-
伴随着中国油气战略“走出去”方针的推进,三大油公司在中东、南美和北美等地区收购了许多碳酸盐岩区块的采矿权,如中东 Missan油田的厚层碳酸盐岩油藏 BU(简称 BU 油藏),其油气地质储量达 6.79×108 t,成为中国油气产能增长的重要阵地。近年来,BU油藏主要通过注水开发方式保持地层压力实现增产,注水开发区块的主力层位为平均厚度为 83.5 m的MB2-1段。不同于常规砂岩油藏,BU油藏表现出纵向厚度大、层内物性差异大和纵向非均质性强的特征[1];同时,区别于中国碳酸盐岩油藏储层发育大量裂缝、溶洞的特征,BU 油藏储集空间以原生粒间孔、次生粒间溶孔、基质微孔和小型溶蚀孔洞为主[2-6]。鉴于上述原因,随着开发的不断深入,发现常规砂岩油藏和中国碳酸盐岩油藏的注水开发经验已不足以指导中东厚层碳酸盐岩油藏的开发[7-16]。因此,深入研究中东厚层碳酸盐岩油藏水驱规律和水淹模式,细化调整油藏注采井网,成为中东厚层碳酸盐岩油藏改善水驱开发效果的必由之路[17-18]。为此,以 BU 油藏为原型,利用人造碳酸盐岩岩心模拟目标油藏孔隙型储层岩心,根据相似理论设计厚层碳酸盐岩水驱开发宏观物理模拟实验,通过实时监测模型内部饱和度场变化特征,研究油藏水驱规律和水淹模式,探索注采井网细化调整方案,从而为厚层碳酸盐岩油藏的开发提供参考。
-
1 宏观物理模拟相似理论
-
利用室内物理模型模拟实际油藏开发时,根据相似理论,需要同时满足几何相似、动力相似和运动相似 3方面的相似要求。为推导满足上述 3方面要求的相似准数组,首先根据目标油藏油水两相渗流特点,作以下基本假设:①渗流介质为孔隙型介质。②重力作用不可忽视,基于邦德数计算。③水和油互不相溶。④岩石和流体均不可压缩。根据单重介质渗流数学模型,采用方程分析法,推导得到满足本次实验的相似准数组[19-20] (表1)。
-
实验选用人造碳酸盐岩岩心,由于人造岩心为各向同性,实际油藏储层为各向异性,因此在实验设计之初,需要将各向异性油藏转化为各向同性油藏,然后采用表1中的相似准数,将油藏参数换算为实验室内的宏观物理模型参数。各向异性介质转换为各向同性介质可通过各向异性渗透率来实现,首先需要求出各向异性介质的等效各向同性渗透率,然后将各向异性的坐标x,y和z换算为各向同性介质的坐标x1,y1和z1。其公式分别为[21-23]:
-
2 宏观物理模型设计及实验方法
-
2.1 参数设计
-
基于表1 所列的相似准数组,结合实际油藏参数,即可实现 BU 油藏与宏观物理模型参数之间的相互换算,其对应设计参数如表2 所示。在现有实验条件下,人造岩心单次压制所能达到的最大平面尺寸为 80 cm×80 cm,故实验中宏观物理模型的平面尺寸设计为80 cm×80 cm。
-
地质资料显示,目标油藏MB2-1段纵向上划分为8层,中间无隔夹层分布,且上部储层物性明显好于下部储层,其渗透率级差为12.12。由于目标储层纵向非均质性是影响目标油藏水淹模式的物质基础,为体现油藏纵向非均质性对水驱规律的影响,物理模型压制过程中,需要保持其纵向非均质特征和韵律特征一致。受制作工艺影响,目前人造碳酸盐岩岩心纵向 5 层以内可以一次压制成型,物性控制也更为准确。为此,将MB2-1段8层中纵向相邻、渗透率相近的小层进行合并,合并前后目标油藏韵律和非均质性保持不变。最终目标油藏纵向合并为 5 层,其物性参数及对应的宏观物理模型物性参数如表3所示。
-
2.2 井网设计
-
目前目标油藏井网采用反九点法注采井网,注采井距为 700 m。为充分研究油藏内的水驱规律,选择反九点法注采井网的 1/4 个单元进行模型设计。考虑到 BU 油藏纵向厚度与现有井距大的特征,为充分发挥重力分异作用对采收率的影响,采用底注顶采的开发方式,设计 3 组不同的立体注采井网(图1)进行对比实验。当模型实施具体的某一组井网实验时,可以采用刘剑等设计的井筒封堵装置[24] 对额外方案的预置井筒进行封堵,从而将预置井筒对模型流场的影响降至最低。
-
2.3 模型制作及实验装置
-
岩心制作 为保证人造岩心与实际油藏具有相似的润湿性,压制人造岩心的石粉组分必须与目标油藏岩石组分保持一致,所用石粉的目数由宏观物理模型的孔隙度和渗透率共同决定。首先,将筛选完毕的石粉与固化剂均匀混合,按照小层顺序将其置于岩心压制的模具内,同时,每完成一层石粉的铺设,都需要在设计位置预埋饱和度探头用于后续饱和度场监测,其中饱和度探头分布如图2所示。然后,将模具中铺设完毕的石粉混合物压制成型后,置于恒温箱内使其充分干燥,即可完成人造岩心的制作。
-
图1 宏观物理模型立体注采井网
-
Fig.1 Well pattern design of large-scale physical model
-
图2 宏观物理模型中饱和度探头分布
-
Fig.2 Saturation sensor distribution in large-scale physical model
-
岩心封装 岩心制作完成后,根据设计井位,在预定位置钻孔作为井筒。由于设计模型较大,为使模型充分饱和,在模型顶面额外布置11个饱和孔 (图3);此外,需在模型底部预留1个厚度为2 mm的水槽用于模拟油藏底水。完成上述工作后,将岩心置于灌胶模具内,并在模具内灌入厚度约为3 cm的环氧树脂层(图3),以保证模型的密封性和耐压性。模型密封完毕后,连接氮气瓶加压,验证模型整体的密封性以及各预埋井、各饱和孔的连通性,确认无误后模型制作完成,进行后续实验。
-
实验装置 实验装置由注入系统、底水模拟系统、模型系统和数据采集系统等构成(图4)。其中,注入水和底水注入方式均为恒压注入,压力由水头提供。具体方式为:将地层水用平流泵泵入指定高度的水头,经由固定高度的水头向模型恒压注水。出口计量装置包括量筒和电子天平。饱和度传感器由电阻率测定仪构成,实验开始前需要通过实验用油和实验用地层水进行电阻率标定。
-
图3 浇筑完毕后的宏观物理模型
-
Fig.3 Illustration of completed large-scale physical model
-
2.4 实验方法
-
实验方法包括:①将宏观物理模型连接完毕后,向模型底水槽提供 1.07 kPa 的恒压作为底水压力,以3.5 kPa的压力从注水井向模型恒压注入,P1, P2和P3三口生产井采液,当生产井含水率达到98% 时关井。②重新饱和宏观物理模型,按照井网设计,依次打开直井加密井网、水平井加密井网完成对比实验。其中,对上述2种井网,加密和转注同步进行,转注、加密时机为 P1 井含水率达 80%。③根据实验数据和实验现象,分析厚层碳酸盐岩油藏水驱规律、水淹模式以及剩余油分布,并优选合理注采井网。
-
图4 厚层碳酸盐岩油藏宏观物理模拟实验装置
-
Fig.4 Schematic of large-scale physical experiment for thick carbonate reservoirs
-
3 实验结果与分析
-
3.1 基础井网注水开发水驱规律及水淹模式
-
单井产油速度变化曲线(图5a)显示,生产初期边井(P1和P3)的产油速度高于角井(P2),但边井见水时间相对较早,见水后边井产油速度递减较快,角井产油速度逐渐大于边井。分析单井含水率变化曲线(图5b)可知,相对于角井,边井见水后含水率快速上升,直到进入高含水期(含水率大于 60%) 含水上升率逐渐变缓,而角井在低含水期(含水率小于 20%)含水上升率较慢,进入中含水期后含水上升率加快,整个生产期间,角井含水率均低于边井。由井组采出程度与含水率关系曲线(图5c)可见,井组无水采收率为 2.87%,低含水期采收率为 10.5%,中含水期采收率为 22.6%,最终采收率为 43.9%。模型约有 50% 的可采储量在高含水期采出,这是由于储层纵向非均质性强,层间差异大,注入水易沿高渗透层突破所致。
-
图5 基础井网生产指标
-
Fig.5 Production index of basic well pattern
-
根据模型生产过程中连井剖面(图6)和平面 (图7)饱和度场变化规律,将生产过程划分为3个生产阶段:①生产早期(0~10 h),由于纵向上注采压力梯度大于重力梯度,加之渗透率层间差异的影响,使得注入水在近注水井区域先沿着纵向从模型底部运移到上部的高渗透层,然后沿着顶部高渗透层向前突进,同时,由于模型底部第4层渗透率也相对较高,因此模型表现为如图6a所示的双峰状水驱特征。②生产中期(10~20 h),随着油水前缘向前推进远离注水井区域,注采压力梯度减小,重力对油水运移的影响逐渐增大,这促使在顶部向前突进的注入水在重力的作用下逐渐向下流动,导致双峰状水驱特征转变为单峰状水驱特征,注入水开始沿着第 4 层向前突进,并率先在第 4 层突破到角井井底,形成次生底水。③生产晚期(30~55 h),重力作用下沿第 4 层突进的水向下运移,致使第 5 层被水淹,同时,依托于生产中期形成的次生底水,模型水驱特征由渗透率层间差异造成的层间突进转变为依托于次生底水的向上托进,剩余各层的水淹顺序为中部第3层先被水淹,然后第2层、第1层被水淹。
-
图6 基础井网I1—P2井连井剖面含水饱和度场变化
-
Fig.6 Saturation field variation characteristics of I1-P2 well section in basic well pattern
-
图7 基础井网平面含水饱和度场变化
-
Fig.7 Plane saturation field variation characteristics of basic well pattern
-
受上述运移规律影响,模型内部剩余油分布特征为:在近注水井区域,储量动用比较充分,无明显剩余油;进入远井区域到靠近生产井区域,重力对厚层碳酸盐岩油藏剩余油分布的影响逐渐显现,导致模型下部层位储量动用比较充分,剩余油主要集中在模型上部层位。因此,后续方案调整时应着力增加上部储层储量的控制程度,提高开发效率,增加采收率。此外,从图6还可以发现,尽管宏观物理模型设计了底水,但是模型饱和度场变化规律中并没有监测到底水锥进的现象,分析认为这主要是底水能量弱,且下部第 5 层渗透率小、储层厚度大所致。
-
基于上述分析,将厚层碳酸盐岩油藏的水淹模式总结如下:①阶段一。生产早期,在近井区域,注入水的主要驱动力为注采压差,水驱特征为层间渗透率差异造成的双峰状驱替特征(图8a)。②阶段二。随着油水前缘远离注水井区域,注采压力梯度减小,注入水在重力分异的影响下向下部层位运移,使得双峰状水驱特征转变为单峰状水驱特征 (图8b)。③阶段三。沿着下部高渗透层突进的注入水率先突破到生产井井底,形成次生底水(图8c)。④阶段四。次生底水向上托进,生产井完全被水淹(图8d)。
-
3.2 不同井网注水开发效果对比
-
对比 3 种井网的开发效果(图9a)可知:基础方案的采收率(43.9%)显著低于直井加密方案 (47.3%)和水平井加密方案(52.9%)。现有基础井网下,剩余油平面分布在远注水井区域和近生产井区域,纵向上位于储层上部小层,提高顶部动用效率不高区域的控制程度,可以显著增加油藏采收率。同属加密井网,水平井加密井网采收率明显高于直井加密井网,而且开发效率也明显高于直井加密井网。
-
对比 3 种井网产液速度(图9b)发现:基础方案转注加密后产液速度显著增加,这表明基础方案步入高含水期后其产液能力可以通过补充能量和改善注采关系得到提高,这对高含水期油藏稳定产能、保证产油速度具有重要指导意义;水平井加密方案在厚层碳酸盐岩油藏开发中优势更加显著,其产液速度甚至高于基础方案 2 倍以上。相应的,由于水平井加密方案具有更高的产液速度,导致其前期见水时间更早(图9c),含水率上升速度更快,含水率更高,然而水平加密方案依然具有最高的采收率。说明此类厚层油藏的剩余油更多为横向非均匀分布,而非纵向非均匀分布。对于横向非均匀分布的剩余油,加密的水平井网能够显著扩大波及体积,从而采出更多的剩余油,这也印证了从模型顶部加密、底部转注调整思路的可靠性。
-
4 结论
-
厚层碳酸盐岩油藏水淹模式为:在近注水井区域注入水先沿纵向运移到高渗透层然后向前突进; 油水前缘远离注水井区域后上部向前突进的水相受重力影响,向下部储层运移,沿下部高渗透层突进到生产井井底,形成次生底水;最后次生底水向上托进,导致油井水淹。
-
图8 厚层碳酸盐岩油藏水淹模式
-
Fig.8 Water flooding mode of thick carbonate reservoirs
-
图9 不同注采井网开发指标对比
-
Fig.9 Comparison of development index of different well patterns
-
厚层碳酸盐岩油藏剩余油分布,纵向上受重力分异的影响主要集中在上部储层,平面上主要分布在远离注水井的区域。为加快油藏开发效率、提高采收率,应提高上部储层的控制程度。
-
3 种井网开发效果对比显示,水平井加密井网不仅可以大幅提高油藏采收率,而且可以显著提高油藏开发效率,故推荐水平井加密井网作为厚层碳酸盐岩油藏开发井网。
-
符号解释
-
——特征渗透率,mD;
-
Kx,Ky,Kz ——x,y,z方向渗透率,mD;
-
L ——模型特征尺寸,m;
-
r w——井筒半径,m;
-
t ——模拟开采时间,h;
-
x,y,z ——模型沿x,y,z方向的长度,cm;
-
x1,y1,z1——各向同性介质坐标,m;
-
Δp ——注采压差,MPa;
-
Δγ——水油重度差,Pa/m;
-
μo,μw——地层原油、地层水黏度,mPa·s;
-
π——相似准数,无因次;
-
ϕ——孔隙度,%;
-
——特征孔隙度,%。
-
参考文献
-
[1] 张义楷,康安,闵小刚,等.伊拉克米桑油田群Mishrif组MB2 1段碳酸盐岩储层特征及成因[J].石油实验地质,2016,38(3):360-365.ZHANG Yikai,KANG An,MIN Xiaogang,et al.Characteristics and genesis of carbonate reservoirs in the Mishrif MB2 1 member in the Missan oil fields,Iraq[J].Petroleum Geology & Experi⁃ ment,2016,38(3):360-365.
-
[2] 刘逸盛,刘月田,李长勇,等.厚层碳酸盐岩油藏流动单元划分——以中东MF油藏为例[J].西安石油大学学报:自然科学版,2019,34(2):104-111.LIU Yisheng,LIU Yuetian,LI Changyong,et al.Division of flow units in thick carbonate reservoirs:taking MF reservoir in Middle East as an example[J].Journal of Xi’an Shiyou University:Natu⁃ ral Science Edition,2019,34(2):104-111.
-
[3] 王鸣川,段太忠,杜秀娟,等.沉积相耦合岩石物理类型的孔隙型碳酸盐岩油藏建模方法[J].石油实验地质,2018,40(2):253-259.WANG Mingchuan,DUAN Taizhong,DU Xiujuan,et al.Geologi⁃ cal modeling method based on sedimentary facies coupled rock type for porous carbonate reservoirs[J].Petroleum Geology & Ex⁃ periment,2018,40(2):253-259.
-
[4] 王君,郭睿,赵丽敏,等.颗粒滩储集层地质特征及主控因素——以伊拉克哈法亚油田白垩系Mishrif组为例[J].石油勘探与开发,2016,43(3):367-377.WANG Jun,GUO Rui,ZHAO Limin,et al.Geological features of grain bank reservoirs and the main controlling factors:A case study on Cretaceous Mishrif Formation,Halfaya Oilfield,Iraq[J].Petroleum Exploration and Development,2016,43(3):367-377.
-
[5] 刘航宇,田中元,刘波,等.中东地区巨厚强非均质碳酸盐岩储层分类与预测——以伊拉克W油田中白垩统Mishrif组为例 [J].石油学报,2019,40(6):677-691.LIU Hangyu,TIAN Zhongyuan,LIU Bo,et al.Classification and prediction of giant thick strongly heterogeneous carbonate reser⁃ voirs in the Middle East area:a case study of Mid-Cretaceous Mishrif Formation in the W oilfield of Iraq[J].Acta Petrolei Sini⁃ ca,2019,40(6):677-691.
-
[6] 赵丽敏,周文,钟原,等.伊拉克H油田Mishrif组储集层含油性差异主控因素分析[J].石油勘探与开发,2019,46(2):302-311.ZHAO Limin,ZHOU Wen,ZHONG Yuan,et al.Control factors of reservoir oil-bearing difference of Cretaceous Mishrif Formation in the H oilfield,Iraq[J].Petroleum Exploration and Develop⁃ ment,2019,46(2):302-311.
-
[7] 李阳.塔河油田碳酸盐岩缝洞型油藏开发理论及方法[J].石油学报,2013,34(1):115-121.LI Yang.The theory and method for development of carbonate frac⁃ ture-cavity reservoirs in Tahe oilfield[J].Acta Petrolei Sinica,2013,34(1):115-121.
-
[8] 王敬,刘慧卿,张景,等.井网对溶蚀孔洞型储集层水驱开发特征的影响实验[J].石油勘探与开发,2018,45(6):1 035-1 042.WANG Jing,LIU Huiqing,ZHANG Jing,et al.Experiments on the influences of well pattern on water flooding characteristics of dis⁃ solution vug-cave reservoir[J].Petroleum Exploration and Devel⁃ opment,2018,45(6):1 035-1 042.
-
[9] 屈鸣,侯吉瑞,李军,等.缝洞型油藏三维可视化模型底水驱油水界面特征研究[J].石油科学通报,2018,3(4):422-433.QU Ming,HOU Jirui,LI Jun,et al.Research into characteristics of the oil-water interface during bottom water flooding in a frac⁃ tured-vuggy reservoir by a 3-D visual model[J].Petroleum Sci⁃ ence Bulletin,2018,3(4):422-433.
-
[10] 郑文宽,刘月田,刘泽华,等.低渗透裂缝性潜山稠油油藏物理模拟实验研究[J].油气地质与采收率,2017,24(3):78-84.ZHENG Wenkuan,LIU Yuetian,LIU Zehua,et al.Physical simu⁃ lation experimental study on low-permeability buried-hill frac⁃ tured heavy oil reservoir[J].Petroleum Geology and Recovery Ef⁃ ficiency,2017,24(3):78-84.
-
[11] 杨景斌,侯吉瑞.缝洞型碳酸盐岩油藏岩溶储集体注氮气提高采收率实验[J].油气地质与采收率,2019,26(6):107-114.YANG Jingbin,HOU Jirui.Experimental study on enhanced oil re⁃ covery by nitrogen injection in fracture-cave carbonate reservoir [J].Petroleum Geology and Recovery Efficiency,2019,26(6):107-114.
-
[12] 阳晓燕.非均质油藏水驱开发效果研究[J].特种油气藏,2019,26(2):152-156.YANG Xiaoyan.Waterflood development effect study of heteroge⁃ neous reservoir[J].Special Oil & Gas Reservoirs,2019,26(2):152-156.
-
[13] 关云,曹仁义,徐锋,等.厚油层水驱开发效果及其影响因素分析[J].断块油气田,2018,25(6):766-770.GUAN Yun,CAO Renyi,XU Feng,et al.Effect and influencing factors on water flooding development of thick reservoir[J].FaultBlock Oil and Gas Field,2018,25(6):766-770.
-
[14] 熊钰,钟浩,周文胜,等.三维大尺度非均质油藏模型下的剩余油水驱物理模拟实验研究[J].油气藏评价与开发,2019,9(6):16-23.XIONG Yu,ZHONG Hao,ZHOU Wensheng,et al.Water driving physical simulation test of remaining oil based on 3D large-scale heterogeneous reservoir model[J].Reservoir Evaluation and De⁃ velopment,2019,9(6):16-23.
-
[15] 杨海军,张辉,尹国庆,等.基于地质力学的地质工程一体化助推缝洞型碳酸盐岩高效勘探——以塔里木盆地塔北隆起南缘跃满西区块为例[J].中国石油勘探,2018,23(2):27-36.YANG Haijun,ZHANG Hui,YIN Guoqing,et al.Geomechanicsbased geology-engineering integration boosting high-efficiency exploration of fractured-vuggy carbonate reservoirs-a case study on West Yueman block,northern Tarim Basin[J].China Petro⁃ leum Exploration,2018,23(2):27-36.
-
[16] 刘仁静.大型礁滩型碳酸盐岩油藏开发技术策略研究[J].石油地质与工程,2019,33(4):47-49,53.LIU Renjing.Development technology strategy of large reef-shoal carbonate oil reservoir[J].Petroleum Geology and Engineering,2019,33(4):47-49,53.
-
[17] 彭颖锋,李宜强,朱光亚,等.离子匹配水驱提高碳酸盐岩油藏采收率机理及实验——以中东哈法亚油田白垩系灰岩为例 [J].石油勘探与开发,2019,46(6):1 159-1 168.PENG Yingfeng,LI Yiqiang,ZHU Guangya,et al.Mechanisms and experimental research of ion-matched waterflooding to en⁃ hance oil recovery in carbonate reservoirs:A case of Cretaceous limestone reservoirs in Halfaya Oilfield,Middle East[J].Petro⁃ leum Exploration and Development,2019,46(6):1 159-1 168.
-
[18] 袁庆峰,朱丽莉,陆会民,等.水驱油田晚期开发特征及提高采收率主攻方向[J].大庆石油地质与开发,2019,38(5):34-40.YUAN Qingfeng,ZHU Lili,LU Huimin,et al.Development char⁃ acteristics and main tackled EOR research direction for the water⁃ flooded oilfield at the late stage[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):34-40.
-
[19] LIU Yuetian,DING Zupeng,AO Kun,et al.Manufacturing method of large-scale fractured porous media for experimental reservoir simulation[J].Society of Petroleum Engineers Journal,2013,18(6):1 081-1 091.
-
[20] DING Zupeng,LIU Yuetian,ZHANG Yong.A quantitative 3D ex⁃ perimental simulation method of water flooding in fractured reser⁃ voirs[J].Petroleum Science and Technology,2012,30(12):1 250-1 261.
-
[21] 刘月田.各向异性油藏水平井开发井网设计方法[J].石油勘探与开发,2008,35(5):619-624.LIU Yuetian.Methodology for horizontal well pattern design in anisotropic oil reservoirs[J].Petroleum Exploration and Develop⁃ ment,2008,35(5):619-624.
-
[22] 刘剑,刘月田,聂彬,等.潜山油藏水平井立体井网井距调整方法[J].油气地质与采收率,2015,22(4):103-108.LIU Jian,LIU Yuetian,NIE Bin,et al.Method of well spacing ad⁃ justment for stereo horizontal well pattern in buried hill reservoirs [J].Petroleum Geology and Recovery Efficiency,2015,22(4):103-108.
-
[23] 李传亮,李炼民.各向异性地层的井距设计研究[J].新疆石油地质,2003,24(6):559-561.LI Chuanliang,LI Lianmin.Well spacing design for anisotropic reservoirs[J].Xinjiang Petroleum Geology,2003,24(6):559-561.
-
[24] 刘剑,刘月田,赵义强,等.油藏物理模型内置井筒封堵装置:CN203257369U[P].2013-10-30.LIU Jian,LIU Yuetian,ZHAO Yiqiang,et al.Internally installed wellbore plugging device in reservoir physical model:CN203257369U[P].2013-10-30.
-
摘要
以中东Missan油田的厚层碳酸盐岩油藏BU为原型,根据相似理论,利用人造碳酸盐岩岩心模拟目标油藏储层,设计与目标油藏典型单元相似、尺寸为80 cm×80 cm×10.7 cm的宏观物理模型,用于研究厚层碳酸盐岩油藏的水驱规律和水淹模式,对比不同井网井型的开发效果。水驱实验结果表明:厚层碳酸盐岩油藏水驱规律主要受纵向非均质性和重力的影响,呈现双峰状和单峰状特征。水淹模式为:注入水在近注水井区域沿纵向运移到高渗透层并沿高渗透层向前突进;远离注水井区域后上部突进的注入水在重力作用下向下运移,然后沿下部高渗透层突进并率先突破到生产井井底,形成次生底水;最后次生底水向上托进,导致油井水淹。遵循上述水淹模式,剩余油主要分布在远离注水井的上部层位;水平井加密井网较其他井网对上部层位储量控制程度更高,因此拥有更高的采收率和开发效率。
Abstract
Aiming at a thick carbonate reservoir(BU)in the Middle East Missan Oilfield,based on similarity theory,the arti- ficial carbonate sample is used to simulate target reservoir,an large-scale physical model with size of 80 cm×80 cm×10.7 cm that is similar to the typical unit of target reservoir is built to study the water flooding performance,water flooding modes,and the development effect of different well patterns. Results show that the water flooding performance of thick car- bonate reservoirs are mainly affected by the longitudinal heterogeneity and gravity,and are characterized by double peaks or single peaks. The water flooding mode is summarized as follows:the injected water moves longitudinally to the high-per- meability layer near the water injection well and flow forward along the high-permeability layer. Away from the injection well,the top injected water moves downward under the effect of gravity,then moves along the lower high-permeability layer and breakthroughs to the bottom of the production well to form a secondary bottom water. Finally,the secondary bottom wa- ter moves upward,causing the production well to be completely watered. Based on above mode,the remaining oil mainly distributes in the upper layers far from the water injection well;correspondingly,the horizontal well infill well pattern shows a higher control over the reserves of the upper layer than other well patterns,hence it can lead to the higher recovery and de-velopment efficiency.