-
1978年,AYDIN等最早使用“变形带”(deforma⁃ tion band)一词来描述孔隙性砂岩中的形变现象[1-3]。随后,多位国外学者使用变形带来描述高孔隙性岩层中的微小断裂[4]、具有剪切性质的变形带[5]、岩石的破碎滑动面[6] 等。FISHER等认为可将 15% 作为高孔隙性和低孔隙性岩石的界限[7]。目前,孔隙性砂岩中的变形带是指发育于孔隙性岩层或未完全固结成岩的高孔隙砂质沉积物中的局部应变构造,常以具板状结构的薄层带或者小断层形式出现。变形带内部内聚力增强,与一般的断裂相比,常缺少独立、连续的滑脱面[8-9]。而在孔隙度小于15%的低孔隙性岩层中,岩石受力变形多形成不连续性的节理、裂缝。在挤压、拉张以及剪切性质的构造背景中均有变形带发育,且变形带具有多种分类形式,其类型主要取决于变形带的形成环境、岩石埋藏深度以及岩石中的泥质含量[8]。根据其形成时的力学性质,变形带可分为膨胀带、剪切带、压缩带和混合变形带[10-11]。根据其成岩阶段,在泥质含量小于 15% 的纯净孔隙性砂岩中,在未固结-半固结阶段常受颗粒流作用形成解聚带,在固结阶段常受碎裂作用或碎裂流作用形成碎裂带,而在超固结阶段则会受石英颗粒溶解及胶结作用影响出现压溶胶结型变形带[12-16];根据岩层的泥质含量,纯净砂岩中常发育碎裂带,而层状硅酸盐含量大于 15% 的岩层中常表现为层状硅酸盐的混合及涂抹作用,发育层状硅酸盐变形带[8];野外环境中常见因碎屑颗粒旋转破碎形成的压实型剪切碎裂带和剪切增强型压实带,并且常以簇状变形带出现[17]。而纯剪切变形带和纯挤压性变形带野外少见,多在实验室条件或理论上存在[18-27]。
-
变形带可以作为单独的局部构造发育于孔隙性储层中,也常见规模不等的变形带聚集在一起出现在断裂破碎带中[28]。在大多数变形带形成及发展的过程中,储层孔隙度及渗透率均明显降低[18,29-34]。因此,储层中如果存在密集发育的变形带,则可能会使储层的物性改变,增加其非均质性,并对油气运聚产生影响[28,32,35]。笔者以远安地堑上白垩统红花套组密集发育的变形带为例,在野外宏观研究及取样分析的基础上,通过大尺寸铸体薄片,结合三维X射线显微镜成像技术,对样品进行高分辨率、高衬度的扫描和三维重构,精细研究变形带的类型、碎裂带的微观特征及其发育非均质性,并据此对其形变机制进行探讨,以期对之后更加深入地研究变形带对流体运移的影响、更好地指导流体运移与模拟、掌握油气成藏规律等方面起到抛砖引玉的作用。
-
1 区域地质背景
-
远安地堑为江汉盆地西北缘的一个次级地堑构造,位于湖北省西部,西以通城河断裂为界与黄陵背斜相邻,东以远安断裂为界,南接广阔的江汉盆地。其形成和发育受通城河断裂及远安断裂的控制,总体呈 NNW—SEE 向展布,长度约为 36 km,宽度约为5~10 km,向北西逐渐尖灭[36] (图1)。远安地堑以震旦系—中三叠统的浅海相碳酸盐台地为基底,断陷发育于中、新生代,目前普遍认为晚白垩世至早始新世为裂谷拉张阶段,中始新世至第四纪转后裂谷阶段[37-38]。
-
图1 远安盆地地质简图(据文献[36]修改)
-
Fig.1 Simplified geological map of Yuan’an Basin (Modified according to Reference[36])
-
远安地堑沉积地层厚度超过 2 000 m,自东、西边界处向盆地中心缓倾,在地堑中心处地层近水平展布,地层倾角仅为 5°~10°左右。上白垩统自下而上分为罗镜滩组(K2l)、红花套组(K2h)和跑马岗组 (K2p),其中红花套组出露最为广泛(图1),厚度约为 400~800 m。由于在晚白垩世研究区为干旱气候,因此有学者认为红花套组具有沙漠相沉积特征,局部有间歇性河流影响[39-40]。在地堑中、南部地区主要为棕红色厚层块状中砂岩-细砂岩,而远安县城以西靠近地堑边缘以及叶家桥-干溪镇南部附近地区则主要为厚层中-细砂岩夹中层-薄层泥、页岩,局部可见底砾岩。
-
根据图1 所示的 17 个观察点观测到的变形带主要发育在地堑中、南部旧县-干溪一带红花套组高孔隙性块状砂岩中,分布极为密集,在平面及剖面上具有多种组合形式,以平行、网状、硬连接、截断、交叉最常见[41],在地堑西部紧邻通城河断裂带以及靠近地堑中部轴线附近常发育共轭变形带。
-
2 变形带的微观特征及形变机制
-
野外观测及样本分析表明,研究区变形带发育区的红花套组岩层主要为较纯净的岩屑质石英砂岩,泥质含量约为3%,石英颗粒含量大于80%,少量长石、岩屑,分选和磨圆均较好。母岩成分成熟度及结构成熟度较高,主要为中砂-细砂,颗粒尺寸约为0.2~0.5 mm,石英颗粒边缘见高价铁质浸染膜(图2)。母岩孔隙发育,本次取样测试孔隙度为 12%~24.2%,在取样过程中岩石容易发生破碎,并且其结构也较为松散,这些均反映出红花套组砂岩浅埋藏-中埋藏深度的特点。目前在研究区未发现石英压溶胶结型变形带和层状硅酸盐变形带,解聚带发育极少,碎裂带发育最为广泛,且规模不一,微观特征典型,对其形变机制具有很好的指示作用。
-
2.1 碎裂带的颗粒碎裂特点
-
宏观上看,远安地堑红花套组碎裂带肋状突出的特征非常明显,颜色总体比母岩稍浅,延伸长度达几十米到上百米,呈巨大的网状、交叉、平行、共轭、截断等形式密集产出,局部可见大约 3~5 cm 的断距,显示出部分碎裂带具有明显剪切特征。
-
结合镜下微观特征来看,碎裂带内颗粒的破碎主要发生在单个颗粒或相邻的几个颗粒间,同母岩相比,颗粒总体发生明显破碎。颗粒破碎的程度与级别有差异,由弱到强主要有:①颗粒内形成单条粒内缝,为单点接触所形成(图2a);②颗粒内产生1 条或2条微裂缝,为双点接触所形成,普遍产生在颗粒承受轴向载荷条件下(图2b),常可见到颗粒内部的“X”剪裂缝(图2c);③颗粒内产生多条微裂缝,一般具有多个接触点,沿着破裂面呈现放射状或网状,颗粒破碎为多部分,具明显棱角状(图2d,2e); ④颗粒发生完全碎裂,形成多个尺寸很小的碎基,颗粒尺寸小于母岩颗粒尺寸的 1/10,分选变差(图2f)。
-
碎裂带最常见的颗粒破碎方式为多点接触的破裂(图3a)和完全碎裂(图3b)。变形带内孔隙坍塌,孔隙度和渗透率均不同程度的降低。根据本次野外观测,研究区碎裂带按其力学性质可以分为剪切增强型压实带和压实型剪切带2种。碎裂带受到的剪切力越大,颗粒碎裂程度越严重,对流体渗流的影响越大。
-
图2 远安地堑红花套组碎裂带微观颗粒破碎形式
-
Fig.2 Modes of grain breakage in cataclastic bands in K2h Formation in Yuan’an Graben
-
图3 远安地堑红花套组碎裂带内颗粒发生不同程度的碎裂
-
Fig.3 Broken grains within cataclatic band in K2h Formation in Yuan’an Graben
-
2.2 碎裂带的微观特征及对形变机制的指示
-
碎裂带虽然都表现出碎裂变形的特点,但是由于其形变机制不同,不同期次的碎裂带表现出复杂而典型的非均质性。通过研究大尺寸铸体薄片,结合三维 X 射线显微镜成像技术,对样品进行高分辨率、高衬度的扫描和三维重构,精细研究了碎裂带的微观特征及其发育非均质性。其微观特征主要表现为单条碎裂带顺其延伸方向形变不均一、单条碎裂带内部垂直于其延伸方向形变相对均一、碎裂流作用导致碎裂带强化、簇状碎裂带内部结构不均一等,而这些特征均对其形变机制有重要指示作用。
-
单条碎裂带顺其延伸方向形变不均一 单条碎裂带顺其延伸方向普遍存在不均一形变现象(图4),并且这种现象在颗粒仅发生多点接触破裂时更为常见。图4a中所示为一条宽度约为2 mm的单条碎裂带,颗粒碎裂强度中等,反映出处于浅埋藏阶段的高孔隙性疏松砂岩经历了较强应变硬化时,颗粒发生单点、双点及多点接触破裂,形成直径约为原来母岩颗粒的 1/4或更小的棱角状碎粒。在碎裂带中虽然孔隙总体均发生一定程度的坍塌,但一个明显特征是:沿碎裂带延伸方向,孔隙的减小呈现非均一性,表现为相对高孔隙-相对低孔隙-相对高孔隙相间分布的特点。在一条经历更强压剪作用而形成的碎裂带(图4b)中,颗粒基本发生完全破碎,形成直径小于母岩颗粒直径1/10的“基质”。碎裂带中孔隙坍塌十分严重,沿其走向延伸方向同样呈现出孔隙减小的明显差别,在相对高孔隙处颗粒破碎程度稍弱。
-
图4 远安地堑红花套组单条碎裂带内顺延伸方向的不均一形变
-
Fig.4 Inhomogeneous deformation along the strike within a single cataclastic band in K2h Formation in Yuan’an Graben
-
究其原因,这种沿碎裂带走向方向出现的颗粒破碎、孔隙坍塌不均一化的现象与碎裂带本身的形成机制有密切关系。碎裂带与裂缝根本的区别就是碎裂带的颗粒破碎是起因于一个或几个邻近颗粒之间的摩擦滚动与应变累积,而裂缝面是贯穿众多颗粒所形成的明显不连续构造。在固结成岩阶段,埋藏深度为 1~3 km、中等围压条件的高孔隙性岩石,当岩石颗粒之间积累的局部应变超过岩石的破裂强度时,便会发生颗粒最初的破裂,同时伴随孔隙的局部坍塌,在此处便会形成一个碎裂核,此时岩石的形变机制主要为碎裂作用。岩石在区域构造应力作用下,会沿着基本相同的方向,在孔隙度相对较高之处优先形成一系列碎裂核,这些距离不等的碎裂核相互影响,逐渐发展,随碎裂核之间的应变硬化作用[10] 而最终连接在一起,单条碎裂带便形成了。由于碎裂核最先形成,所以其颗粒碎裂相对最强烈。在核与核之间的应变硬化区,岩石颗粒破碎程度弱于碎裂核。故顺着单条碎裂带延伸方向,常出现岩石颗粒碎裂及孔隙坍塌强弱不均的特点。需要指出的是,如果在应力作用下碎裂带内颗粒碎裂程度进一步增强,则这种非均一特点会明显减弱。
-
单条碎裂带内部垂直于其延伸方向形变相对均一 研究区单条碎裂带厚度较小,一般为 0.5~8 mm,形成机制不同的碎裂带厚度变化范围较大。从力学性质上讲,研究区最常见的碎裂带类型为压实型剪切带及剪切增强型压实带。这说明不同期次形成的碎裂带,其形变除了受控于碎裂作用,还受大小不同的剪切力分量影响。单条压实型剪切带剪切分量更大,宽度较小(多小于 1 mm),往往颗粒破碎更为严重,带缘及混入带内的少量大颗粒长轴方向近于与碎裂带延伸方向平行,反映出在其形成过程中经历了较强剪切作用。带内颗粒尺寸破碎到50 μm以下,形成多个尺寸很小的碎基,孔隙及渗透率减小严重,且破碎带边缘非常清晰(图5a)。而剪切增强型压实带宽度相对较大,可达 2~8 mm,带内颗粒破碎较为明显,破碎亚颗粒尺寸相近,相对均一化,但尺寸比前者稍大,约为100~200 μm,碎裂带边缘与围岩的界限同样较为清晰(图5b)。因此,在垂直于碎裂带的延伸方向上,单条碎裂带的颗粒变形呈现出相对均一化特点。与顺其延伸方向明显的非均质化变形相比而言,碎裂带最初形成时会沿同一方向形成一系列密集分布的碎裂核,而在同一碎裂核附近,岩石颗粒碎裂程度相似,总体形变相对均一化。
-
图5 远安地堑红花套组单条碎裂带内部垂直于其延伸方向的相对均一形变
-
Fig.5 Relative homogeneous deformation perpendicular to strike within a single cataclastic band in K2h Formation in Yuan’an Graben
-
碎裂流作用导致碎裂带强化 随着埋藏深度增加,岩石围压增高,如果遇到构造作用力再次快速作用于岩石或碎裂带,由于应变速率较高,岩石颗粒之间的摩擦、滑动会愈加强烈,颗粒的碎裂会增强,或剧烈破碎、定向排列,从而形成碎裂流。碎裂流作用可能会在岩石中形成新的致密碎裂带,也可能使先存碎裂带发生强化,即颗粒碎裂程度进一步增强,孔隙度和渗透率进一步降低;同时岩石也可能会伴随形成破裂面。
-
如图6a,据其交切关系可识别出2期碎裂带,第 1期碎裂带宽度较大,约为1.5 mm,为挤压应力环境下形成的剪切增强型压实带,颗粒主要发生碎裂作用,破碎程度为多点接触的中等破碎;第2期碎裂带将第 1 期碎裂带左旋截断错开,断距约为 1 mm,表明具有较强的剪切作用力,为压实型剪切带。其宽度约为0.5 mm,明显小于第1期碎裂带,带缘非常清晰,带内颗粒破碎剧烈,普遍已发生泥质化,残留少量细小碎基,并且呈定向排列的特点,显示出明显的碎裂流作用。
-
图6 远安地堑红花套组碎裂作用与碎裂流作用
-
Fig.6 Cataclasis and cataclastic flow in K2h Formation in Yuan’an Graben
-
图6b 存在一条宽度约为 2 mm 的碎裂带,在岩层继续成岩演化过程中,随埋深加大、周围温压条件的增强,先期碎裂颗粒由多点接触碎裂方式向完全碎裂型转化,局部开始显现碎裂流的特点,其内部形变非均质性增强,孔隙度和渗透率亦呈现出较大变化。
-
簇状碎裂带内部结构不均一 簇状碎裂带是由多条碎裂带之间的应变硬化作用发展而来。随着单条碎裂带数目不断增多,密度不断增大,相邻碎裂带之间相互作用形成应力增强区,在这些带间区域的岩石颗粒也会产生破裂,最终单条碎裂带会以一定的形式相连,可以是相邻的密集碎裂带相连,也可是不同碎裂带首尾相连(具体视其应力方式而定),从而发展成簇状碎裂带。此阶段的形变机制主要是碎裂流作用及应变硬化作用。簇状碎裂带延伸长达几十至上百米,宽度一般远大于单条碎裂带,可呈数毫米至几十厘米产出,沿其走向宽度变化较大(图7)。
-
所谓单条碎裂带与簇状碎裂带仅用肉眼分辨是会产生巨大偏差的,肉眼所观察到的变形带,即使宽度很窄且规则,也未必就是单条碎裂带,必须结合微观特征来准确的识别分辨。如图7b,在岩样中观测碎裂带宽度约为 1~2 mm,边缘清晰,形态规则无分叉,肉眼观测类似单条碎裂带特征,但在镜下观察可见其实为2条碎裂带,彼此之间有交叉,颗粒破碎程度中等,带间区域的岩石颗粒受应变硬化作用影响亦发生较弱程度的破碎,破碎颗粒的尺寸明显大于单条碎裂带内颗粒,实为碎裂作用所形成的簇状碎裂带。
-
图7c为一典型完全碎裂型簇状碎裂带,变形带最宽处约为 1 cm,变形程度强于图7b,镜下视野内所见颗粒皆发生碎裂变形,3 条碎裂带内颗粒发生完全碎裂,形成泥质化碎基,包裹的残存颗粒呈明显定向排列,体现出碎裂流的典型特点。碎裂带之间过渡区颗粒破碎尺寸约为母岩的1/4,孔隙同样有较大减小,整体簇状变形条带物性明显降低,很可能对流体渗流产生影响。通过 AUTOSCAN 对高孔隙性砂岩中变形带岩石样品渗透率进行密集测试,结果表明,完全碎裂型簇状碎裂带渗透率降低最为明显,最大可达到 4 个数量级。但到底降低到多少才能真正影响到流体渗流,以及其宽度会对流体渗流到底存在何种影响,目前还认识不清,需要进一步研究。
-
图7 远安地堑红花套组簇状碎裂带的镜下识别照片
-
Fig.7 Micro-characteristics of cataclastic band clusters in K2h Formation in Yuan’an Graben
-
2.3 变形带的时间演化序列
-
孔隙性砂岩中变形带内颗粒破碎的过程是变形带微观结构揭示的关键问题。基于孔隙性砂岩中变形带微观产出状态特征,可以揭示变形带的时间演化序列。变形带的演化过程具有连续性。首先,在浅埋藏阶段(埋藏深度小于 1 km),由于颗粒流作用会在岩层中形成强度较低的解聚带,随后,随埋深加大,岩层受力增加,在岩层中沿某一方向形成多个碎裂核,然后这些核会继续发展相互连接形成单条碎裂带,随着碎裂作用向碎裂流作用的转变,带内颗粒由多点接触的中等碎裂程度向完全碎裂转化,碎裂带强度增大。而带间应变硬化作用进一步增强,多个离散的单条碎裂带发展形成簇状碎裂带。而单条碎裂带的颗粒破碎程度决定了簇状碎裂带的类型。野外常见中等碎裂型簇状碎裂带以及完全碎裂型簇状碎裂带。当带内颗粒破碎到一定程度时,在应力的持续作用下可能会发生应变软化作用,在压剪性簇状碎裂带内部沿某条碎裂带形成滑动面。因此,不同成岩阶段形成的变形带虽然类型不同,但是在砂岩中可以同时存在,如半固结成岩阶段形成的解聚带与固结成岩阶段形成的碎裂带的组合,或是中等碎裂程度的碎裂带与碎裂流阶段形成的完全碎裂型碎裂带组合。
-
3 结论
-
远安地堑红花套组岩屑质石英砂岩中密集发育变形带,而碎裂带为研究区发育最为广泛的成因类型。碎裂带最常见的颗粒破碎方式为多点接触的破裂以及完全碎裂。变形带内孔隙坍塌,孔隙度和渗透率均不同程度降低。研究区碎裂带按其力学性质可以分为剪切增强型压实带和压实型剪切带 2 种。碎裂带受到的剪切力越大,带内颗粒碎裂程度越严重,对流体渗流的影响越大。
-
研究区碎裂带微观呈现出单条碎裂带顺其延伸方向的形变不均一、狭窄的单条碎裂带内部垂直于延伸方向的形变相对均一、强烈的碎裂流作用导致的碎裂带强化、簇状碎裂带内部结构不均一等特点,反映了碎裂变形带的形成过程,也指示其形变机制由碎裂作用向碎裂流作用的转变。
-
变形带时间演化序列一般按照碎裂核形成-中等碎裂程度型碎裂带-完全碎裂型碎裂带-簇状碎裂带等顺序,最终可能会沿某条碎裂带形成滑动面。野外常见中等碎裂型簇状碎裂带以及完全碎裂型簇状碎裂带,完全碎裂型簇状碎裂带内孔隙度和渗透率与母岩相比减小严重,实测可降低 4 个数量级,很可能会对流体渗流产生较大影响。
-
参考文献
-
[1] AYDIN A.Small faults formed as deformation bands in sandstone [J].Pure and Applied Geophysics,1978,116(4/5):913-930.
-
[2] AYDIN A,JOHNSON A M.Development of faults as zones of de⁃ formation bands and as slip surfaces in sandstones[J].Pure and Applied Geophysics,1978,116(4/5):931-942.
-
[3] AYDIN A,JOHNSON A M.Analysis of faulting in porous sand⁃ stones[J].Journal of Structural Geology,1983,5(1):19-31.
-
[4] JAMISON W R,STEARNS D W.Tectonic deformation of Wingate Sandstone,Colorado National Monument[J].AAPG Bulletin,1982,66(12):2 584-2 608.
-
[5] DAVIS G H.Structural geology of the Colorado Plateau region of southern Utah,with special emphasis on deformation bands[J].Special Paper of the Geological Society of America,1999,342(6):1-157.
-
[6] FOWLES J,BURLEY S.Textural and permeability characteristics of faulted,high porosity sandstones[J].Marine and Petroleum Ge⁃ ology,1994,11(5):608-623.
-
[7] FISHER Q,CASEY M,HARRIS S D,et al.Fluid-flow properties of faults in sandstone:The importance of temperature history[J].Geology,2003,31(11):965-968.
-
[8] FOSSEN H,SCHULTZ R A,SHIPTON Z K,et al.Deformation bands in sandstones:a review[J].Journal of the Geological Soci⁃ ety,2007,164(4):755-769.
-
[9] BRAATHEN A,TVERANGER J,FOSSEN H,et al.Fault facies and its application to sandstone reservoirs[J].AAPG Bulletin,2009,93(7):891-917.
-
[10] FOSSEN H.Structural geology[M].New York:Cambridge Univer⁃ sity Press,2010:119-185.
-
[11] SCHULTZ R A.Relationship of compaction bands in Utah to Laramide fault-related folding[J].Earth and Planetary Science Letters,2011,304(1/2):29-35.
-
[12] TWISS R J,MOORES E M.Structural geology[M].New York:Freeman and Company,1992:100-145.
-
[13] MANDL G,DEJONG L N J,MALTHA A.Shear zones in granular material[J].Rock Mechanics and Rock Engineering,1977,9(2/3):95-144.
-
[14] DU BERNARD X,EICHHUBL P,AYDIN A.Dilation bands:A new form of localized failure in granular media[J].Geophysical Research Letters,2002,29(24):2 176-2 179.
-
[15] BENSE V F,VAN DEN BERG E H,VAN BALEN R T.Deforma⁃ tion mechanisms and hydraulic properties of fault zones in uncon⁃ solidated sediments,the Roer Valley Rift System,the Netherlands [J].Hydrogeology Journal,2003,11(3):319-332.
-
[16] BEACH A,WELBON A I,BROCKBANK P J,et al.Reservoir damage around faults:Outcrop examples from the Suez rift[J].Pe⁃ troleum Geoscience,1999,5(2):109-116.
-
[17] SHIPTON Z K,COWIE P A.A conceptual model for the origin of fault damage zone structures in high-porosity sandstone[J].Jour⁃ nal of Structural Geology,2003,25(3):333-344.
-
[18] ANTONELLINI M A,AYDIN A,POLLARD D D.Microstructure of deformation bands in porous sandstones at Arches National Park,Utah[J].Journal of Structural Geology,1994,16(7):941-959.
-
[19] BESUELLE P.Evolution of strain localisation with stress in a sand⁃ stone:brittle and semi-brittle regimes[J].Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,2001,26(1/2):101-106.
-
[20] BORJA R I,AYDIN A.Computational modeling of deformation bands in granular media.I.Geological and mathematical framework [J].Computer Methods in Applied Mechanical Engineering,2004,193(27/29):2 667-2 698.
-
[21] OKUBO C H,SCHULTZ R A.Evolution of damage zone geometry and intensity in porous sandstone:Insight gained from strain ener⁃ gy density[J].Journal of the Geological Society,2005,162(6):939-949.
-
[22] OLSSON W A.Theoretical and experimental investigation of com⁃ paction bands in porous rock[J].Journal of Geophysical Re⁃ search,1999,104(B4):7 219-7 228.
-
[23] OLSSON W A,HOLCOMB D J.Compaction localization in porous rock[J].Geophysical Research Letters,2000,27(21):3 537-3 540.
-
[24] ISSEN K A,RUDNICKI J W.Theory of compaction bands in po⁃ rous rock[J].Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,2001,26(1/2):95-100.
-
[25] WONG T F,BAUD P,KLEIN E.Localized failure modes in a com⁃ pactant porous rock[J].Journal of Geophysical Research,2001,28(13):2 521-2 524.
-
[26] BAUD P,KLEIN E,WONG T F.Compaction localization in po⁃ rous sandstones:Spatial evolution of damage and acoustic emis⁃ sion activity[J].Journal of Structural Geology,2004,26(4):603-624.
-
[27] MOLLEMA P N,ANTONELLINI M A.Compaction bands:A struc⁃ tural analog for anti-mode I cracks in aeolian sandstone[J].Tecto⁃ nophysics,1996,267(1/4):209-228.
-
[28] HESTHAMMER J,FOSSEN H.Structural core analysis from the Gullfaks area,northern North Sea[J].Marine and Petroleum Geol⁃ ogy,2001,18(3):411-439.
-
[29] PITTMAN E D.Effect of fault-related granulation on porosity and permeability of quarts sandstones,Sinpson Group(Ordovician),Oklahoma[J].AAPG Bulletin,1981,65(11):2 381-2 387.
-
[30] JAMISON W R,STEARNS D W.Tectonic deformation of Wingate Sandstone,Colorado National Monument[J].AAPG Bulletin,1982,66(12):2 584-2 608.
-
[31] KNIPE R J.Juxtaposition and seal diagrams to help analyze fault seals in hydrocarbon reservoirs[J].AAPG Bulletin,1997,81(2):187-195.
-
[32] FISHER Q J,KNIPE R J.The permeability of faults within silici⁃ clastic petroleum reservoir of the North sea and Norwegian conti⁃ nental shelf[J].Marine and Petroleum Geology,2001,18(10):1 063-1 081.
-
[33] LOTHE A E,GABRIELSEN R H,BJØRNEVOLL-HAGEN N,et al.An experimental study of the texture of deformation bands:ef⁃ fects on the porosity and permeability of sandstones[J].Petroleum Geoscience,2002,8(3):195-207.
-
[34] SHIPTON Z K,EVANS J P,ROBESON K R,et al.Structure het⁃ erogeneity and permeability in faulted eolian sandstone:Implica⁃ tions for subsurface modeling of faults[J].AAPG Bulletin,2002,86(5):863-883.
-
[35] OGILVIE S R,GLOVER P W J.The petrophysical properties of deformation bands in relation to their microstructure[J].Earth and Planetary Science Letters,2001,193(1/2):129-142.
-
[36] 湖北省地质矿产局.湖北省区域地质志[M].北京:地质出版社,1990:35-400.Hubei Provincial Bureau of Geology and Mineral Resources.Re⁃ gional geology of Hubei Province[M].Beijing:Geological Publish⁃ ing House,1990:35-400.
-
[37] 戴少武.江汉盆地印支期以来区域构造特征探讨[J].地质力学学报,1996,2(4):80-84.DAI Shaowu.Discussion on the regional structural features of Ji⁃ anghan basin since the Indosinian movement[J].Journal of Geo⁃ mechanics,1996,2(4):80-84.
-
[38] 舒良树,周新民.中国东南部晚中生代构造作用[J].地质论评,2002,48(3):249-260.SHU Liangshu,ZHOU Xinmin.Late Mesozoic tectonism of South⁃ east China[J].Geological Review,2002,48(3):249-260.
-
[39] 贺其川.沙漠沉积特征——以江陵凹陷白垩系红花套组为例 [J].石油天然气学报,2011,33(7):24-27.HE Qichuan.Desert depositional characteristics-By taking Creta⁃ ceous Honghuatao Formation in Jiangling Depression for example [J].Journal of Oil and Gas Technology,2011,33(7):24-27.
-
[40] 朱锐,张昌民,龚福华,等.粒度资料的沉积动力学在沉积环境分析中的应用:以江汉盆地西北缘上白垩统红花套组沉积为例[J].高校地质学报,2010,16(3):358-364.ZHU Rui,ZHANG Changmin,GONG Fuhua,et al.Use of sedi⁃ ment dynamic analysis in environment interpretation:A case study on Honghuatao Formation,Upper Cretaceous of Western Ji⁃ anghan Basin,Hubei Province[J].Geological Journal of China Universities,2010,16(3):358-364.
-
[41] 渠芳,连承波,柴震瀚,等.孔隙性砂岩地层中变形带研究述评 [J].油气地质与采收率,2019,26(5):10-20.QU Fang,LIAN Chengbo,CHAI Zhenhan,et al.Review of re⁃ search on deformation band in porous sandstone formations[J].Petroleum Geology and Recovery Efficiency,2019,26(5):10-20.
-
摘要
以远安地堑红花套组岩屑质石英砂岩中发育的碎裂带为例,在详细研究其宏观特点的基础上,结合室内分析资料,重点描述碎裂带的微观特征,并对其形变机制进行深度剖析与探讨。结果表明,研究区变形带具有浅埋藏-中埋藏深度的特点,主要发育碎裂带。最常见的颗粒破碎方式为多点接触破裂以及完全碎裂。微观特征表现为单条碎裂带顺其延伸方向形变不均一、单条碎裂带内部垂直于其延伸方向形变相对均一、由强烈的碎裂流作用导致的碎裂带强化、簇状碎裂带内部结构不均一等,以上反映了碎裂变形带的形成过程,也指示其形变机制由碎裂作用向碎裂流作用转变。变形带的时间演化序列为碎裂核形成-中等碎裂程度型碎裂带-完全碎裂型碎裂带-簇状碎裂带,最终可能会沿某条碎裂带形成滑动面。野外常见中等碎裂型簇状碎裂带以及完全碎裂型簇状碎裂带,完全碎裂型簇状碎裂带内孔隙度和渗透率与母岩相比减小严重,实测可降低4个数量级,很可能会对流体渗流产生较大影响。
Abstract
Aiming at the cataclastic band developed in lithic quartz sandstone of K2h Formation in Yuan’an Graben,based on the detailed study of its macro-characteristics and experimental analysis data,the micro-characteristics of the cataclas- tic band are described,and the deformation mechanism is analyzed and discussed in detail. The results show that the defor- mation band in the study area has the characteristics of shallow to middle burial depth,in which cataclastic band is mainly developed. The most common modes of grain breakage are multi-point contact and complete fragmentation. The micro-het- erogeneity is characterized by the inhomogeneous deformation of a single cataclastic band along its strike,the relatively ho- mogeneousdeformation of a single cataclastic band perpendicular to its strike,the strengthening of the cataclastic band caused by the strong cataclastic flow and the inhomogeneous inner-structure of the cataclastic bandclusters,which reflects the formation of the cataclastic deformation band,and also indicates that its deformation mechanism changes from catacla- sis to cataclastic flow. The temporal sequence of the deformation zone is from the cataclastic core formation to medium-de- gree fragmented cataclastic band to cataclastic band with complete crushed grains to cataclastic band clusters. Finally,a sliding surface may be formed along a certain cataclastic band. In the field,it is common to find the medium-degree frag- mented cataclastic band clusters and completely crushed deformation band clusters. Compared with the host rock,the po- rosity and permeability in the completely crushed deformation band clusters are seriously decreased,which can be reduced by 4 orders of magnitude in actual measurement,and it is likely to have a great impact on fluid flow.