-
随着国民经济的飞速发展,中国油气供需形势严峻已经成为事实,目前剩余油气资源中的低渗透-特低渗透储层资源与重油资源等低品位资源所占比例已经增至 64%,成为中国当前技术攻关的主要对象[1-3]。注入CO2是一种开发低渗透-特低渗透油藏的有效方法,“973”项目评价结果认为该类型油藏在中国约有 130 亿吨原油地质储量适合采用 CO2驱油,可以增加可采储量 19.2 亿吨[4-6]。但是, CO2驱油过程中将面临着油、气黏度差引起的黏性指进和油、气密度差引起的重力分异的问题,容易造成气体的无效气窜,导致波及系数和采收率均较低。
-
目前,关于气窜的研究更多涉及黏性指进而引起的气窜问题[7-19],从混相状态(非混相、近混相、混相)、储层物性(渗透率、非均质性、裂缝)、流体物性 (原油密度、黏度、组分)、生产参数(井网井距、注入速度、注采压差)和生产方式(连续注气、气水交替、气水同注、CO2泡沫驱)等方面进行气窜的研究并相应地提出了气窜防控方案,但是在厚油藏开展 CO2 驱过程中由于油、气密度差引起的油、气重力分异的影响也不容忽视,而当前针对 CO2驱气体超覆的研究缺乏物理实验验证,相关研究更多从渗流方程、数值模拟角度入手,STONE 等提出一种气水交替模型预测了气、水在稳态流下开始发生重力分异的距离和垂向波及体积,认为采收率与无因次黏滞力-重力比值间存在函数关系[20-21];TCHELEPI等借助粒子追踪技术考察了在考虑重力和不考虑重力2 种情况下均质和非均质储层中流体的动态剖面分布,提出储层非均质性会改变黏滞力-重力比值对于重力主导流动和黏滞力主导流动的界定范围[22]; ZHOU 等定义了黏滞力-重力比值、毛细管力-黏滞力比值和形状因子等 3 个无量纲因子,并分析了在简单非均质多孔介质中渗流区域主导渗流规律的重力、黏滞力和毛细管力间的平衡关系[23];FAISAL 等借助CMG软件STARS模块评价Stone模型的适应性以及气水交替和气水同注的注入能力,同时考虑了重力超覆,认为注入压力一定的条件下,提高储层的注入能力是克服气体超覆的关键[24]。
-
为了研究 CO2的超覆运移距离,笔者通过自主研制高温高压超覆模型,并采用分层采集流体的方法,在不同岩心长度下开展室内实验,研究重力分异对 CO2运移规律的影响,同时提出 CO2驱气体超覆程度的表征方法。
-
1 实验器材与方法
-
1.1 实验器材
-
实验原油为某区块地面脱气原油,黏度为 1.24 mPa⋅s(实验温度为60℃),密度为0.79 g/cm3,最小混相压力为13 MPa。实验用水为模拟地层水,总矿化度为 147 879.9 mg/L,水型为 CaCl2型。实验气体为高纯度 CO2,纯度为 99.9%,密度为 0.28 g/cm3(实验温度为60℃,实验压力为10 MPa)。
-
实验装置主要包括 KDHW-Ⅱ型恒温箱、高温高压超覆模型、ISCO 泵、真空泵、手摇计量泵、气液分离收集装置、气体流量计、压力传感器及配套数据处理系统软件、中间活塞容器、六通阀、回压阀和管线等(图1)。
-
图1 实验装置
-
Fig.1 Experiment device
-
为了开展厚油藏中 CO2驱气体超覆的研究,自主研制高温高压超覆模型,设计上、下2个出口端以达到分层采集产出物的目的,上、下出口端的产量用于表征岩心上、下部的开发效果。可通过调整岩心长度来满足CO2超覆运移距离的研究要求。实验所用岩心呈扁平状,尺寸为60 cm×8 cm×2 cm。
-
1.2 实验方法
-
驱替过程中的流体分布与黏滞力-重力比值有关,油层的垂向厚度为气体向上运移提供空间,水平距离提供足够超覆发育时间,其表达式为:
-
为此,设计 3 组实验,分别选用 40,50 和 60 cm 3 种不同长度的岩心,孔隙度为 15%~20%,水测渗透率为 10~15 mD。在实验温度为 60℃、实验压力为 10 MPa、油气密度差为 0.51 g/cm3、注气速度为 0.1 mL/min 的条件下,利用自主研制的高温高压超覆模型开展厚油层CO2驱气体超覆运移距离研究。
-
实验步骤主要包括:①岩心预处理。选取人工压制的均质岩心,用砂纸打磨岩心至表面平滑,计算视体积;在岩心表面均匀涂覆环氧树脂厚度约为 0.5~1 mm,然后放入烘箱内干燥。②将岩心放入岩心夹持器中,加围压至 6 MPa,抽真空 4 h。③饱和模拟地层水,计量孔隙体积,并计算孔隙度。④按图1 连接实验装置,进行水测渗透率。⑤将实验温度升至 60℃,以 0.05 mL/min的注入速度饱和原油,计量出水体积,确定束缚水饱和度和含油饱和度,并老化 24 h。⑥按照设定的 CO2注入速度(0.1 mL/ min)进行气驱,利用气液分离收集装置和气体流量计分别计量岩心夹持器上、下出口累积产油量和出气量,上、下出口的产量表征岩心上、下部的开发效果。⑦当标准状况下,上、下出口端生产气油比均大于 3 000(若仅有上出口产气,则仅当上出口端生产气油比大于3 000)且稳定时,停止实验。
-
徐阳等以雷诺数研究了流态对气驱的影响,当雷诺数大于1 × 10-5 数量级时,气体渗流符合线性规律,渗流阻力较非线性渗流时小,有利于提高采收率[25]。为此,选择 0.1 mL/min 的注入速度所对应的雷诺数为 0.005 23,满足线性渗流规律。雷诺数表达式为:
-
2 CO2受力和渗流速度分析
-
厚油藏CO2驱过程中,CO2和原油的密度差导致不同流体受力的不同,影响其运动轨迹,驱替过程中发生超覆现象。气体的运移方向和距离与井间压力梯度、浮力和毛细管力的综合影响有关。
-
2.1 CO2受力分析
-
井间压力梯度 不考虑重力和毛细管力,根据势理论得到平面径向流任意位置点的注采井间压力和压力梯度关系式为:
-
浮力 CO2在垂直于储层方向上所受到浮力的表达式为:
-
毛细管力 气相作为非润湿相,毛细管力是气体运移的阻力,其表达式为:
-
合力 气体突破前,井间压力梯度沿水平方向由注入井指向生产井,浮力垂直向上,毛细管力与气体运移方向相反。依据平行四边形法则进行受力分析,当垂向受力大于横向时,气体垂向运移量大,易发生超覆。CO2驱替相溶于原油中,会降低原油黏度,减小黏滞力,因此CO2驱过程中应考虑驱替前缘超覆的影响。
-
2.2 CO2渗流速度分析
-
将运移速度分解为沿油层的水平速度和垂直油层的垂向速度,气体超覆程度取决于 2 个方向上的渗流速度[26]。根据达西定律,任意点垂向瞬时渗流速度为:
-
任意点水平瞬时渗流速度为:
-
任意点垂向瞬时流速占比代表气体超覆的能力,定义为该点垂向流速与总瞬时流速的比值为:
-
3 实验结果与分析
-
3.1 生产动态
-
CO2驱气体超覆会降低 CO2驱替相垂向波及效率,从而影响油藏整体开发效果。气驱过程可以分为无气产油、油气同产和气窜3个阶段。
-
油气密度差引起的油气重力分异使CO2向岩心上部运移驱替,上部出口优先产油出气。从不同长度岩心的生产动态曲线(图2)和不同长度岩心实验结果(表1)可以看出,当岩心长度为 60 cm 时(图2a),无气产油阶段上、下部采收率分别为17.86%和 7.30%,相差 10.56%;气窜后上、下部总采收率分别为 30.67% 和 13.71%,相差 16.96%,CO2驱气体超覆现象较严重。当缩小岩心长度为 50 cm 时(图2b),无气产油阶段上、下部采收率分别为 23.00% 和 12.71%,相差10.29%;气窜后上、下部总采收率分别为 31.43% 和 21.43%,相差 10%。岩心长度为 50 cm 时的总采收率比60 cm提高8.48%,表明削弱气体重力超覆影响可扩大波及体积,提高采收率。继续缩小岩心长度至40 cm时(图2c),无气产油阶段上、下部采收率分别为 20.43% 和 15.71%,相差 4.72%;气窜后上、下部总采收率分别为 28.57% 和 27.71%,相差 0.86%,此时 CO2驱气体超覆现象基本消失,总采收率比岩心长度为 50 和 60 cm 分别提高 3.42% 和 11.90%,进一步证明了减小注入和出口端距离可以削弱气体超覆的影响,扩大气体的波及体积,提高采收率。
-
图2 不同长度岩心的生产动态
-
Fig.2 Production performance of cores with different lengths
-
3.2 CO2超覆运移规律
-
对比 3 组实验的下部采收率,当岩心长度为 60 cm时,下部采收率从无气产油阶段的7.30%增至气窜后的13.71%,增加6.41%,岩心长度为50和40 cm 时的下部采收率分别增加 8.72% 和 12.00%,表明随着注入和出口端距离的延长,驱替下部原油的气量占比逐渐减少,波及体积逐渐减小。
-
在 CO2驱替过程中,气体的真实运移速度受注气速度、扩散速度和原油的膨胀速度影响,基于物质守恒原理,在无气产油阶段,CO2注入占据的孔隙体积等于产出原油的地下体积,则该阶段CO2在上、下部的运移速度可由产油速度表示,并反映 CO2运移速度及气量分配占比情况。岩心长度为40 cm时的产油速度比约为1.0,表明上、下气体分配较均匀; 岩心长度为 50 cm时的产油速度比约为 0.8,表明气体开始向上部波及,部分气体继续向前推进;岩心长度为 60 cm时的产油速度比约为 0.5,表明大量气体向上部波及,下部仅有少量气体继续向前驱替 (图3)。随着上部气体突破后,仿佛打开泄气口,大量气体向上运移,上部气体增加,产油速度加快。
-
分析长度为 60 cm 岩心中的 CO2在不同位置的运移规律(图4):①CO2在 0~40 cm 运移时表现为上、下部均匀向前推进,受重力影响,下部少量气体有向上部移动的趋势,并逐渐向超覆的过渡阶段发展。②CO2在40~50 cm运移时表现为下部气体开始部分向上部移动,大部分气体继续向前驱替。③ CO2在50~60 cm运移时表现为下部大量气体向上部移动,形成超覆现象,仅有少量气体继续驱替该区域内下部的原油,波及程度较差,下部未波及到的剩余油占比较大,采收率较低。根据以上现象,可将气体运移过程分为气体均匀推进、过渡和超覆完成3个主要阶段,缩小注入和出口端距离,在超覆完成阶段前进行生产可削弱超覆现象对开发效果的影响。
-
图3 不同长度岩心的产油速度比
-
Fig.3 Ratio of oil production rates of cores with different lengths
-
图4 岩心长度为60 cm时CO2超覆运移规律示意
-
Fig.4 Schematic diagram of CO2 migration in 60 cm long core
-
3.3 超覆程度评价
-
3.3.1 比值法
-
比值法即以上、下部采收率在总采收率中的占比表征气体在上、下部的波及能力,当上、下部采收率占比均为50%时超覆程度指数上部采收率/50%-1 为 0。岩心长度为 40 cm 时上部采收率占比为 50.76%,超覆程度指数为 0.02,基本无超覆现象。当岩心长度为 50和 60 cm 时,上部采收率占比分别为 59.46% 和 69.11%,超覆程度指数分别为 0.19 和 0.38,超覆程度逐渐严重。从超覆程度指数与总采收率关系曲线(图5)的斜率变化发现,上部采收率占比越大(超覆程度指数越大),采收率降幅越大。
-
图5 超覆程度指数与总采收率的关系
-
Fig.5 Relationship between overlap degree and total recovery
-
3.3.2 面积法
-
从3组实验中发现,上部采收率均在30%左右,不受重力超覆的影响,仅与储层物性、流体性质和开发措施有关,总采收率差别主要体现在下部的开发效果。面积法即假定未发生超覆现象前,上、下部波及面积是相等的;当发生超覆现象后,上部波及面积占比仍旧是不变的,下部波及面积占比因为气体的减少而减少,下部气体的向上运移只会加快上部油被驱替的速度,但不会影响上部波及面积占比(图6)。
-
考虑实验误差,求取 3 组实验上部采收率均值为 30.22%,即上部波及面积占 30.22%,同时对应的下部波及面积占比标准化为 13.51%,20.61% 和 29.31%。此时3个不同长度岩心分别对应的超覆程度指数(上部波及面积与下部波及面积的比值)为 1.03,1.47 和 2.24,注入和出口端距离越长,超覆程度指数越大,超覆现象越严重。
-
图6 面积法示意
-
Fig.6 Diagram of area method
-
4 结论
-
CO2驱过程中,气体的运移方向受井间压力梯度、浮力和毛细管力的综合影响,气体超覆运移过程可分为3个主要阶段,包括气体均匀推进阶段、过渡阶段和超覆完成阶段。随着注入和出口端距离增加,超覆程度越严重,采收率降幅越大。因此厚油藏开展 CO2驱时,井距的设计在保证经济利益最大化的前提下应尽可能减小井距以减弱气体超覆对开发效果的影响。
-
厚油藏CO2驱过程中的气体超覆现象会影响气体的波及效率,有着对其研究的必要性,利用自主研制的高温高压超覆模型通过分层采集流体的方式可开展对CO2超覆规律的影响因素以及防控措施研究。基于分层采集数据,建立的比值法和面积法可以实时评价超覆状态并为后续方案调整提供指导意见。
-
符号解释
-
C ——常数;
-
——任意位置压力梯度,102 MPa/cm;
-
f ——垂向瞬时流速占比;
-
F ——毛细管力,MPa;
-
F b——单位体积浮力,103 Pa/m3;
-
F H——毛细管力水平分力,MPa;
-
F Z——毛细管力垂向分力,MPa;
-
g ——重力加速度,m/s2;
-
h ——油层厚度,cm;
-
H ——岩心厚度,cm;
-
K ——岩心渗透率,mD;
-
K H——水平渗透率,mD。
-
K rg——气体相对渗透率;
-
K Z——垂向渗透率,mD;
-
L ——岩心长度,cm;
-
p ——任意位置点注采井间压力,MPa;
-
Q 1——产油量,cm3 /s;
-
Q 2——注气量,cm3 /s;
-
r ——孔喉半径,μm;
-
r 1——任意点到生产井距离,cm;
-
r 2——任意点到注气井距离,cm;
-
Re ——雷诺数;
-
——黏滞力与重力比值;
-
v ——达西速度,cm/s;
-
v H——水平瞬时渗流速度,cm/s;
-
v Z——垂向瞬时渗流速度,cm/s;
-
x ——渗流距离,cm;
-
Δρ——油气密度差,g/cm3;
-
θ——接触角,(°);
-
μ——原油黏度,mPa⋅s;
-
μg——CO2黏度,mPa⋅s;
-
ρg——CO2密度,g/cm3;
-
ρo——原油密度,g/cm3;
-
σ——界面张力,mN/m;
-
ϕ——孔隙度,%。
-
参考文献
-
[1] 张文浩,苗苗青,姜鲲鹏,等.中国油气资源勘探开发特点、趋势及生态管理[J].地质与资源,2019,28(5):454-459.ZHANG Wenhao,MIAO Miaoqing,JIANG Kunpeng,et al.Char⁃ acteristics,trends and ecological management of oil-gas resourc⁃ es exploration and development in China[J].Geology and Re⁃ sources,2019,28(5):454-459.
-
[2] 袁士义,王强.中国油田开发主体技术新进展与展望[J].石油勘探与开发,2018,45(4):657-668.YUAN Shiyi,WANG Qiang.New progress and prospect of oil⁃ fields development technologies in China[J].Petroleum Explora⁃ tion and Development,2018,45(4):657-668.
-
[3] 侯启军,何海清,李建忠,等.中国石油天然气股份有限公司近期油气勘探进展及前景展望[J].中国石油勘探,2018,23(1):1-13.HOU Qijun,HE Haiqing,LI Jianzhong,et al.Recent progress and prospect of oil and gas exploration by PetroChina Company Limit⁃ ed[J].China Petroleum Exploration,2018,23(1):1-13.
-
[4] 李阳.低渗透油藏CO2驱提高采收率技术进展及展望[J].油气地质与采收率,2020,27(1):1-10.LI Yang.Technical advancement and prospect for CO2 flooding en⁃ hanced oil recovery in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):1-10.
-
[5] 徐婷,杨震,周体尧,等.中美二氧化碳捕集和驱油发展状况分析[J].国际石油经济,2016,24(4):12-16,28.XU Ting,YANG Zhen,ZHOU Tiyao,et al.Carbon capture and storage(CCS)and CO2 flooding technology development in the United States and China[J].International Petroleum Economics,2016,24(4):12-16,28.
-
[6] 章星,王珍珍,王帅,等.可视装置中 CO2与正戊烷或原油接触特征和表征方法[J].石油实验地质,2017,39(3):402-408.ZHANG Xing,WANG Zhenzhen,WANG Shuai,et al.Visual con⁃ tact characteristics and characterization of the CO2 and n-pen⁃ tane/crude oil interface[J].Petroleum Geology & Experiment,2017,39(3):402-408.
-
[7] 李承龙.特低渗透油藏二氧化碳驱气窜影响因素及规律[J].特种油气藏,2018,25(3):82-86.LI Chenglong.Gas channeling influencing factors and patterns of CO2-flooding in ultra-low permeability oil reservoir[J].Special Oil & Gas Reservoirs,2018,25(3):82-86.
-
[8] 鲍云波.CO2气窜主控因素研究[J].科学技术与工程,2013,13(9):2 348-2 351,2 366.BAO Yunbo.The research on main controlling factors of CO2 gas channeling[J].Science Technology and Engineering,2013,13(9):2 348-2 351,2 366.
-
[9] 李东霞,苏玉亮,高海涛,等.二氧化碳非混相驱油粘性指进表征方法及影响因素[J].油气地质与采收率,2010,17(3):63-66.LI Dongxia,SU Yuliang,GAO Haitao,et al.Characterization and controlling factors analysis on viscosity fingering during CO2 im⁃ miscible drive[J].Petroleum Geology and Recovery Efficiency,2010,17(3):63-66.
-
[10] 杨大庆,尚庆华,江绍静,等.渗透率对低渗油藏 CO2驱气窜的影响规律研究[J].西南石油大学学报:自然科学版,2014,36(4):137-141.YANG Daqing,SHANG Qinghua,JIANG Shaojing,et al.A study about influence law of permeability on gas channeling of CO2 flooding under low permeability reservoirs[J].Journal of South⁃ west Petroleum University:Science & Technology Edition,2014,36(4):137-141.
-
[11] 赵清民,伦增珉,赵淑霞.低渗非均质油藏CO2驱特征及水动力学封窜方法[J].油气藏评价与开发,2019,9(3):62-65,72.ZHAO Qingmin,LUN Zengmin,ZHAO Shuxia.CO2 flooding char⁃ acteristics and hydrodynamic suppression channeling method in low permeability heterogeneous reservoirs[J].Reservoir Evalua⁃ tion and Development,2019,9(3):62-65,72.
-
[12] 李承龙,韩昊.用灰色模糊综合评估法识别注气初期 CO2气窜通道[J].大庆石油地质与开发,2018,37(6):116-120.LI Chenglong,HAN Hao.Identification of the gas channeling by grey-fuzzy complex judging method at the early stage of CO2 flooding[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(6):116-120.
-
[13] 乔妮.CO2驱气窜影响因素及控制方法研究[D].东营:中国石油大学(华东),2014.QIAO Ni.Research on gas channeling factors and control methods of CO2 flooding[D].Dongying:China University of Petroleum(East China),2014.
-
[14] 高云丛,赵密福,王建波,等.特低渗油藏 CO2非混相驱生产特征与气窜规律[J].石油勘探与开发,2014,41(1):79-85.GAO Yuncong,ZHAO Mifu,WANG Jianbo,et al.Performance and gas breakthrough during CO2 immiscible flooding in ultralow permeability reservoirs[J].Petroleum Exploration and Devel⁃ opment,2014,41(1):79-85.
-
[15] 李东霞,苏玉亮,高海涛,等.CO2非混相驱油过程中流体参数修正及影响因素[J].中国石油大学学报:自然科学版,2010,34(5):104-108.LI Dongxia,SU Yuliang,GAO Haitao,et al.Fluid parameter modi⁃ fication and affecting factors during immiscible drive with CO2[J].Journal of China University of Petroleum:Edition of Natural Sci⁃ ences,2010,34(5):104-108.
-
[16] 李景梅.注CO2开发油藏气窜特征及影响因素研究[J].石油天然气学报,2012,34(3):153-156.LI Jingmei.Gas channeling characteristic of gas reservoirs for CO2 flooding and influential factors[J].Journal of Oil and Gas Technol⁃ ogy,2012,34(3):153-156.
-
[17] DUAN Xianggang,HOU Jirui,ZHAO Fenglan,et al.Determina⁃ tion and controlling of gas channel in CO2 immiscible flooding[J].Journal of the Energy Institute,2016,89(1):12-20.
-
[18] 王建波,高云丛,王科战.腰英台特低渗透油藏CO2驱油井见气规律研究[J].断块油气田,2013,20(1):118-122.WANG Jianbo,GAO Yuncong,WANG Kezhan.Law of gas break⁃ through on CO2 flooding well in ultra-lower permeability reservoir of Yao Yingtai oilfield[J].Fault-Block Oil and Gas Field,2013,20(1):118-122.
-
[19] 高慧梅,何应付,赵淑霞.低渗透油藏CO2驱气窜影响因素分析及模糊评判预测[J].中国海上油气,2014,26(4):63-66.GAO Huimei,HE Yingfu,ZHAO Shuxia.Control-factor analysis and fuzzy-evaluation prediction of gas channeling during CO2 flooding in low-permeability oil reservoirs[J].China Offshore Oil and Gas,2014,26(4):63-66.
-
[20] STONE H L.Vertical,conformance in an alternating water-misci⁃ ble gas flood[R].SPE 11130,1982.
-
[21] JENKINS M K.An analytical model for water/gas miscible dis⁃ placements[R].SPE 12632,1984.
-
[22] TCHELEPI H A,ORR F M.The interaction of viscous fingering,permeability heterogeneity and gravity segregation in 3D[R].SPE 25235,1993.
-
[23] ZHOU D,FAYERS F J,ORR F M.Scaling of multiphase flow in simple heterogeneous porous media[R].SPE 27833,1997.
-
[24] FAISAL A,BISDOM K,ZHUMABEK B,et al.Injectivity and grav⁃ ity segregation in WAG and swag enhanced oil recovery[R].SPE 124197,2009.
-
[25] 徐阳,任韶然,章杨,等.CO2驱过程中不同相态流态对采收率的影响[J].西安石油大学学报:自然科学版,2012,27(1):53-56.XU Yang,REN Shaoran,ZHANG Yang,et al.Influence of phase state and flow regime on recovery factor in CO2 flooding[J].Jour⁃ nal of Xi’an Shiyou University:National Science Edition,2012,27(1):53-56.
-
[26] 赖令彬,潘婷婷.蒸汽驱注采井间蒸汽超覆评价方法研究[J].特种油气藏,2013,20(2):79-83.LAI Lingbin,PAN Tingting.Evaluation method of steam override between injector and producer in steam flooding[J].Special Oil & Gas Reservoirs,2013,20(2):79-83.
-
摘要
针对厚油藏 CO2驱过程中气体发生超覆会造成垂向波及效率低的问题,为研究 CO2的超覆运移距离,自主研制高温高压超覆模型,采用分层采集流体的方式,改变岩心长度(分别为60,50,40 cm)开展气驱实验,上、下出口端的产量分别表征岩心上、下部的开发效果以评价其超覆程度。实验结果表明,重力分异作用下CO2的运移过程可以分为3个主要阶段:气体均匀推进阶段(0~40 cm)、过渡阶段(40~50 cm)和超覆完成阶段(50~60 cm)。建立了比值法和面积法进行超覆程度的量化表征,气体运移距离越远,上、下出口端产油量差异越大,超覆程度指数增幅越大,总产油量降幅越大。因此,油田生产中,在保证经济利益最大化的前提下应尽可能减小井距以减弱气体超覆对开发效果的影响。
Abstract
Aiming at the problem of low vertical sweep efficiency caused by gas overlap during the CO2 flooding in thick oil reservoir,a high-temperature and high-pressure overlap model is independently developed to study the CO2 overlap migra- tion distance. The fluid collection is completed in each layer,and the length of the core(60,50,40 cm)is changed to carry out the gas flooding experiment. The output of the upper and lower outlets characterize the development efficiency of the up- per and lower parts of the core respectively to evaluate the overlap degree. The experimental results show that the migration process of CO2 under gravity segregation can be divided into three stages:the uniform gas advancement stage(0-40 cm), the transition stage(40-50 cm)and the overlap completion stage(50-60 cm). The ratio method and area method were es- tablished to quantitatively characterize the overlap degree. The farther gas migration distance shows the bigger difference in oil production between the upper and lower outlets,the higher increase of the overlap degree index shows the bigger decline in overall oil production. Therefore,the well spacing should be reduced as much as possible to minimize the impact of gas overlap on the development efficiency while ensuring maximum economic benefits in oilfield development.
Keywords
thick oil reservoir ; gravity segregation ; CO2 flooding ; migration distance ; overlap degree