-
中国拥有世界上最多的页岩气储量,约为134× 1012 m3,目前已有 13 个省份正在开发页岩气,以满足日益增长的能源需求[1]。页岩储层具有低孔低渗透的特点,其成功开发依赖水平钻井、多级水力压裂完井、创新压裂等组合措施。通过向储层注入压裂液(清水、降阻剂、线性胶等),产生水力压裂缝,沟通天然裂缝,形成裂缝网络,可为页岩气的产出创造高效渗流通道[2]。然而,受复杂的地质条件和现有的水力压裂技术影响,中国每口页岩气井对压裂液的需求量为 1.0×104~2.4×104 m3,而压裂液中 90%以上为清水[3]。水力压裂形成的裂缝网络可能为压裂液的滞留提供了有利赋存空间和扩散途径,加之页岩气藏超低含水饱和度特性和水相强滞留效应,导致大部分压裂液(约 70%~95%)滞留于地层[4],通常会造成储层损害,如水相圈闭损害,削弱水力压裂的增产效果[5-6]。
-
水相圈闭损害机理主要为水相滞留和水相自吸[7],影响水相滞留作用的主要因素包括储层孔隙结构、流体性质和储层压力等;而由于页岩具有黏土矿物含量高、可溶盐含量高、天然裂缝和页理发育等特点,页岩储层水相自吸行为与水-岩作用关系密切。目前,页岩自吸过程中水-岩作用的研究主要集中在页岩黏土矿物水化及产生的水合力[8]、高可溶盐含量诱发的离子扩散行为[9] 和渗透水化应力的表征[10],以及对天然裂缝扩展机理的解释[11] 和自吸诱发微裂缝现象的分析描述等方面[12]。黑色页岩富含有机质、黄铁矿等还原环境沉积产物,在地表富氧条件下易被风化、氧化,破坏岩层结构并改变岩体力学性质[13];ANDERSON通过实验揭示了过氧化氢溶解延长组湖相页岩中的有机质,进而提高其纳米孔体积的积极作用[14];CHEN等基于页岩-氧化液相互作用实验,揭示了氧化作用对有机质、黄铁矿等的溶蚀效果,并利用压汞、氮气吸附和场发射电镜等手段表征了过氧化氢对龙马溪组海相页岩孔隙结构的改变[15]。XU等研究指出,压裂液中的溶解氧可能引起储层黄铁矿的氧化溶蚀,这对解释压裂液返排液的化学性质有重要意义[16]。YOU 等利用页岩柱塞样开展了蒸馏水、氧化液自吸对比实验,证实氧化溶蚀作用诱发页岩孔缝溶扩效应,提升了岩样自吸势[17]。MAKHANOV 等实验指出,润湿性影响的毛细管自吸不是主导页岩自吸的唯一动力,页岩裂缝网络、黏土矿物和渗透扩散均对页岩自吸有显著影响[18-19]。然而,氧化溶蚀对页岩岩石性质(如润湿性、可溶盐析出)的影响,同时氧化过程中孔隙结构的动态变化,均可能影响页岩水相自吸行为。
-
为此,以四川盆地龙马溪组页岩露头为研究对象,开展页岩大尺度岩样依次自吸蒸馏水、氧化液实验,通过页岩柱塞岩样氧化处理前后自吸蒸馏水对比实验,揭示氧化液自吸行为和特征,分析氧化溶蚀作用对页岩自吸行为的作用机理,并讨论氧化液对页岩储层水相圈闭损害自解除的重要意义。
-
1 实验器材与方法
-
1.1 实验器材
-
实验岩样选自四川盆地下志留统龙马溪组海相页岩,大尺度岩样尺寸为 10.0 cm×15.0 cm×30.0 cm,柱塞岩样包括基块和裂缝 2 类,其参数见表1。其沉积环境为半深海-深海缺氧环境,岩性以炭质页岩和硅质页岩为主[20]。该页岩样品中石英平均含量为 46.3%,长石为 8.0%,黄铁矿为 2.6%,碳酸盐矿物为 10.7%,黏土矿物为 32.4%;黏土矿物以伊利石和伊/蒙混层为主,伊利石含量为 46.0%,伊/蒙混层为 42.7%,高岭石为 11.3%;TOC 值为 3.73%~5.25%;易氧化组分包括黄铁矿、碳酸盐矿物和有机质[15,17]。
-
实验所用氧化液为蒸馏水和质量分数为 15% 氧化剂FDO-1配制而成。
-
1.2 实验方法
-
水力压裂形成的复杂裂缝网络包括2种裂缝类型:支撑剂与压裂液填充的人工压裂缝(初级裂缝)、仅有压裂液填充的天然裂缝(次级裂缝)。水力压裂及随后的焖井过程,压裂液往往从初级裂缝向次级裂缝以及基质孔隙扩散分布。
-
为模拟压裂液从压裂缝自吸进入次级裂缝网络的过程,制备页岩大尺度岩样,在室温条件下依次端面接触(浸没深度为 1 cm)自吸蒸馏水、氧化液实验。
-
为模拟压裂液从裂缝自吸进入基质孔隙的过程,通过全浸泡逆流自吸的方式开展自吸实验,同时利用页岩平行/垂直层理柱塞岩样氧化前后自吸蒸馏水对比实验,揭示氧化作用对页岩自吸行为的影响。其氧化处理方式为15%氧化液全浸泡72 h。
-
自吸过程持续对岩样表面进行拍照,利用自吸天平测量自吸量,通过计算机软件自动实时采集柱塞岩样自吸数据[5-6],自吸时间为240 h。每一次自吸前均利用烘箱在60℃恒温条件下将岩样干燥48 h。
-
利用德国 Kruss液滴形状分析仪测试基块柱塞岩样端面氧化溶蚀前后水润湿接触角。
-
2 实验结果
-
2.1 大尺度岩样自吸蒸馏水、氧化液对比
-
由大尺度岩样自吸蒸馏水的过程(图1a)可以看出,水相优先沿裂缝自吸,同时向裂缝附近基质孔隙扩散;自吸过程伴随裂缝扩展和新裂缝的产生,扩大了水相的自吸分布范围;此外,自 96 h 至 240 h内,陆续有白色析出物出现。由同一岩样自吸质量分数为15%氧化液过程(图1b)发现,大量白色可溶盐沿裂缝析出,并伴有更显著的裂缝扩展现象,对应缝网密度更大,分析图1b中 0和 240 h时大尺度岩样表面白色可溶盐的分布范围可以发现,氧化液自吸分布范围变大。
-
2.2 柱塞岩样氧化前后水相自吸行为对比
-
为进一步定量分析氧化液对页岩自吸行为的影响,开展了页岩柱塞岩样氧化前后的水相自吸对比实验。首先,考虑氧化液中 85% 为蒸馏水,为排除蒸馏水与岩样相互作用对自吸行为的影响,选取基块柱塞岩样 H-1 作为对照组,进行了 3 次重复自吸蒸馏水实验,且每次实验之前均对岩样进行低温烘干。实验结果(图2)表明,自吸量和自吸势(自吸量与时间平方根比值)基本没有变化,表明蒸馏水对此次研究使用的页岩岩样水相自吸行为几乎无影响。然后,选取页岩平行/垂直层理的柱塞岩样 (包括无肉眼可见缝、人造贯穿缝)开展氧化液浸泡处理前后自吸蒸馏水实验,对比分析其水相自吸行为的变化。观察图3 可知,氧化后各柱塞岩样截面的表面颜色明显改变,由灰白色转变为淡黄色;而平行层理(H-3)与垂直层理(V-2)裂缝柱塞岩样在氧化后均出现了裂缝扩展行为。由自吸量随时间变化曲线(图4)可知,氧化前平行、垂直层理基块柱塞岩样水相自吸量分别为 0.425 0和 0.446 1 g,而氧化后增至 0.490 0和 0.497 8 g;裂缝柱塞岩样水相自吸量分别为 0.991 2 和 0.950 0 g,氧化后增加到 1.088 6和1.066 9 g。氧化后所有岩样的自吸量均高于氧化前,且基块柱塞岩样自吸量增长率比裂缝柱塞岩样显著;裂缝柱塞岩样 H-3与 V-2自吸量增长率分别为 9.8% 和 12.3%,基块柱塞岩样 H-2 与 V-1 分别为 15.3% 和 11.6%。这 4 个岩样自吸量随时间变化曲线最终均趋于稳定,表明岩样含水饱和度达到最高,氧化作用扩大了页岩水相赋存空间。
-
图1 自吸蒸馏水、氧化液后不同时间大尺度岩样表面形态变化
-
Fig.1 Shape changes of shale samples surfaces during imbibition of distilled water and oxidizing solution
-
由自吸量与时间平方根的关系(图5)可以发现,4 块柱塞岩样氧化后自吸量均高于氧化前。利用自吸势可以反映岩样对液体的自吸能力这一特性[17-19],可对岩样氧化前后自吸能力变化进一步表征。H-2和V-1基块柱塞岩样自吸量与时间平方根呈一次线性函数特征,其自吸势提高率分别为 8.26%和2.32%;由于裂缝柱塞岩样自吸量与时间平方根关系呈二次函数特征,通过对拟合的二次函数求导,获得自吸势的一次函数关系式(图6)。裂缝柱塞岩样 H-3 和 V-2 氧化前后斜率曲线分别在时间平方根为 2.57和 2.67时出现交点,以此将曲线分为 2 个阶段。由于实际条件下岩样自吸趋于平衡时,自吸势最终趋于0。在第一阶段,氧化后斜率始终高于氧化前,分析图6纵坐标的截距(岩样水相初始自吸势)发现,氧化液使裂缝柱塞岩样 H-3 初始自吸势提高了 22.5%,使裂缝柱塞岩样 V-2 初始自吸势提高了33.3%;而在第二阶段,氧化后斜率逐渐低于氧化前,分析图6横坐标的截距(岩样水相自吸趋于平衡所需的时间)发现,氧化使裂缝柱塞岩样 H-3自吸平衡时间缩短13.68%,使裂缝柱塞岩样V-2 缩短 20.23%。分析认为,氧化液加速液体自吸填充页岩内孔隙空间,使岩样相对提前达到最高含水饱和度。
-
图2 页岩柱塞基块岩样H-1蒸馏水自吸量与时间及时间平方根关系
-
Fig.2 Relationship between imbibition masses and time/time square root of shale plug with matrix(H-1)
-
图3 氧化液浸泡处理前后页岩柱塞岩样表面形态变化
-
Fig.3 Shape changes of shale plug surface before and after oxidation
-
图4 页岩柱塞岩样氧化前后自吸量与时间的关系
-
Fig.4 Relationship between imbibition masses and time of shale plugs before and after oxidation
-
图5 页岩柱塞岩样氧化前后自吸量与时间平方根的关系
-
Fig.5 Relationship between imbibition masses and time square root of shale plug before and after oxidation
-
图6 页岩裂缝柱塞岩样自吸势与时间平方根关系
-
Fig.6 Relationship between spontaneous imbibition potential and time square root of shale plugs with fractures
-
3 讨论与分析
-
3.1 氧化溶蚀提高页岩水相自吸速率机理
-
基块岩样氧化后自吸势均大于氧化前,通过对裂缝岩样的自吸势进一步处理分析发现,岩样氧化后自吸饱和时间缩短,即水相自吸速率提高。针对氧化溶蚀对自吸路径的改善,从自吸动力的角度探究了氧化溶蚀提高页岩水相自吸速率的机理。
-
3.1.1 改善基质孔径分布
-
黏土矿物粒间孔和有机质纳米孔是页岩基质中最常见的孔隙类型[21]。按照孔径尺寸可划分为微孔(r ≥0.75 μm)和纳米孔(r <0.75 μm),页岩以纳米孔为主[22]。页岩有机质孔孔径为 10~900 nm,无机质粒内孔孔径为 50~1 000 nm,粒间孔孔径为 10~20 μm[23]。RUPPERT等通过小角散射实验指出,水可以侵入页岩孔径为 10 nm~10 μm 的绝大多数孔隙[24];KUILA 等实验发现,页岩饱水法孔隙度与氮气测孔隙度十分接近,认为水几乎可以侵入页岩所有纳米孔[25]。页岩水相自吸过程中,将微纳米孔近似看作毛细管,水相渗吸的动量平衡由毛细管力、黏性力、重力和惯性力共同决定[26-27],其表达式为:
-
在毛细管力驱动的自吸过程中,黏性力、重力和惯性力均是阻力。考虑到实际毛细管自吸特征和自吸阶段的划分,忽略惯性力和重力作用时,水相渗吸的动量平衡式可表达为:
-
变形后可简化为经典的LW方程[28]:
-
进一步计算可得出水相自吸距离对时间的导数,即自吸速率的表达式:
-
由于岩样氧化前后自吸流体均为蒸馏水,假设润湿接触角、流体界面张力和流体黏度保持不变,则自吸速率与时间平方根呈一次线性函数关系。基于 CHEN 等研究不同时间(0~240 h)氧化后通过压汞法测定的页岩岩样孔径分布数据[15],对模型的参数进行敏感性分析(图7),证实页岩氧化溶蚀作用下孔径的增加对页岩基块柱塞岩样自吸速率的提高具有显著影响。
-
图7 孔径变化对水相自吸速率的影响
-
Fig.7 Effect of pore size on water imbibition rate
-
3.1.2 增强裂缝面水润湿性
-
对于页岩裂缝中的流体自吸,因裂缝通常为微米级,且水相在裂缝中流速较小,故忽略惯性力。考虑裂缝和孔隙中流体流动的差异,由(1)式推导出裂缝中水相自吸的动量平衡方程为:
-
为方便计算,取裂缝与水平面倾角为0°,可得出裂缝中水相自吸距离和自吸速率的表达式分别为:
-
页岩裂缝柱塞岩样氧化前后自吸流体均为蒸馏水,故认为流体界面张力和流体黏度保持不变,则润湿性和裂缝宽度与自吸速率的平方呈正相关。
-
基于模型参数敏感性分析,图8 揭示了裂缝面的水润湿性对自吸速率的影响。张晓怡通过测量黏土矿物含量相近、有机质差异较大的龙马溪组页岩样品的水润湿接触角发现,有机质含量为2.5%的页岩水润湿接触角为 17.6°,而有机质含量为 4.1% 的页岩水润湿接触角高达 53.8° [29];ROYCHAUD⁃ HURI等也发现页岩水润湿接触角随页岩 TOC值的增加而增大[30-31]。测量基块柱塞岩样H-2和V-1蒸馏水润湿接触角(图9),发现氧化后岩样水润湿接触角分别降低 9.8°和 9.1°,表明页岩裂缝面疏水有机质溶蚀(图10)后,其亲水性增强,平均自吸速率分别提高6.3%和6.0%。
-
图8 裂缝面水润湿性变化对水相自吸速率的影响
-
Fig.8 Effect of wettability of fracture surface on water imbibition rate
-
图9 页岩氧化前后水润湿接触角变化
-
Fig.9 Changes of water-phase contact angle of fracture surface before and after oxidation of shale samples
-
3.2 氧化溶蚀作用增加页岩水相自吸量机理
-
氧化液浸泡处理后岩样水相自吸量显著提高,裂缝柱塞岩样自吸量增长率为9.8%~12.3%,而基块柱塞岩样自吸量增长率相对更高,为11.6%~15.3%; 自吸氧化液较蒸馏水分布范围扩大。通过分析模型参数的敏感性发现(图11,图12),孔径(润湿性) 改变对提高基质孔隙(裂缝)自吸距离影响显著。氧化溶蚀作用诱发大量微米级裂缝,氮气吸附测试表明岩样氧化24 h后纳米级孔隙平均孔径从4.9 nm 增至 6.9 nm,压汞数据显示孔隙体积从 0.015 cm3 /g 增至 0.079 cm3 /g[15];YOU 等压汞法测试了经足量 30% 和 15% 氧化液处理 48 h 的川东龙马溪组露头页岩岩样,发现岩样孔隙度分别提高了 40.1% 和 35.4%[17]。本文选用的龙马溪组页岩岩样,在经 10%~15%过氧化氢处理10 d后,碳酸盐矿物和黄铁矿几乎完全溶解,同时有机质去除率高达87.5%[15]。分析认为,氧化溶蚀对页岩的物质净移除作用,扩大了水相赋存空间,增加了水相自吸量。
-
另外,页岩储层可溶盐含量高,部分非常规储层地层水矿化度达到入井压裂液矿化度的 6 倍之多,美国Bakken地区页岩气井返排液中的可溶固相达200 000 mL/L[33]。蒸馏水自吸过程大量白色可溶盐沿页岩裂缝析出,而氧化液自吸过程加剧了可溶盐的溶解析出(图1),同时在微观尺度下,也发现大量白色可溶盐析出物附着在岩样表面[15,17]。滞留在页岩孔缝中的可溶盐溶解析出,可能为水相赋存提供了空间。
-
图10 扫描电镜下页岩氧化前后矿物溶蚀情况原位观察(据文献[32]修改)
-
Fig.10 FESEM situ observation of mineral dissolution before and after oxidation(Revised from Reference[32])
-
图11 孔径变化对水相自吸距离的影响
-
Fig.11 Effect of pore size on water imbibition distance
-
图12 裂缝面润湿性变化对水相自吸距离的影响
-
Fig.12 Effect of wettability of fracture surface on water imbibition distance
-
此外,页岩属于烃源岩,烃源岩中绝大部分有机质与黏土矿物结合在一起,高比表面积的黏土矿物决定了85%的有机质富集,一般以有机黏粒复合体形式存在[34-35]。BURFORD 等研究表明,土壤有机质复合体除去被黏土复合的有机质后,黏土表面积会增加[36]。氧化液自吸进入页岩内部,与有机黏粒复合体反应,有机质被氧化分解,增大了黏土矿物与水接触面积,促进黏土矿物晶层通过渗透扩散作用吸收水分子,触发黏土矿物水化,导致页岩过度吸水[34,37-38]。
-
3.3 氧化溶蚀促进裂缝水相圈闭损害自解除机理
-
页岩气井体积压裂规模越大,压裂缝沟通天然裂缝后形成的缝网面积越大,吸水量越多[39]。在页岩气井水力压裂过程中,压裂液在正压差、毛细管力和黏滞力作用下渗吸进入储层深处,往往导致裂缝面附近的含水饱和度较高(图13a);而返排过程中,随未支撑裂缝开度的减小和返排压差的逐渐降低,若无法克服以毛细管力和黏滞力为主的返排阻力,水相将无法排除而永久滞留裂缝(图13b),进而降低裂缝的气体传质能力,影响气体传输[40-41]。
-
图13 氧化压裂液促使储层水相圈闭自解除示意
-
Fig.13 Diagram of self-release of water phase trap damage promoted by oxidative fracturing fluid in shale gas reservoirs
-
有学者认为,焖井期间的水相渗吸扩散,促使页岩裂缝水相圈闭自解除:焖井过程中毛细管力主导的自吸行为,使裂缝中滞留的水相向基质孔隙 (主要是水润湿的孔隙和黏土孔隙)中扩散分布,从而降低裂缝内水相饱和度,增加裂缝的相对渗透率,表现为产气量增加伴随产水量减少[42]。水相圈闭自解除主要机理为微裂缝扩张和压裂液扩散,其主要控制因素为水相自吸作用下微裂纹新增能力和微纳米孔隙液体吸收能力[43]。
-
考虑页岩氧化对加速滞留压裂液扩散分布、转换水相赋存位置的积极作用,以及协同水化作用诱发的孔缝溶扩效应[44-46],提出通过使用氧化压裂液促进页岩储层水相圈闭自解除思路:通过氧化性压裂液沿主裂缝网络渗吸进入次级裂缝和页岩基质孔隙,氧化溶蚀黄铁矿、有机质等组分,协同水化作用诱发大量溶蚀孔缝并促进可溶盐析出,为水相扩散分布提供空间;在此基础上,氧化溶蚀作用加速压裂液扩散分布,从而快速有效降低主裂缝的含水饱和度,使裂缝水相圈闭损害得以自解除,释放更多裂缝空间,改善页岩气的产出通道。此外,氧化压裂液沿裂缝面向基质孔隙的扩散分布,将扩大氧化诱发孔缝溶扩范围(图13c,13d),从而实现水相圈闭解除与储层纳米尺度基质改造并举的效果,进一步提升页岩气体传输能力。
-
4 结论
-
氧化溶蚀作用对页岩组分的物质净移除效应,扩大了水相赋存空间,增加了自吸量;氧化溶蚀作用改善页岩基质孔径分布、增强裂缝面水润湿性和诱发溶蚀孔缝,降低自吸前缘含水饱和度,协同提高了水相自吸速率,加速了水相扩散分布;氧化溶蚀作用转换页岩中水相赋存位置、加速滞留压裂液扩散分布,促进页岩气藏裂缝网络水相圈闭自解除,并协同水化作用诱发孔缝溶扩,对提升页岩气体传输能力具有重要意义。
-
符号解释
-
g ——重力加速度,m/s2;
-
h ——自吸距离,cm;
-
h′——自吸距离对时间的导数;
-
hf ——裂缝中流体自吸距离,cm;
-
h′f ——裂缝中流体自吸距离对时间的导数;
-
hp ——孔隙中流体自吸距离,cm;
-
h′p ——孔隙中流体自吸距离对时间的导数;
-
r ——孔隙半径,nm;
-
t ——自吸时间,h;
-
w ——缝宽,μm;
-
γ——流体界面张力,mN/m;
-
θ——润湿接触角,(°);
-
μ——流体黏度,mPa·s;
-
ζ——毛细管或裂缝与水平面的倾角,(°);
-
ρ——自吸流体密度,g/cm3 。
-
参考文献
-
[1] QIU J.Environmental science.China to spend billions cleaning up groundwater[J].Science,2011,334(6057):745.
-
[2] WARPINSKI N R,MAYERHOFER M J,VINCENT M C,et al.Stimulating unconventional reservoirs:maximizing network growth while optimizing fracture conductivity[J].Journal of Canadian Pe⁃ troleum Technology,2009,48(10):39-51.
-
[3] WAND D F,GAO S K,DONG D D,et al.A primary discussion on challenges for exploration and development of shale gas resources in china[J].Natural Gas Industry,2013,33(1):8-17.
-
[4] ENGELDER T,CATHLES L M,BRYNDZIA L T.The fate of resid⁃ ual treatment water in gas shale[J].Journal of Unconvertional Oil and Gas Resources,2014,7(1):33-48.
-
[5] 康毅力,张晓怡,游利军,等.页岩气藏自然返排缓解水相圈闭损害实验研究[J].天然气地球科学,2017,28(6):819-827.KANG Yili,ZHANG Xiaoyi,YOU Lijun,et al.The experimental research on spontaneous flowback relieving aqueous phase trap⁃ ping damage in shale gas reservoirs[J].Natural Gas Geoscience,2017,28(6):819-827.
-
[6] 康毅力,陈强,游利军,等.页岩气藏水相圈闭损害实验研究及控制对策——以四川盆地东部龙马溪组露头页岩为例[J].油气地质与采收率,2014,21(6):87-91.KANG Yili,CHEN Qiang,YOU Lijun,et al.Laboratory investiga⁃ tion of water phase trapping damage in shale gas reservoir-a case of Longmaxi shale in the eastern Sichuan Basin[J].Petroleum Ge⁃ ology and Recovery Efficiency,2014,21(6):87-91.
-
[7] BENNION D B,BIETZ R F,THOMAS F B,et al.Reductions in the productivity of oil and low permeability gas reservoirs due to aqueous phase trapping[J].Journal of Canadian Petroleum Tech⁃ nology,1994,33(9):45-54.
-
[8] 康毅力,杨斌,李相臣,等.页岩水化微观作用力定量表征及工程应用[J].石油勘探与开发,2017,44(2):301-308.KANG Yili,YANG Bin,LI Xiangchen,et al.Quantitative charac⁃ terization of micro forces in shale hydration and field applications [J].Petroleum Exploration and Development,2017,44(2):301-308.
-
[9] YANG Liu,GE Hongkui,SHI Xian,et al.Experimental and nu⁃ merical study on the relationship between water imbibition and salt ion diffusion in fractured shale reservoirs[J].Journal of Natu⁃ ral Gas Science and Engineering,2017,38:283-297.
-
[10] NEUZIL C E,PROVOST A M.Recent experimental data may point to a greater role for osmotic pressures in the subsurface[J].Water Resources Research,2009,45(3):3 410-3 424.
-
[11] LIANG Lixi,XIONG Jian,LIU Xiangjun.Experimental study on crack propagation in shale formations considering hydration and wettability[J].Journal of Natural Gas Science and Engineering,2015,23:492-499.
-
[12] 康毅力,陈强,游利军,等.钻井液作用下页岩破裂失稳行为试验[J].中国石油大学学报:自然科学版,2016,40(4):81-89.KANG Yili,CHEN Qiang,YOU Lijun,et al.Laboratory studies of shale fracturing behaviors with rock-drilling fluid interactions[J].Journal of China University of Petroleum:Edition of Natural Sci⁃ ences,2016,40(4):81-89.
-
[13] 巫锡勇,廖昕,赵思远,等.黑色页岩水岩化学作用实验研究 [J].地球学报,2014,35(5):573-581.WU Xiyong,LIAO Xin,ZHAO Siyuan,et al.Experimental study of the water-rock chemical reaction in black shale[J].Acta Geo⁃ scientica Sinica,2014,35(5):573-581.
-
[14] ANDERSON J U.An improved pretreatment for mineralogical analysis of simples containing organic matter[J].Clays and Clay Minerals,1963,10(3):380-388.
-
[15] CHEN Qiang,KANG Yili,YOU Lijun,et al.Change in composi⁃ tion and pore structure of Longmaxi black shale during oxidative [J].Internal Journal of Coal Geology,2017,172:95-111.
-
[16] XU M,BINAZADEH M,ZOLFAGHARI A,et al.Effects of dis⁃ solved oxygen on water imbibition in gas shales[J].Energy and Fuels,2018,32(4):4 695-4 704.
-
[17] YOU Lijun,CHENG Qiuyang,KANG Yili,et al.Imbibition of oxi⁃ dative fluid into organic-rich shale:implication for oxidizing stim⁃ ulation[J].Energy and Fuel,2018,32(10):10 457-10 468.
-
[18] MAKHANOV K,DEHGHANPOUR H,KURU E.An experimental study of spontaneous imbibition in Horn River shales[C].SPE 162250,2012.
-
[19] 游利军,程秋洋,康毅力,等.页岩裂缝网络水相自吸试验[J].中国石油大学学报:自然科学版,2018,42(1):82-89.YOU Lijun,CHENG Qiuyang,KANG Yili,et al.Experimental study on spontaneous water imbibition in fracture networks of shale rocks[J].Journal of China University of Petroleum:Edition of Natural Sciences,2018,42(1):82-89.
-
[20] LIANG Chao,JIANG Zaixing,YANG Yiting,et al.Shale lithofa⁃ cies and reservoir space of the Wufeng-Longmaxi Formation,Si⁃ chuan Basin,China[J].Petroleum Exploration and Development,2012,39(6):736-743.
-
[21] 葛明娜,庞飞,包书景.贵州遵义五峰组—龙马溪组页岩微观孔隙特征及其对含气性控制——以安页1井为例[J].石油实验地质,2019,41(1):23-30.GE Mingna,PANG Fei,BAO Shujing.Micro pore characteristics of Wufeng-Longmaxi shale and their control on gas content:a case study of well Anye1 in Zunyi area,Guizhou Province[J].Pe⁃ troleum Geology & Experiment,2019,41(1):23-30.
-
[22] 王濡岳,尹帅,龚大建,等.下寒武统页岩孔隙结构与分形特征 [J].断块油气田,2018,25(5):589-592.WANG Ruyue,YIN Shuai,GONG Dajian,et al.Pore structure and fractal characteristics of Lower Cambrian shales[J].Fault-Block Oil and Gas Field,2018,25(5):589-592.
-
[23] JU Binshan,WU Dan.Experimental study on the pore characteris⁃ tics of shale rocks in Zhanhua depression[J].Journal of Petroleum Science and Engineering,2016,146:121-128.
-
[24] RUPPERT L F,SAKUROVS R,BLACH T P,et al.A USANS/SANS study of the accessibility of pores in the barnett shale to methane and water[J].Energy and Fuels,2013,27(2):772-779.
-
[25] KUILA U,MCCARTY D K,DERKOWSKI A,et al.Total porosity measurement in gas shales by the water immersion porosimetry(WIP)method[J].Fuel,2014,117:1 115-1 129.
-
[26] ZHMUD B V,TIBERG F,HALLSTENSSON K.Dynamics of capil⁃ lary rise[J].Journal of Colloid and Interface Science,2000,228(2):263-269.
-
[27] FRIES N,DREYER M.An analytic solution of capillary rise re⁃ strained by gravity[J].Journal of Colloid and Interface Science,2008,320(1):259-263.
-
[28] WASHBURN E W.The dynamics of capillary flow[J].Physical Re⁃ view,1921,17(3):273-283.
-
[29] 张晓怡.页岩气层水相圈闭损害实验评价方法研究[D].成都:西南石油大学,2018.ZHANG Xiaoyi.Experimental evaluation method for aqueous phase trapping damage in shale gas reservoir[D].Chengdu:South⁃ west Petroleum University,2018.
-
[30] ROYCHAUDHURI B,TSOTSIS T,JESSEN K.An experimental investigation of spontaneous imbibition in gas shales[J].Journal of Petroleum Science and Engineering,2013,111:87-97.
-
[31] YASSIN M R,BEGUM M,DEHGHANPOUR H.Organic shale wettability and its relationship to other petrophysical properties:a Duvernay case study[J].International Journal Coal Geology,2017,169:74-91.
-
[32] HULL K L,JACOBI D,ABOUSLEIMAN Y.Oxidative kerogen degradation:A potential approach to hydraulic fracturing in un⁃ conventionals[J].Energy and Fuels,2019,33:4 758-4 766.
-
[33] FAKCHAROENPHOL P,TORCUK M,KAZEMI H,et al.Effect of shut-in time on gas flow rate in hydraulic fractured shale reser⁃ voirs[J].Journal of Natural Gas Science and Engineering,2016,32:109-121.
-
[34] 蔡进功,宋明水,卢飞龙,等.烃源岩中有机黏粒复合体——天然的生烃母质[J].海洋地质和第四纪地质,2013,33(3):123-131.CAI Jingong,SONG Mingshui,LU Feilong,et al.Organo-clay complexes in source rocks-a natural material for hydrocarbon generation[J].Marine Geology & Quaternary Geology,2013,33(3):123-131.
-
[35] 黄东,段勇,李育聪,等.淡水湖相页岩油气有机碳含量下限研究——以四川盆地侏罗系大安寨段为例[J].中国石油勘探,2018,23(6):38-45.HUANG Dong,DUAN Yong,LI Yucong,et al.Study on the TOC lower limit of shale oil and gas of freshwater lake facies:a case study on the Jurassic Da’anzhai member in the Sichuan Basin[J].China Petroleum Exploration,2018,23(6):38-45.
-
[36] BURFORD J R,DESHPANDE T L,GREENLAND D J,et al.In⁃ fluence of organic materials on the determination of the specific surface areas of soils[J].European Journal of Soil Science,1964,15(2):192-201.
-
[37] 游利军,徐洁明,康毅力,等.考虑氧化作用的富有机质页岩吸附水量[J].西南石油大学学报:自然科学版,2019,41(6):106-116.YOU Lijun,XU Jieming,KANG Yili,et al.Water adsorption of or⁃ ganic shale with oxidation[J].Journal of southwest petroleum uni⁃ versity:Edition of Natural Science,2019,41(6):106-116.
-
[38] YANG Liu,GE Hongkui,SHI Xian,et al.The effect of microstruc⁃ ture and rock mineralogy on water imbibition characteristics in tight reservoirs[J].Journal of Natural Gas Science and Engineer⁃ ing,2016,34:1 461-1 471.
-
[39] 赵猛,范锡彦.页岩气缝网优化的数值模拟[J].大庆石油地质与开发,2019,38(4):167-174.ZHAO Meng,FAN Xiyan.Optimized numerical simulation of the fracture network in the shale gas[J].Petroleum Geology & Oil⁃ field Development in Daqing,2019,38(4):167-174.
-
[40] 马莉,张驰,刘敦卿,等.涪陵页岩气田压裂后闷井工艺适应性初探[J].特种油气藏,2019,26(1):147-151.MA Li,ZHANG Chi,LIU Dunqing,et al.Preliminary study on the well-soaking adaptability after fracturing in Fuling shale gasfield [J].Special Oil & Gas Reservoirs,2019,26(1):147-151.
-
[41] 王妍妍,刘华,王卫红,等.基于返排产水数据的页岩气井压裂效果评价方法[J].油气地质与采收率,2019,26(4):125-131.WANG Yanyan,LIU Hua,WANG Weihong,et al.Evaluation of shale gas well fracturing performance based on flowback water production data[J].Petroleum Geology and Recovery Efficiency,2019,26(4):125-131.
-
[42] 张涛,李相方,杨立峰,等.关井时机对页岩气井返排率和产能的影响[J].天然气工业,2017,37(8):48-60.ZHANG Tao,LI Xiangfang,YANG Lifeng,et al.Effect of shut-in timing on flowback rate and productivity of shale gas wells[J].Natural Gas Industry,2017,37(8):48-60.
-
[43] MENG Mianmo,GE Hongkui,JI Wenming,et al.Research on the auto-removal mechanism of shale aqueous phase trapping using low field nuclear magnetic resonance technique[J].Journal of Pe⁃ troleum Science and Engineering,2016,137:63-73.
-
[44] 康毅力,豆联栋,游利军,等.富有机质页岩增产改造氧化液浸泡离子溶出行为[J].天然气地球科学,2018,29(7):990-996.KANG Yili,DOU Liandong,YOU Lijun,et al.Lonic dissolution behaviors of organic shale soaked in oxidizing liquid for reservoirs stimulation[J].Natural Gas Geoscience,2018,29(7):990-996.
-
[45] 游利军,程秋洋,康毅力,等.氧化液作用下富有机质页岩裂缝应力敏感性[J].油气地质与采收率,2018,25(4):79-85.YOU Lijun,CHENG Qiuyang,KANG Yili,et al.Fracture stress sensitivity of organic-rich shale under the action of oxidation fluid [J].Petroleum Geology and Recovery Efficiency,2018,25(4):79-85.
-
[46] 游利军,周洋,康毅力,等.氧化性入井液对富有机质页岩渗透率的影响[J].油气藏评价与开发,2020,10(1):56-63.YOU Lijun,ZHOU Yang,KANG Yili,et al.Effect of oxidizing woking fluid on permeability of organic-rich shale[J].Reservoir Evaluation and Development,2020,10(1):56-63.
-
摘要
页岩气藏水力压裂需将大量含溶解氧的水基压裂液泵入地层,但返排率却普遍低于30%,分析水相自吸机理对解释压裂液滤失分布行为具有重要作用。富有机质页岩沉积于缺氧还原环境,在富氧条件下易发生氧化反应,进而影响水相自吸行为。为此,选取四川盆地龙马溪组页岩露头样品,开展大尺度岩样先后自吸蒸馏水、氧化液实验,以及基块、裂缝柱塞岩样氧化前后水相自吸对比实验。氧化液加速微裂缝扩展和新裂缝产生,促进更多可溶盐沿着裂缝析出,水相分布范围较蒸馏水更大。氧化前平行、垂直层理基块柱塞岩样自吸量分别为0.4250和0.4461 g,而氧化后增加到 0.4900 和 0.4978 g,对应的裂缝柱塞岩样自吸量分别为 0.9912 和 0.9500 g,氧化后增加到 1.0886和1.0669 g。氧化溶蚀作用使基块柱塞岩样自吸量增长11.6%~15.3%,自吸势提高2.32%~8.26%;裂缝柱塞岩样自吸量增长 9.8%~12.3%,自吸势提高 22.5%~33.3%,且自吸平衡时间缩短 13.68%~20.23%。氧化溶蚀作用对页岩组分的物质净移除效应,扩大了水相赋存空间的同时改善了基质孔隙半径分布、增强裂缝面水润湿性、诱发裂缝萌生与扩展对应降低自吸前缘饱和度,协同作用加速了水相扩散分布并增加了自吸距离。
Abstract
A large amount of water-based fracturing fluid containing dissolved oxygen needs to be pumped into the forma- tion for hydraulic fracturing in shale gas reservoirs,but the flowback rate of fracturing fluid is generally lower than 30%. The analysis on water imbibition mechanism plays an important role in interpreting the distribution behavior of fracturing fluid leak-off. The organic-rich shale deposited in the hypoxic reduction environment is prone to oxidation reaction under the oxygen-rich condition,however,the effect of oxidation dissolution on the imbibition behavior is still unclear. The shale outcrop samples from Longmaxi Formation in Sichuan Basin were selected in this study,then the experiments of spontane- ous imbibition of distilled water and oxidative fluid were carried out in large-scale shale samples successively. And the spontaneous imbibition of distilled water into shale plug samples were performed,exploring the change in water imbibition behaviors in the plugs before and after the treatment of oxidative fluid. The results showed that compared with distilled wa- ter,oxidative fluid accelerates the propagation of microfractures and generation of new fractures,promoting more soluble salt to separate out along the microfractures,and showing a larger distribution range of water phase. The imbibed water masses of shale plugs with parallel and perpendicular bedding are 0.4250 g and 0.4461 g before oxidation,and they are in- creased to 0.4900 g and 0.4978 g respectively after oxidation. Similarly,the imbibed water masses of shale plugs with frac- tures are 0.9912 g and 0.9500 g,and they are increased to 1.0886 g and 1.0669 g respectively after oxidation. The oxida- tion increases the imbibition capacity of shale plug with matrix by 11.6%-15.3%,and the imbibition potential is increased by 2.32%-8.26%. The imbibed water masses of shale plugs with fracture are increased by 9.8%-12.3%,and the imbibition balance time is decreased by 13.68%-20.23%. The results indicated that the net material removal effect of oxidative disso- lution on shale components enlarges the storage space of water phase,improves the porosity and permeability,enhances the water wettability of fracture surface,induces the generation and propagation of microfractures,and decreases the saturation of imbibition front,accelerating water diffusion and increasing the imbibition distance.