2~1.8,孔隙分形维数为 1.1~1.5,平均毛细管力为 0.5~5.0 MPa,驱替压力梯度为 2.5~10 MPa/m,水相最小启动压力梯度为 0.012 MPa/m,油相最小启动压力梯度为 0.12 MPa/ m,水相非线性系数为15 m/MPa,油相非线性系数为 0.15~5 m/MPa,相对边界层厚度为 0.417。应用上述参数并根据油水相对渗透率模型(18)式和(19) 式研究孔隙结构、非线性渗流、驱替压力、毛细管力和油水渗流干扰参数等主控参数对油水相对渗透率曲线形态的影响。
-
3.1 迂曲度分形维数
-
迂曲度是影响油水两相渗流特征的重要参数,迂曲度分形维数表征了多孔介质中不同尺寸孔隙的弯曲程度。当 D T等于 1时,说明多孔介质是由多个直毛细管构成。D T 越大,表明孔隙越弯曲,孔隙结构越复杂,小孔隙半径的毛细管则显著增加(流体流经的实际距离越大)。取驱替压力梯度为 10 MPa/m,最小毛细管力为 0.05 MPa,水相、油相渗流干扰参数均为 0,孔隙分形维数为 1.5,根据(22)式和(24)式计算迂曲度分形维数分别为1.2,1.5和1.8 时的油水相对渗透率。
-
研究结果(图1)表明,多孔介质的迂曲度对油水相对渗透率的影响是显著的,随着迂曲度分形维数的增大,水相和油相相对渗透率减小。根据(7) 式可知,迂曲度分形维数越大,多孔介质的迂曲度越大,相同长度岩心的孔隙真实长度就越长,说明孔隙结构就越复杂,水相和油相的渗流阻力越大,导致水相、油相相对渗透率减小。低渗透油藏渗透率不仅在平面上,而且储层纵向上非均质性较严重,由于储层渗透率的非均质,导致迂曲度分布不同,储层的油水相对渗透率曲线的形态也不同。
-
图1 迂曲度分形维数对油水相对渗透率的影响
-
Fig.1 Influence of tortuosity fractal dimensions on oil-water relative permeability
-
3.2 孔隙分形维数
-
孔隙分形维数是反映多孔介质中不同尺寸孔隙的分布和非均质性对油水相对渗透率影响的重要参数。取驱替压力梯度为10 MPa/m,最小毛细管力为 0.05 MPa,迂曲度分形维数为 1.5,孔隙分形维数分别为 1.1,1.3 和 1.5。根据(22)式和(24)式,计算不同孔隙分形维数的相对渗透率并绘制曲线进行对比。从图2可知,随着孔隙分形维数的增大,油相、水相相对渗透率均增大。这是因为,对于给定的多孔介质,当最大孔隙半径与最小孔隙半径比一定时,根据(2)式,随着孔隙分形维数的增大,孔隙度增大,岩石有效渗流空间增大,渗流阻力减小,从而水相、油相相对渗透率增大;根据(3)式,随着孔隙分形维数的增大,岩石孔隙数量增多,油水两相的渗流通道增加,因此油水相对渗透率随着孔隙分形维数的增大而增大。
-
图2 孔隙分形维数对油水相对渗透率的影响
-
Fig.2 Influence of pore fractal dimensions on oil-water relative permeability
-
3.3 非线性渗流系数
-
油相非线性系数反映的是油相流动的非线性程度。根据(11)式油相非线性系数越小,油相渗流的非线性程度越严重,对油相相对渗透率的影响程度越大。取迂曲度分形维数为1.5,孔隙分形维数为 1.3,最小毛细管力为 0.05 MPa,驱替压力梯度为 10 MPa/ m,油相非线性系数分别为 0.15,0.2 和 5 m/ MPa。从图3 可知,油相非线性渗流系数对油相相对渗透率影响较大。随着油相非线性系数的减小,油相相对渗透率减小。
-
3.4 静态边界层厚度
-
流体的边界层厚度反映了流体与多孔介质内壁间分子作用力的大小程度。多孔介质渗透率越低,流体与孔隙内壁间分子作用力越大,边界层厚度越大;其次,静态边界层对渗流的主要影响体现在有效渗流半径的影响,对于相同毛细管半径,静态边界层厚度越大,有效渗流半径越小。迂曲度分形维数为1.5,孔隙分形维数为1.3,最小毛细管压力为 0.05 MPa,驱替压力梯度为 10 MPa/m,油相非线性系数为 0.2 m/MPa,静态边界层厚度分别为 0,0.2 和0.4。从图4可知,静态边界层厚度对油相相对渗透率影响较大,对水相相对渗透率的影响较小,可忽略不计;随边界层厚度的增大,油相相对渗透率减小。当静态边界层厚度为 0 时,即不考虑流体边界层效应时,油相的有效渗流能力增大,油相相对渗透率增大。
-
图3 油相非线性渗流系数对油水相对渗透率的影响
-
Fig.3 Influence of nonlinear percolation coefficient of oil phase on oil-water relative permeability
-
图4 静态边界层厚度对油水相对渗透率的影响
-
Fig.4 Influence of thickness of boundary layer on oil-water relative permeability
-
3.5 毛细管力
-
毛细管力对油水相对渗透率具有较大的影响,且初期影响较大,在高含水饱和度阶段影响较小。当驱替压力梯度为 10 MPa/m,迂曲度分形维数为 2.0,孔隙分形维数为1.0时,对比研究了毛细管力分别为 0.05,0.5 和 1.0 MPa 时的油水相对渗透率曲线形态。由图5 可以看出,毛细管力对油相相对渗透率影响较大,对水相相对渗透率的影响较小。在相同含水饱和度条件下,随着毛细管力的增大,油相相对渗透率增大;其次,在高含水饱和度时,毛细管力对油相对渗透率的影响较小。当低渗透油藏为水湿条件时,毛细管力不仅是水相流动的动力,而且为水驱油提供动力,在相对渗透率曲线上表现为油相渗流的动力。因此,进行低渗透油藏水驱开发时,应提高水驱波及面积,充分发挥毛细管力的驱油作用,从而提高水驱采收率。
-
图5 毛细管力对油水相对渗透率的影响
-
Fig.5 Influence of capillary pressure on oil-water relative permeability
-
3.6 驱替压力梯度
-
当迂曲度分形维数为1.5,孔隙结构分形维数为 1.3,最小毛细管压力为 0.05 MPa,相对静态边界层厚度为 0.2,驱替压力梯度分别为 2.5,5.0和 10 MPa/ m时,结果(图6)表明,驱替压力梯度对水相相对渗透率的影响较小,对油相的相对渗透率影响较大。在相同含水饱和度条件下,随驱替压力梯度增加,油相相对渗透率逐渐增加;当驱替压力梯度增加到一定程度后,油相相对渗透率曲线不再发生变化。根据(19)式可知,当边界层效应不能被忽略时,边界层效应对油相的渗流影响较大,提高驱替压力将克服边界层效应的影响,提高油相的渗流能力,油相相对渗透率曲线上翘。
-
图6 驱替压力梯度对油水相对渗透率曲线的影响
-
Fig.6 Influence of displacement pressure gradient on oil-water relative permeability
-
在低渗透油藏开发过程中,平面上驱替压力的分布是不一致的,存在非线性渗流区和拟线性渗流区,即平面上不同渗流区域油相相对渗透率曲线形态是不同的;随低渗透油藏开发的进行,驱替压力梯度不断变化,在同一渗流区域内在不同的开发阶段油相相对渗透率曲线也是不同的。因此,低渗透油藏的油水相对渗透率具有动态变化特征。
-
3.7 水相、油相渗流干扰参数
-
渗流干扰系数反映油水两相流体在流动过程中相间的干扰程度,即相的分布特征。水相渗流干扰系数描述为水相渗流过程中油相对水相的干扰程度,而水相对油相的干扰程度被描述为油相渗流干扰系数。应用(12)式和(13)式计算不同干扰参数值对应的水相和油相渗流干扰系数变化(图7)。以水相干扰系数为例,当岩心含水饱和度为0时,仅存在油相,油、水相间不存在干扰;当岩心含水饱和度为1时,仅存在水相,油相不存在对水相流动的干扰。在油水两相渗流区间时,水、油相间的渗流干扰程度随含水饱和度的增加而降低。在相同的含水饱和度条件下,渗流干扰系数随干扰参数的增加而增加,即渗流干扰参数越大油水相间的渗流干扰程度越严重。
-
图7 不同渗流干扰参数下水相和油相干扰系数随含水饱和度的变化
-
Fig.7 Changes of interference coefficients of water and oil phase with water saturation under different percolation interference parameters
-
迂曲度分形维数为1.5,孔隙分形维数为1.3,最小毛细管力为 0.05 MPa,驱替压力梯度为 10 MPa/ m,不考虑油相非线性渗流,水相渗流干扰参数分别为 0,0.4 和 0.8,油相渗流干扰参数分别为 0,0.4 和1.0,分别研究了水相、油相的渗流干扰参数对油水相对渗透率的影响。由图8 可知,水相渗流干扰参数对水相相对渗透率的影响较大,随水相干扰参数的增加水相相对渗透率降低;油相渗流干扰参数对油相相对渗透率的影响较大,油相相对渗透率随油相干扰参数的增加而降低。
-
不论是低渗透油藏还是中、高渗透油藏,油水两相渗流过程中均存在相间渗流干扰现象,影响剩余油的分布。相比于中、高渗透油藏,低渗透油藏具有更细、更小的孔喉半径,油藏注入水驱替较小孔喉空间的地层油的过程中,需要建立较大的驱替压差从而克服较大的渗流阻力,地层油对水相的渗流干扰也较大。
-
图8 水相、油相渗流干扰系数对油水相对渗透率的影响
-
Fig.8 Influence of percolation interference parameters of water and oil phase on oil-water relative permeability
-
4 实例应用
-
为验证新建模型的可靠性,选用胜利油区某区块的 2 块低渗透油藏岩心开展油水相对渗透率实验,并用本文建立的归一化相对渗透率理论模型 (31)式和(33)式与实验测试结果和经典相对渗透率理论模型计算结果进行对比。岩心样品取自该区块的沙二段下亚段,岩性为细砂岩。用模拟地层水饱和岩心,注入水为 KCl 溶液,矿化度为 30 000 mg/L,模拟地层水密度为 1.018 3 g/cm3,模拟地层水黏度为0.576 3 mPa·s,注入速率为0.5 mL/min,测试温度为 50℃。实验使用的是 3 号白油,密度为 0.792 g/cm3,黏度为 2.15 mPa·s,测试温度为 50℃。岩心 Sam1 的长度为 5.23 cm,直径为 2.53 cm,孔隙度为 0.151,空气渗透率为 1.21 mD;岩心 Sam2 的长度为 4.27 cm,直径为 2.48 cm,孔隙度为 0.123,空气渗透率为 0.232 mD;孔隙分形维数和迂曲度分形维数分别由(2)式和(8)式计算所得。
-
图9为 2块低渗透油藏岩心样品的油水相对渗透率曲线,其中岩心Sam1的油水相对渗透率曲线由非稳态法测试得到,岩心Sam2的油水相对渗透率曲线由稳态法测试得到。岩心 Sam1的残余油饱和度为 0.22,束缚水饱和度为 0.457,束缚水下的油相渗透率为 0.35 mD,残余油下的水相渗透率为 0.191 mD;岩心 Sam2 的残余油饱和度为 0.382,束缚水饱和度为 0.327,束缚水下的油相渗透率为 0.004 5 mD,残余油下的水相渗透率为0.001 5 mD。
-
图9 低渗透油藏2块岩心样品的油水相对渗透率曲线
-
Fig.9 Oil-water relative permeability curve of two core samples in low permeability reservoir
-
从图10可知,应用本文建立的理论模型计算的相对渗透率与实验测试得到相对渗透率吻合程度较高;与其他 2 个经典的油水相对渗透率理论模型的计算结果对比,无论水相相对渗透率是通过非稳态法还是稳态法得到的实验结果,本文建立的水相相对渗透率模型计算结果与实验得到的水相对渗透率均非常接近。BROOKS-COREY 模型和 CO⁃ REY 模型预测的水相相对渗透率与实验结果相差甚远。因此,不推荐使用 BROOKS-COREY 模型和 COREY 模型预测低渗透油藏水相相对渗透率。相比于 BROOKS-COREY 模型和 COREY 模型预测油相相对渗透率,本文建立的油相相对渗透率模型与使用稳态法测试的油相对渗透率实验结果更接近,仅在高含水饱和度阶段(S w> 0.5)存在较小的误差(岩心 Sam2)。而通过非稳态法测试的油相相对渗透率实验结果(岩心 Sam1),在低含水饱和度阶段 BROOKS-COREY 模型和 COREY 模型预测油相相对渗透率与实验结果对比存在一定的误差;在高含水饱和度阶段更接近,本文建立的模型预测的油相相对渗透率与实验结果对比存在一定的误差。
-
图10 新建模型计算的油水相对渗透率与实验测试结果及经典相对渗透率理论模型计算结果对比
-
Fig.10 Comparison of oil-water relative permeability calculated by new model and classic theory model as well as experiment results
-
5 结论
-
在多孔介质分形理论的基础上,建立适用于低渗透油藏的油水相对渗透率模型,考虑低渗透油藏非线性渗流特征和油水相的渗流干扰现象。低渗透油藏的油水相对渗透率不仅是含水饱和度的函数,也与孔隙结构、迂曲度、驱替压力梯度、毛细管力、非线性渗流系数和油水相渗流干扰相关。对于低渗透储层,随着迂曲度分形维数的增大,油相、水相相对渗透率减小;油相、水相相对渗透率随孔隙分形维数的增大而增大;可以忽略毛细管力对水相相对渗透率的影响,随毛细管力增大,油相相对渗透率逐渐减小。
-
非线性渗流对低渗透油藏油水相对渗透率影响较大。油相非线性系数对油相相对渗透率影响较大。随油相非线性系数的减小,油相相对渗透率减小。静态边界层厚度对油相相对渗透率影响较大,对水相相对渗透率的影响可忽略不计;随静态边界层厚度的增大,油相相对渗透率减小。油、水相的渗流干扰对油水相对渗透率有较大影响,随水相干扰程度的增加水相相对渗透率降低,油相相对渗透率随油相干扰程度的增加而降低。
-
驱替压力对水相相对渗透率无影响,对油相相对渗透率有一定影响。随着驱替压力的增加,油相相对渗透率增加。低渗透油藏注水开发过程中,在不同渗流区域及在同一渗流区域内的不同开发阶段油相相对渗透率曲线是不同的,油相对渗透率具有动态变化特征。
-
本文模型预测的油水相对渗透率与实验测试结果的吻合程度较高,水相相对渗透率的预测结果明显优于经典的理论模型,可以准确地反映低渗透油藏的油水相对渗透率变化特征。低渗透油藏油水相对渗透率受储层孔隙结构、开发条件和渗流特征等因素的综合影响,本文建立的适用于低渗透油藏的油水相对渗透率模型中的参数具有明确的物理意义,研究结果为认识低渗透油藏油水渗流规律、井网和井距的优化设计提供了理论指导。
-
符号解释
-
a ——水相渗流分形系数;
-
a s ——残余油条件下的水相渗流分形系数;
-
A ——分形多孔介质的横截面积,m2;
-
b ——油相渗流分形系数;
-
b s ——束缚水条件下的油相渗流分形系数;
-
c ——水、油相间的毛细管力系数;
-
c o——油相通过多孔介质的非线性渗流系数,106 m/ MPa;
-
c w——水相通过多孔介质的非线性渗流系数,106 m/ MPa;
-
d E——欧几里德维数,二维空间条件下 d E=2,三维空间条件下d E=3;
-
D f ——孔隙截面大小分布的分形维数,在二维平面上有 0 < D f < 2,三维空间上有0 < D f < 3;
-
D f,o——油相面分形维数;
-
D f,o,swc——束缚水条件下的油相分形维数;
-
D f,w——水相面分形维数;
-
D f,w,sor ——残余油条件下的水相分形维数;
-
D T——多孔介质孔道迂曲度的分形维数,表示多孔介质中毛细管道弯曲程度,当 D T=1 时,毛细管是直的,二维空间条件下 1 < D T < 2,三维空间条件下 1 < D T < 3,其值越大表示毛细管越弯曲;
-
f o——油相渗流干扰系数,小数;
-
f w ——水相渗流干扰系数,小数;
-
G o——油相通过多孔介质的最小启动压力梯度,10-6 MPa/m;
-
G w——水相通过多孔介质的最小启动压力梯度,10-6 MPa/m;
-
K ro——油相相对渗透率,小数;
-
K ro ′ ——归一化的油相相对渗透率,小数;
-
——归一化的油相相对渗透率,小数;
-
K ro,swc——束缚水下的油相相对渗透率,小数;
-
K rw——水相相对渗透率,小数;
-
K rw ′ ——归一化的水相相对渗透率,小数;
-
——水相相对渗透率,小数;
-
K rw,sor ——残余油下的水相相对渗透率,小数;
-
L 0——多孔介质的视长度,m;
-
L t(r)——弯曲毛细管的实际长度,m;
-
N ——毛细管总数;
-
p ——驱替压力,10-6 MPa;
-
p c——毛细管力,10-6 MPa;
-
p cow——水、油相间的毛细管力,10-6 MPa;
-
——平均毛细管力,10-6 MPa;
-
q o——油相通过单个毛细管的流量,m3 /s;
-
q w——水相通过单个毛细管的流量,m3 /s;
-
Q o——油相通过单位横截面积时的流速,m3 /s;
-
Q w——水相通过单位横截面积时的流速,m3 /s;
-
r ——多孔介质孔隙半径,m;
-
——多孔介质的平均毛细管半径,m;
-
r max,o——油相最大有效渗流半径,m;
-
r max,w——水相最大有效渗流半径,m;
-
r min,o——油相最小有效渗流半径,m;
-
r min,w——水相最小有效渗流半径,m;
-
r o——油相有效渗流半径,m;
-
r w——水相有效渗流半径,m;
-
S o——含油饱和度,小数;
-
S or ——残余油饱和度,小数;
-
S w——含水饱和度,小数;
-
S wc——束缚水饱和度,小数;
-
S wN——归一化的含水饱和度,小数;
-
γo——油相干扰参数;
-
γw——水相干扰参数;
-
δ0——边界层厚度与毛细管半径的比值,即静态边界层厚度,小数;
-
θ——油水两相的润湿角,(°);
-
μo——地层油黏度,Pa·s;
-
μw ——地层水黏度,Pa·s;
-
σ——油水两相表面张力,N/m;
-
——多孔介质的平均迂曲度;
-
ϕ——多孔介质的面孔隙度,小数。
-
参考文献
-
[1] 王曙光,赵国忠,余碧君.大庆油田油水相对渗透率统计规律及其应用[J].石油学报,2005,26(3):78-81,85. WANG Shuguang,ZHAO Guozhong,YU Bijun.Statistical regular⁃ ity of oil-water relative permeability in Daqing Oil Field[J].Acta Petrolei Sinica,2005,26(3):78-81,85.
-
[2] 张继成,宋考平.相对渗透率特征曲线及其应用[J].石油学报,2007,28(4):104-107. ZHANG Jicheng,SONG Kaoping.Eigen curve of relative permea⁃ bility and its application[J].Acta Petrolei Sinica,2007,28(4):104-107.
-
[3] 秦亚东,吴永彬,刘鹏程,等.温度对稠油油藏油水相对渗透率的影响规律的实验研究[J].油气地质与采收率,2018,25(4):121-126.QIN Yadong,WU Yongbin,LIU Pengcheng,et al.Experimental study on effect of temperature on oil-water relative permeability in heavy oil reservoir[J].Petroleum Geology and Recovery Effi⁃ ciency,2018,25(4):121-126.
-
[4] 黄迎松.特高含水阶段油藏水驱规律研究[J].特种油气藏,2018,25(1):95-99.HUANG Yingsong.Waterflooding performance of oil reservoir in ultra-high water-cut stage[J].Special Oil & Gas Reservoirs,2018,25(1):95-99.
-
[5] 郭粉转,刘滨,荆冠军,等.水平缝发育低—超低渗透油藏注水开发特征[J].特种油气藏,2018,25(1):108-111.GUO Fenzhuan,LIU Bin,JING Guanjun,et al.Waterflooding per⁃ formance of low-ultra-low permeability reservoir with horizontal fractures[J].Special Oil & Gas Reservoirs,2018,25(1):108-111.
-
[6] 唐海,何娟,荣元帅,等.塔河断溶体油藏典型断溶体注水驱替规律及剩余油分布特征[J].油气地质与采收率,2018,25(3):95-100.TANG Hai,HE Juan,RONG Yuanshuai,et al.Study on water drive law and characteristics of remaining oil distribution of typi⁃ cal fault-karst in fault-karst reservoirs,Tahe Oilfield[J].Petro⁃ leum Geology and Recovery Efficiency,2018,25(3):95-100.
-
[7] 苏海波,于金彪,张同伍,等.低渗透储层水驱油渗流阻力特征 [J].油气地质与采收率,2018,25(1):117-121.SU Haibo,YU Jinbiao,ZHANG Tongwu,et al.Features of seepage resistance during water flooding in low permeability reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(1):117-121.
-
[8] JONES S C,ROSZELLE W O.Graphical Techniques for determin⁃ ing relative permeability from displacement experiments[J].Jour⁃ nal of Petroleum Technology,1978,30(5):807-817.
-
[9] TOTH J,BODI T,SZUCS P,et al.Convenient formulae for deter⁃ mination of relative permeability from unsteady-state fluid dis⁃ placements in core plugs[J].Journal of Petroleum Science & Engi⁃ neering,2002,36(1):33-44.
-
[10] JOHNSON E F,BOSSLER D P,Naumann V D.Calculation of rela⁃ tive permeability from displacement experiments[J].Trans Aime,1959,216:370-372.
-
[11] PURCELL W R.Capillary pressures-their measurement using mercury and the calculation of permeability therefrom[J].Journal of Petroleum Technology,1949,1(2):39-48.
-
[12] BURDINE N T.Relative permeability calculations from pore size distribution data[J].Journal of Petroleum Technology,1953,5(3):71-78.
-
[13] COREY A T.The interrelation between gas and oil relative perme⁃ abilities[J].Producers Monthly,1954,19(1):38-41.
-
[14] BROOKS R H,COREY A T.Properties of porous media affecting fluid flow[J].Journal of the Irrigation and Drainage Division,1966,92(2):61-90.
-
[15] FIROOZABADI A,AZIZ K.Relative permeabilities from centri⁃ fuge data[J].Journal of Canadian Petroleum Technology,1991,30(5):33-42.
-
[16] QADEER S,DEHGHANI K,OGBE D O,et al.Correcting oil-wa⁃ ter relative permeability data for capillary end effect in displace⁃ ment experiments[C].SPE 17423,1988.
-
[17] CIVAN F,DONALDSON E C.Relative permeability from un⁃ steady-state displacements:an analytical interpretation[C].SPE 16200,1987.
-
[18] 桓冠仁,沈平平.一种非稳态油水相对渗透率曲线计算方法 [J].石油勘探与开发,1982,9(2):52-58. HUAN Guanren,SHEN Pingping.A new unsteady-state method for calculating relative permeability[J].Petroleum Exploration and Development,1982,9(2):52-58.
-
[19] 李克文,沈平平,秦同洛.考虑毛管压力时计算油水相对渗透率的新方法[J].力学与实践,1994,16(2):46-48.LI Kewen,SHEN Pingping,QIN Tongluo.A new method for calcu⁃ lating the relative permeability of oil and water considering capil⁃ lary pressure[J].Mechanics in Engineering,1994,16(2):46-48.
-
[20] 宋付权,刘慈群.低渗油藏的两相相对渗透率计算方法[J].西安石油学院学报:自然科学版,2000,15(1):10-12,20.SONG Fuquan,LIU Ciqun.A method for calculating the relative permeabilities of water and oil in low permeability reservoirs[J].Journal of Xi’an Petroleum Institute:Natural Science Edition,2000,15(1):10-12,20.
-
[21] 邓英尔,王允诚,刘慈群,等.低渗非达西渗流相对渗透率计算方法及特征[J].西南石油学院学报,2000,22(3):34-36.DENG Ying’er,WANG Yuncheng,LIU Ciqun,et al.Calculating relative permeability of non-Darcy flow in low permeability media [J].Journal of Southwest Petroleum Institute,2000,22(3):34-36.
-
[22] 吴克柳,李相方,樊兆琪,等.低渗-特低渗油藏非稳态油水相对渗透率计算模型[J].中国石油大学学报:自然科学版,2013,37(6):76-81.WU Keliu,LI Xiangfang,FAN Zhaoqi,et al.Unsteady-state mod⁃ el for calculating oil-water relative permeability for reservoirs with low and ultra-low permeability[J].Journal of China Universi⁃ ty of Petroleum:Edition of Natural Science,2013,37(6):76-81.
-
[23] REN Xiaoxia,LI Aifen,FU Shuaishi,et al.Experimental study on the oil-water relative permeability relationship for tight sandstone considering the nonlinear seepage characteristics[J].Journal of Petroleum Science and Engineering,2018,161:409-416.
-
[24] KRUGER W.Determining areal permeability distribution by calcu⁃ lations[J].Journal of Petroleum Technology,1961,13(7):691-696.
-
[25] ARCHER J,WONG S.Use of a reservoir simulator to interpret lab⁃ oratory waterflood data[J].Society of Petroleum Engineers Jour⁃ nal,1973,13(6):343-347.
-
[26] SIGMUND P M,MCCAFFERY F E.An improved unsteady-state procedure for determing the relative permeability characteristics of heterogeneous porous media[C].SPE 6720,1979.
-
[27] SUN X,MOHANTY K.Estimation of flow functions during drain⁃ age using genetic algorithm[J].SPE Journal,2005,10(4):449-457.
-
[28] SCHEMBRE J M,KOVSCEK A R.Estimation of dynamic relative permeability and capillary pressure from countercurrent imbibi⁃ tion experiments[J].Transport in Porous Media,2006,65(1):31-51.
-
[29] LI Heng,YANG Daoyong,ARHUOMA M A S.Relative permeabil⁃ ity estimation from displacement experiment using EnKF method [C].Calgary:International Symposium of Society of Petroleum En⁃ gineers,2010.
-
[30] LOEVE D,WILSCHUT F,HANEA R H,et al.Simultaneous deter⁃ mination of relative permeability and capillary pressure curves by assisted history matching several scal experiments[C].Austin:So⁃ ciety of Core Analysis Symposium,2011.
-
[31] CHIERICI G L.Novel relations for drainage and imbibition rela⁃tive permeabilities[J].Society of Petroleum Engineers Journal,1984,24(3):275-276.
-
[32] ALPAK F O,LAKE L W,EMBID S M.Validation of a modified Carman-Kozeny equation to model two-phase relative permeabili⁃ ties[J].SPE-56479-MS,1999.
-
[33] FAYERS F J,FOAKES A P,LIN C Y,et al.An improved three phase flow model incorporating compositional variance[J].SPE59313-MS,2000.
-
[34] BABCHIN A,BENTSEN R,FAYBISHENKO B,et al.On the cap⁃ illary pressure function in porous media based on relative permea⁃ bilities of two immiscible fluids:application of capillary bundle models and validation using experimental data[J].Advances in Colloid and Interface Science,2015,233:176-185.
-
[35] 吴伟.基于测井和统计分析的油水相对渗透率新模型[J].特种油气藏,2018,25(4):82-86.WU Wei.Innovative models for oil/water relative permeability based on logging data and statistical analysis[J].Special Oil & Gas Reservoirs,2018,25(4):82-86.
-
[36] MANDELBROT Benoit B.The fractal geometry of nature[J].Amer⁃ ican Journal of Physics,1983,51(3):286.
-
[37] KATZ A J,THOMPSON A H.Fractal sandstone pores:implica⁃ tions for conductivity and pore formation[J].Physical Review Let⁃ ters,1985,54(12):1 325-1 328.
-
[38] KROHN C E.Fractal measurements of sandstones shales and car⁃ bonates[J].Journal of Geophysical Research,1988,93(B4):3 297-3 305.
-
[39] HE C Z,HUA M Q.Fractal geometry description of reservoir pore structure[J].Oil and Gas Geology,1998,19(1):15-23.
-
[40] YU Boming,CHENG Ping.A fractal permeability model for bi-dis⁃ persed porous media[J].International Journal of Heat & Mass Transfer,2002,45(14):2 983-2 993.
-
[41] YU Boming.Advances of fractal analysis of transport properties for porous media[J].Advances in Mechanics,2003,33(3):333-346.
-
[42] YU Boming,LI Jianhua,LI Zhihua,et al.Permeabilities of unsatu⁃ rated fractal porous media[J].International Journal of Multiphase Flow,2003,29(10):1 625-1 642.
-
[43] YU Boming,LI Jianhua.A geometry model for tortuosity of flow path in porous media[J].Chinese Physics Letters,2004,21(8):1 569-1 571.
-
[44] LI Kewen.Analytical derivation of Brooks-Corey type capillary pressure models using fractal geometry and evaluation of rock het⁃ erogeneity[J].Journal of Petroleum Science & Engineering,2010,73(1/2):20-26.
-
[45] ZANG Shiming,SUN Yeheng,WU Xiaodong,et al.A comprehen⁃ sive analysis of the seepage characters of non-newtonian fluids in fractal porous media[J].Journal of Porous Media,2014,17(12):1 031-1 044.
-
[46] WANG Fuyong,JIAO Liang,ZHAO Jiuyu,et al.A more general⁃ ized model for relative permeability prediction in unsaturated frac⁃ tal porous media[J].Journal of Natural Gas Science and Engineer⁃ ing,2019,67:82-92.
-
[47] ЛМИ,LI D.The physical chemistry mechanism of reservoir[M].Beijing:Petroleum Industry Press,1987.
-
[48] 黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998:12.HUANG Yanzhang.Percolating flow mechanism of low permeabili⁃ ty reservoir[M].Beijing:Petroleum Industry Press,1998:12.
-
[49] 徐绍良,岳湘安,侯吉瑞,等.低边界层流体对低渗透油藏渗流特性的影响[J].西安石油大学学报:自然科学版,2007,22(2):26-28. XU Shaoliang,YUE Xiang’an,HOU Jirui,et al.Influence of boundary-layer fluid on the seepage characteristic of low-permea⁃ bility reservoir[J].Journal of Xi’an Shiyou University:Natural Science Edition,2007,22(2):26-28.
-
[50] 时宇,杨正明,黄延章.低渗透储层非线性渗流模型研究[J].石油学报,2009,30(5):731-734.SHI Yu,YANG Zhengming,HUANG Yanzhang.Study on non-lin⁃ ear seepage flow model for low-permeability reservoir[J].Acta Petrolei Sinica,2009,30(5):731-734.
-
[51] 苏海波.反映动态启动压力梯度的低渗透油藏渗流模型[J].西南石油大学学报:自然科学版,2015,37(6):105-111.SU Haibo.A flow model reflecting dynamic kick-off pressure gra⁃ dient for low permeability reservoirs[J].Journal of Southwest Pe⁃ troleum University:Science & Technology Edition,2015,37(6):105-111.
-
[52] 苏海波,王晓宏,张世明,等.低渗透油藏油水相对渗透率模型的分形表征方法[J].东北石油大学学报,2019,43(5):88-94.SU Haibo,WANG Xiaohong,ZHANG Shiming,et al.Fractal char⁃ acterization method of oil-water relative permeability model in low permeability reservoirs[J].Journal of Northeast Petroleum University,2019,43(5):88-94.
-
摘要
油水相对渗透率是研究低渗透油藏注水开发特征的重要参数之一,明确油水相对渗透率的影响因素对认识低渗透油藏的渗流规律有重要意义。在多孔介质分形理论的基础上,建立低渗透油藏油水相对渗透率模型和归一化的油水相对渗透率模型。新建立的油水相对渗透率模型是含水饱和度、驱替压力、毛细管力的函数,可以综合反映储层孔隙结构、非线性渗流和渗流干扰对油水相对渗透率的影响。理论分析结果表明:岩心孔隙结构越复杂,油水相对渗透率越低;驱替压力对油相相对渗透率有影响,表明在注水开发过程中相对渗透率存在动态变化特征;非线性渗流对油相相对渗透率的影响较大,而对水相的影响可忽略不计,随着油相非线性系数的增大油相相对渗透率减小;渗流干扰对油水相对渗透率均存在影响,油水相对渗透率随着干扰系数的增大而降低。为了验证模型的可靠性,将模型预测的油水相对渗透率与实验测试结果进行了对比,其结果表明吻合程度高。与经典相对渗透率理论模型预测结果的对比表明,新建模型对水相相对渗透率的预测结果优于经典理论模型的预测结果。
Abstract
Oil-water relative permeability is an important parameter for studying the characteristics of water flooding devel- opment in low permeability reservoirs. It is of great practical significance to understand the percolation law in the low per- meability reservoir by determining the influencing factors of oil-water relative permeability. Based on the fractal theory of porous media,a mathematical model of oil-water relative permeability in the low permeability reservoirs and a normalized oil-water relative permeability model are established respectively. The established oil-water relative permeability model is a function of water saturation,displacement pressure,and capillary pressure,which can comprehensively reflect the influ- ence of reservoir pore structure,nonlinear percolation and percolation interference on oil-water relative permeability. The theoretical analysis result shows that the more complex core pore structure is,the lower oil-water relative permeability is; the displacement pressure influences relative permeability of oil phase,which shows that there is a dynamic change of rela- tive permeability in the process of water flooding. Nonlinear percolation has a great influence on the relative permeability of oil phase,but the influence on the relative permeability of water phase may be ignored. The relative permeability of oil phase decreases with the increase of the nonlinear coefficient of oil phase. The percolation interference influences the rela- tive permeability of the oil and water phase which decreases with the increase of the interference coefficient. To verify the reliability of the model,the oil-water relative permeability predicted by the model is compared with the experimental re- sults. The predicted oil-water relative permeability of the model is highly consistent with the experimental results. In addi- tion,the comparison with the prediction results of the classical relative permeability theoretical model shows that the predic- tion results of the new model for the relative permeability of water phase are better than those of the classical theoretical models.