-
变换带(transfer zone)最初被用于表征挤压地区相邻逆冲断层之间的应变和位移变换[1],随后有学者意识到半地堑分布的广泛性,并在美国西部的盆岭省发现连接不同半地堑且具有走滑特征的断层,认为其具有海底转换断层的作用[2-3]。此后,研究人员陆续将变换带的观点应用于裂陷盆地油气勘探中,并取得了良好的效果[4-5]。自中国引入变换带概念以来,在松辽盆地[6]、渤海湾盆地[7-10]、高邮凹陷[11-12] 及南海北部大陆边缘[13-14] 等地区开展了针对变换带识别及其油气富集规律的研究,并在基本概念辨析、类型划分、沉积控制、成因机制、油气输导、构造物理模拟及数值模拟等方面取得了相当进展[15-22],进一步认识到裂陷盆地变换带的形成演化过程及对油气富集的控制作用。
-
琼东南盆地是中国裂陷盆地构造样式研究的经典地区,其中涉及半地堑连接部位的低幅度调整带和高幅度调整带是国内最早研究变换带的案例[23];后来陆续发现了宝岛 19-2 变换带[24]、2 号断层变换带[25]、北部变换带[13] 和宝岛变换断层[14] 等相关构造。然而,目前对研究区变换带的形成演化过程及成因机制仍缺乏深入研究。为此,以位于琼东南盆地北部地区的松西-松东变换带为例,在基本构造特征解析的基础上,采用平衡剖面技术分析其形成和演化过程,并结合变换带成因研究理论及断层发育模式,探讨其成因机制及油气地质意义。研究成果有助于进一步认识裂陷盆地对倾叠覆型变换带形成及演化规律,同时也从理论上论证了变换带内部次级断层更为发育,能够有效改善储层条件,是有利的油气富集区。
-
1 地质背景
-
琼东南盆地为中国南海北部大陆边缘的新生代沉积盆地,呈北东走向展布于海南岛南侧,面积达8.92×104 km2,由北部坳陷、中部隆起、中央坳陷和南部断坳组成[26-28]。其中北部坳陷可以分为崖北凹陷、松西凹陷和松东凹陷等 3 个构造单元[29-30] (图1)。盆地自下而上沉积始新统岭头组、下渐新统崖城组、上渐新统陵水组、下中新统三亚组、中中新统梅山组、上中新统黄流组、上新统莺歌海组和更新统乐东组,其间以破裂不整合 T0 6 反射层(下中新统三亚组底)为界分为上、下 2 个构造层,下构造层为断裂发育的裂陷阶段,上构造层为裂后拗陷和热沉降阶段[29,31]。
-
琼东南盆地北部地区的主控边界断裂为5号断层和6号断层,其中前者控制崖北凹陷和松西凹陷,后者主控松东凹陷的形成和演化。两大断层在松西凹陷和松东凹陷交界部位形成对倾叠覆型变换带,对研究区油气勘探具有重要意义[13]。
-
图1 琼东南盆地区域构造位置及单元划分(据文献[30]修改)
-
Fig.1 Geotectonic location and structural units of Qiongdongnan Basin(Modified by References[30])
-
2 构造特征
-
将变换带引入裂陷盆地构造分析后,不同学者对其基本含义和类型进行了探讨[4,32-41],其中以 MORLEY 等[4] 和 FAULDS 等[40] 提出的 2 种方案影响最大。在MORLEY等建立的分类方案中,首先根据断层倾向关系分为同倾和反倾两大类,其中反倾又分为对倾和背倾 2 种类型,其次根据断层相对位置分为接近型、叠覆型、平行型和共线型等 4 种形式[4]。这一方案虽然在变换带级别划分以及变换断层描述等方面的考量还存在一定欠缺[37,40-41],但更加符合中国东部及沿海中、新生代裂陷盆地的实际地质条件,应用也更为广泛[42]。
-
5号断层在平面和剖面上均具有明显的分段特征,其松西凹陷部分呈北东走向,控制形成凹陷北西侧断陷并向南东方向超覆(图2 中 SXE3 和 5-31 测线)。6号断层亦呈北东走向,但倾向与 5号断层相反,控制形成松东凹陷南东侧断陷并向北西方向超覆(图2中SDE5剖面)。
-
松西-松东变换带位于 5 号断层和 6 号断层叠覆部位,属于 MORLEY 分类方案[4] 中的对倾叠覆型变换带,这一点与此前分类在本质上是一致的[13]。东侧以 6 号断层为主控断层的断裂大部分北倾,西侧以 5号断层为主控断层的断裂大部分南倾。5号断层和6号断层在变换带处均发生分叉撒开并逐渐尖灭(图2)。剖面上,变换带分隔两侧北断南超型松西凹陷和南断北超型松东凹陷,二者叠覆部位断层产状特征区别明显。北部次级断层大多南倾,南部断层大多北倾,呈现由对倾小型正断层组合形成的复杂结构,形成相对式半地堑,以盆内低凸起形式出现(图2中 SXE1剖面)。在运动学方面,5号断层和 6 号断层控制的下降盘都具有一定程度的旋转;自南西向北东方向,松西凹陷断块呈逆时针旋转,而松东凹陷断块则为顺时针旋转,变换带处南、北两部分断块发生相对旋转。因此,变换带不仅分隔两侧主控边界断层倾向相反的半地堑,也调节了两侧的伸展位移及不同断块的旋转。
-
图2 松西-松东变换带剖面特征及基底断裂展布特征
-
Fig.2 Cross-section and basement fault distribution of Songxi-Songdong transfer zone
-
3 演化过程
-
松西-松东变换带在琼东南盆地北部地区具有明显分段意义,其形成和演化与盆地发育过程息息相关。为分析变换带演化历史,选取横跨松西-松东变换带的 SXE1 测线,进行了平衡剖面制作(图3)。分析发现变换带发育过程可以分为初始发育 (始新世)、定型发育(崖城组沉积时期)、稳定发育(陵水组沉积时期)和消亡发育(三亚组沉积时期) 等4个阶段。
-
图3 松西-松东变换带构造演化剖面(SXE1测线)
-
Fig.3 Evolution of Songxi-Songdong transfer zone(Line SXE1)
-
初始发育阶段 琼东南盆地北部地区发育初期仅有少量断层活动,控制岭头组沉积。松西凹陷完全受边缘 5 号断层的控制,松东凹陷的发育受控于倾向和走向近于一致的 3 条正断层,其中 6 号断层是主控边界断层。该时期松西-松东变换带已初见端倪,平面上为5号和6号2条对倾正断层叠覆位置,剖面上表现为2条正断层控制下的半地垒特征,地貌上表现为低凸起形态(图3)。事实上,在MOR⁃ LEY的分类方案中[4],从接近到叠覆以至平行,代表了变换带发育的完整演化阶段。根据正断层演化规律,5号断层和 6号断层早期各自独立发育,在岭头组沉积初期二者可能并未叠覆,其间为对倾趋近型变换带。随着断层的生长,2 条主干边界断层才逐渐开始由趋近型向叠覆型转变。
-
定型发育阶段 崖城组沉积时期,研究区断裂活动性较前期有所增强,5号断层和6号断层除自身规模迅速增大以外,在变换带附近还形成多条次级小断层调节向两侧伸展变形。变换带北段,在早期 5 号断层基础上断裂向南北两侧持续扩展,形成南倾的铲式断层控制下的复合半地堑;变换带南段,6 号断层也向两侧扩展,形成北倾的复合半地堑。初始发育阶段形成的半地垒部分开始发育多条断层,使半地垒形态特征开始复杂化(图3)。该时期变换带形态基本定型,此后的形态发展没有太大变化,因此称为定型发育阶段。
-
稳定发育阶段 陵水组沉积时期,随着琼东南盆地伸展变形,松西-松东变换带在前期定型基础上稳步发育。该时期变换带部位断层持续活动并接受陵水组沉积,北段 5 号断层末梢衍生出的小断层对沉积的控制作用依然明显,剖面上呈北断南超的半地堑形式,南段 6 号断层与其北侧南倾正断层则表现为地堑形式(图3)。
-
消亡发育阶段 三亚组沉积早期,琼东南盆地北部地区由裂陷转入拗陷阶段,盆地整体开始以热沉降为主的变形。变换带部位大部分断层停止发育,断层对沉积的控制作用变得较为微弱,剖面上总体的构造样式开始表现为向南下掉的断阶(图3)。该时期变换带调节两侧位移的作用消失殆尽,因此视为变换带消亡发育阶段。
-
4 成因分析
-
目前关于裂陷盆地变换带的形成机理主要存在3种观点:①在变换带发育过程中,基底先存构造起主导作用[8,41,43-46]。②在伸展变形过程中,正断层具有分段生长的作用[5-6,37-39,47-49]。③盆地演化过程中的伸展要素(伸展量、伸展速率以及伸展方向)等是影响变换带变形特征的重要因素[50-51]。
-
在一些盆地中,先存构造普遍发育,是变换带发育的基础[18,52],受其影响形成的变换带两侧往往表现为截然的区别[14]。裂陷盆地中正断层的分段生长则是更为普遍的现象,同一条断层位移由中心向两侧逐渐减小,相应的应变转移到走向上接近或叠覆的断层上[53],其间即为变换带。至于伸展要素,其影响贯穿整个变换带形成和演化过程,但这种影响应该是施加在基底先存构造或者断层分段生长基础之上的。
-
松西-松东变换带位于 5 号断层和 6 号断层叠覆段,2条断层由中心向两侧位移减小,叠覆部位断距明显减小直至尖灭,符合一般裂陷盆地中正断层的分段生长模式。变换带另一个明显的特征就是北部的小断层均为南倾,与5号断层产状一致,南部的小断层产状则与6号断层一致,剖面上呈现“包心菜式”结构特征。事实上,松西凹陷和松东凹陷内部的小断层均表现为与边界断层倾向一致,与边界断层倾向相反的断层数量较少,特别是规模较大的反向断层极少出现。裂陷盆地中经常出现全部或者绝大多数倾向相同的正断层组合,被称为断层域[54]。有学者采用应力降低带理论来解释这一现象,即断层破裂后会在其周围形成应力降低带,在这一区域内应力大小不足以满足新断层破裂的条件[54-55]。断层发育的第 1 阶段其产状可能是随机的,形成对倾(图4a)或同倾断层(图4b)。如果左侧断层先形成,其应力降低带影响范围远大于右侧断层;在第 2阶段发育过程中,2条断层的应力降低带均相应扩展;最后,右侧反向断层由于接近左侧断层的应力降低带最终会停止发育(图4a)。反之,与大断层倾向相同的小断层在发育过程中,因不会触及大断层的应力降低带而更容易发育[54] (图4b)。对于松西-松东变换带而言,其剖面上显示南、北两段对倾断层在数量和规模的发育上比较接近(图2),并未出现“一家独大”的现象,与已有断层域发育模式(图4a)有所区别,可能存在不同的演化过程。总体而言,上述断层发育模式是建立在断层初始即存在规模差异的基础上,自然界对倾正断层演化可能存在另外一种模式:2 条对倾断层早期规模相近,在随后的扩展过程中形成各自的“势力范围”,最终发育为剖面上“包心菜式”的结构特征(图4 c)。
-
图4 断层域形成示意(图4a和4b据文献[54]修改)
-
Fig.4 Generation of different fault domains(Fig.4a and Fig.4b modified by Reference[54])
-
盆地早期开始裂陷,作为边界断层的 5 号断层和 6号断层开始发育并向外扩展。随着 2条边界断层的扩展,在二者相互接近的部位最初形成对倾接近型变换带。断层进一步侧向生长,逐渐形成对倾叠覆型变换带,也就是松西-松东变换带的初始发育阶段,该时期2条断层的末端规模相近,且均未扩展至对方的应力降低带。随着伸展断陷活动的进一步增强,在叠覆部位开始发育相当数量的小型断层调节两侧位移,奠定了变换带的基本形态,即松西-松东变换带定型发育阶段。该时期,5号断层和 6号断层末端均扩展至对方应力降低带而停止进一步向深部扩展,在各自区域形成一定数量的同倾小型断层调节伸展变形。在陵水组沉积时期,断层活动性减弱,但是松西凹陷和松东凹陷活动性依然存在差异,因此该时期是变换带稳定发育阶段。随着断层活动性的显著减弱,松西凹陷和松东凹陷均进入拗陷阶段,变换带开始消亡,随东、西两侧凹陷一起转入热沉降阶段。
-
5 油气地质意义
-
裂陷盆地中变换带的形成和演化,不仅影响盆内沉积体系的展布,改善储层的物性,而且在复杂变形过程中处于构造的高部位,也有利于捕集附近油源断层运移而来的油气,从而形成油气富集区[4-5,16,42]。前人曾对松西-松东变换带的油气地质意义进行过详细探讨[13],在理清变换带成因及演化过程的基础上,仍有以下几点需要引起足够的重视。
-
首先,该变换带成因上属于两侧边界断层分段生长的结果,断层生长过程中的“泵吸”作用[56] 有利于油气向上部运移,而断层静止期也可通过幕式排烃运聚油气[57]。受应力降低带影响,变换带中大型断层相对并不发育,取而代之的是出现大量小型正断层,这些正断层能够有效改善储层的储集性能,如果配合良好的圈闭条件,应为盆内油气富集区。其次,从构造演化过程来看,对倾叠覆型的松西-松东变换带是极为有利的油气运移指向区,是油气运移主线及汇流区[58]。至少在崖城组沉积时期,松西-松东变换带就已进入定型发育阶段;直至三亚组沉积之前,其相对两侧的半地堑一直处于构造高部位。这一位置还是沉积物进入湖盆的通道,发育粗粒沉积物,在盆地抬升期间还会最先遭受风化剥蚀,同样能改善储层物性。再者,变换带位于5号断层和 6 号断层叠覆部位,能够同时捕集来自松西凹陷和松东凹陷运移的油气,而 2 个凹陷均具有良好的生烃潜力[13]。因此,对倾叠覆型松西-松东变换带在油气富集方面的条件得天独厚,对其油气成藏特征值得深入研究。
-
6 结论
-
位于琼东南盆地北部地区的松西-松东变换带,属于 5 号断层和 6 号断层之间的对倾叠覆型变换带。平衡剖面研究结果表明,松西-松东变换带的演化过程分为初始发育(始新世)、定型发育(崖城组沉积时期)、稳定发育(陵水组沉积时期)和消亡发育(三亚组沉积时期)等 4 个阶段。松西-松东变换带是 5号断层和 6号断层分段生长过程中的产物,受应力降低带影响,2条对倾断层早期发育规模和后期发育速率相近,形成相对式半地堑剖面特征。对倾叠覆型变换带对油气富集的影响主要体现在:紧邻两侧生油凹陷且裂陷期处于构造高部位,为油气运移指向区;位于沉积物进入湖盆通道位置,发育粗碎屑;盆地抬升期间易遭受风化剥蚀,内部次级断层发育。松西-松东变换带具有极为有利的油气成藏条件,是琼东南盆地北部地区较为有利的油气勘探区。
-
参考文献
-
[1] DAHLSTROM C D A.Balanced cross sections[J].Canadian Jour⁃ nal of Earth Sciences,1969,6(4):743-757.
-
[2] LIGGETT M A,EHRENSPRECK H E.Pahranagat shear system,Lincoln County,Nevada[R].Argus Exploration Company,1974:1-11.
-
[3] LIGGETT M A,CHILDS J F.Crustal extension and transform fault⁃ ing in the southern Basin Range Province[R].Argus Exploration Company,1974:1-28.
-
[4] MORLEY C K,NELSON R A,PATTON T L,et al.Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts[J].AAPG Bulletin,1990,74(8):1 234-1 253.
-
[5] NELSON R A,PATTON T L,MORLEY C K.Rift-segment inter⁃ action and its relation to hydrocarbon exploration in continental rift systems[J].AAPG Bulletin,1992,76(8):1 153-1 169.
-
[6] 胡望水,王燮培.松辽盆地北部变换构造及其石油地质意义 [J].石油与天然气地质,1994,15(2):164-172.HU Wangshui,WANG Xiepei.Transform structures in northern part of Songliao Basin and its significance in petroleum geology [J].Oil & Gas Geology,1994,15(2):164-172.
-
[7] 周建生,杨池银,陈发景,等.黄骅坳陷横向变换带的构造特征及成因[J].现代地质,1997,11(4):425-433. ZHOU Jiansheng,YANG Chiyin,CHEN Fajing,et al.Structural characteristics and origin of transverse transfer zone in Huanghua subbasin[J].Geoscience,1997,11(4):425-433.
-
[8] 邬光辉,漆家福.黄骅盆地一级构造变换带的特征与成因[J].石油与天然气地质,1999,20(2):125-128.WU Guanghui,QI Jiafu.Characteristics and origin of first order transfer zones in Huanghua Basin[J].Oil & Gas Geology,1999,20(2):125-128.
-
[9] 陈书平,漆家福,王德仁,等.东濮凹陷断裂系统及变换构造 [J].石油学报,2007,28(1):43-49.CHEN Shuping,QI Jiafu,WANG Deren,et al.Fault systems and transfer structures in Dongpu Sag[J].Acta Petrolei Sinica,2007,28(1):43-49.
-
[10] 杨明慧.渤海湾盆地变换构造特征及其成藏意义[J].石油学报,2009,30(6):816-823.YANG Minghui.Transfer structure and its relation to hydrocarbon exploration in Bohai Bay Basin[J].Acta Petrolei Sinica,2009,30(6):816-823.
-
[11] 陈清华,劳海港.高邮凹陷一级横向变换构造带特征及其对油气的控制作用[J].石油天然气学报,2011,33(2):6-10.CHEN Qinghua,LAO Haigang.Structural characteristics of firstorder transition zone and its control over oil and gas in Gaoyou Sag [J].Journal of Oil and Gas Technology,2011,33(2):6-10.
-
[12] 劳海港.高邮凹陷横向低凸起构造特征分析[J].中南大学学报:自然科学版,2015,46(5):1 763-1 771.LAO Haigang.Structural characteristics of lateral low uplift in Gaoyou sag[J].Journal of Central South University:Science and Technology,2015,46(5):1 763-1 771.
-
[13] 谭建财,范彩伟,任科英,等.琼东南盆地北部构造变换带及其油气地质意义[J].油气地质与采收率,2014,21(2):62-65.TAN Jiancai,FAN Caiwei,REN Keying,et al.Structural transfer zone and significance for hydrocarbon geological in northern Qion⁃ gdongnan basin[J].Petroleum Geology and Recovery Efficiency,2014,21(2):62-65.
-
[14] 童亨茂,范彩伟,童传新,等.琼东南盆地宝岛变换带的特征、类型及其成因机制[J].石油与天然气地质,2015,36(6):897-905.TONG Hengmao,FAN Caiwei,TONG Chuanxin,et al.Character⁃ istics,types and genetic mechanism of Baodao transfer zone,Qion⁃ gdongnan Basin[J].Oil & Gas Geology,2015,36(6):897-905.
-
[15] 陈发景.调节带(或传递带)的基本概念和分类[J].现代地质,2003,17(2):186. CHEN Fajing.The basic concepts and classification of accommo⁃ dation(or transfer zone)[J].Geoscience,2003,17(2):186.
-
[16] 漆家福.裂陷盆地中的构造变换带及其石油地质意义[J].海相油气地质,2007,12(4):43-50.QI Jiafu.Structural transfer zones and significance for hydrocar⁃ bon accumulation in rifting basins[J].Marine Origin Petroleum Geology,2007,12(4):43-50.
-
[17] 姜芹芹,谢成龙,朱光.高邮凹陷南断阶调节带断层构造特征分析与数值模拟[J].地质科学,2013,48(3):647-664. JIANG Qinqin,XIE Chenglong,ZHU Guang.Fault characteristic analysis and numerical modeling for accommodation zones in the southern fault step zone of the Gaoyou Sag[J].Chinese Journal of Geology,2013,48(3):647-664.
-
[18] 李强,田晓平,孙风涛,等.辽中凹陷南洼构造转换带发育特征及其对油气成藏的控制作用[J].油气地质与采收率,2019,26(5):41-47.LI Qiang,TIAN Xiaoping,SUN Fengtao,et al.Development char⁃ acteristics of structural transfer zone and its control on hydrocar⁃ bon accumulation in south subsag of Liaozhong Sag[J].Petroleum Geology and Recovery Efficiency,2019,26(5):41-47.
-
[19] 李理,王晶.冀中坳陷衡水-无极构造变换带的特征及其成因机制[J].大地构造与成矿学,2017,41(1):69-76.LI Li,WANG Jing.Characteristics and mechanism of HengshuiWuji transfer zone in Jizhong Depression[J].Geotectonica et Metallogenia,2017,41(1):69-76.
-
[20] 葛家旺,朱筱敏,陶文芳,等.惠州凹陷HZ25转换带构造特征与成藏条件[J].西南石油大学学报:自然科学版,2017,39(5):19-30.GE Jiawang,ZHU Xiaomin,TAO Wenfang,et al.The tectonic characteristics and analysis of hydrocarbon accumulation condi⁃ tions in HZ25 transfer zone in Huizhou sag,Pearl River Mouth ba⁃ sin[J].Journal of Southwest Petroleum University:Science & Technology Edition,2017,39(5):19-30.
-
[21] 杨少春,白青林,路智勇,等.东辛地区营26断层变换带形成机制模拟[J].中国石油大学学报:自然科学版,2017,41(1):25-33. YANG Shaochun,BAI Qinglin,LU Zhiyong,et al.Forming mecha⁃ nism simulation of Ying26 transfer zone in Dongxin area[J].Jour⁃ nal of China University of Petroleum:Edition of Natural Science,2017,41(1):25-33.
-
[22] 孙同文,高喜成,吕延防,等.断裂转换带作为油气侧向、垂向运移通道的研究进展[J].石油与天然气地质,2019,40(5):1 011-1 021.SUN Tongwen,GAO Xicheng,LÜ Yanfang,et al.Research prog⁃ ress in fault transformation zones as lateral or vertical hydrocar⁃ bon migration pathways[J].Oil & Gas Geology,2019,40(5):1 011-1 021.
-
[23] 茹克.裂陷盆地的半地堑分析[J].中国海上油气:地质,1990,4(6):1-10.RU Ke.Half-graben analysis of rift basins[J].China Offshore Oil and Gas:Geology,1990,4(6):1-10.
-
[24] 陶维祥,梁建设,吕建军.琼东南盆地BD19-2构造形成机理初步研究[J].中国海上油气:地质,2000,14(5):315-319.TAO Weixiang,LIANG Jianshe,LÜ Jianjun.Formation mecha⁃ nism of BD19-2 structure in Qingdongnan basin[J].China Off⁃ shore Oil and Gas:Geology,2000,14(5):315-319.
-
[25] 林海涛,任建业,雷超,等.琼东南盆地2号断层构造转换带及其对砂体分布的控制[J].大地构造与成矿学,2010,34(3):308-316.LIN Haitao,REN Jianye,LEI Chao,et al.Tectoninc transfer zone of No.2 fault and its controls on sandbody distribution in the Qion⁃ gdongnan Basin[J].Geotectonica et Metallogenia,2010,34(3):308-316.
-
[26] 朱伟林,张功成,杨少坤,等.南海北部大陆边缘盆地天然气地质[M].北京:石油工业出版社,2007:43-59.ZHU Weilin,ZHANG Gongcheng,YANG Shaokun,et al.Geologi⁃ cal characteristics of natural gas reservoir in northern margin ba⁃ sin of South China Sea[M].Beijing:Petroleum Industry Press,2007:43-59.
-
[27] 邱中建,龚再升.中国油气勘探(第四卷·近海油气区)[M].北京:地质出版社,1999:1 164-1 186.QIU Zhongjian,GONG Zaisheng.Petroleum exploration in China(Volume4 · Offshore oil and gas area)[M].Beijing:Geological Publishing House,1999:1 164-1 186.
-
[28] 蔡乾忠.中国海域油气地质学[M].北京:海洋出版社,2005:174-176.CAI Qianzhong.Oil & gas geology in China Seas[M].Beijing:Chi⁃ na Ocean Press,2005:174-176.
-
[29] 谢玉洪,李列.莺琼盆地高精度地震资料采集处理新技术[M].武汉:中国地质大学出版社,2015:1-8.XIE Yuhong,LI Lie.New technology of high precision seismic da⁃ ta acquisition and processing in Yingqiong Basin[M].Wuhan:China University of Geosciences Press,2015:1-8.
-
[30] 胡雯燕,罗威,黄灿,等.琼东南盆地东沙运动表现特征及石油地质意义[J].中国海上油气,2020,32(3):20-32.HU Wenyan,LUO Wei,HUANG Can,et al.Characteristics of Dongsha movement in Qiongdongnan basin and its petroleum geo⁃ logical significance[J].China Offshore Oil and Gas,2020,32(3):20-32.
-
[31] 王华,任金锋,刘恩涛.琼东南盆地陆架边缘演化过程的定量化研究[M].武汉:中国地质大学出版社,2017:14-28.WANG Hua,REN Jinfeng,LIU Entao.Quantitative evolution of shelf-margin clinoforms in Qiongdongnan Basin[M].Wuhan:Chi⁃ na University of Geosciences Press,2017:14-28.
-
[32] BALLY A W.Atlantic-type margins[C]//BALLY A W,WATTS A B,GROW G A,et al.Geology of passive continental margins:histo⁃ ry,structure and sedimentologic record(with special emphasis on the Atlantic margin).AAPG Education Course Note Series,1981,19:1-48.
-
[33] GIBBS A D.Structural evolution of extensional basin margins[J].Journal of the Geological Society,1984,141(4):609-620.
-
[34] LISTER G S,ETHERIDGE M A,SYMONDS P A.Detachment faulting and the evolution of passive continental margins[J].Geol⁃ ogy,1986,14(3):246-250.
-
[35] SCOTT D L,ROSENDAHL B R.North Viking graben:an east Afri⁃ can perspective[J].AAPG Bulletin,1989,73(2):155-165.
-
[36] PEACOCK D,SANDERSON D J.Geometry and development of re⁃ lay ramps in normal fault systems[J].AAPG Bulletin,1994,78(2):147-165.
-
[37] GAWTHORPE R L,HURST J M.Transfer zones in extensional ba⁃ sins:their structural style and influence on drainage development and stratigraphy[J].Journal of the Geological Society,1993,150(6):1 137-1 152.
-
[38] TRUDGILL B,CARTWRIGHT J.Relay-ramp forms and normalfault linkages,Canyonlands National Park,Utah[J].Geological So⁃ ciety of America Bulletin,1994,106(9):1 143-1 157.
-
[39] CHILDS C,WATTERSON J,WALSH J J.Fault overlap zones within developing normal fault systems[J].Journal of the Geologi⁃ cal Society,1995,152(3):535-549.
-
[40] FAULDS J E,VARGA R J.The role of accommodation zones and transfer zones in the regional segmentation of extended terranes [C]//FAULDS J E,STEWART J H.Accommodation zones and transfer zones:The regional segmentation of the basin and range province.Boulder:Geological Society of America Special Paper,1998:1-46.
-
[41] MOUSTAFA A R.Controls on the geometry of transfer zones in the Suez rift and northwest Red Sea:Implications for the structural ge⁃ ometry of rift systems[J].AAPG Bulletin,2002,86(6):979-1 002.
-
[42] 陈发景,汪新文,陈昭年,等.伸展断陷盆地分析[M].北京:地质出版社,2004:52-85.CHEN Fajing,WANG Xinwen,CHEN Zhaonian,et al.Extension⁃ al rifted basin analysis[M].Beijing:Geological Publishing House,2004:52-85.
-
[43] YOUNES A I,MCCLAY K.Development of accommodation zones in the Gulf of Suez-Red Sea rift,Egypt[J].AAPG Bulletin,2002,86(6):1 003-1 026.
-
[44] MADRITSCH H,KOUNOV A,SCHMID S M,et al.Multiple fault reactivations within the intra-continental Rhine-Bresse transfer zone(La Serre Horst,eastern France)[J].Tectonophysics,2009,471(3):297-318.
-
[45] GIBA M,WALSH J J,NICOL A.Segmentation and growth of an obliquely reactivated normal fault[J].Journal of Structural Geolo⁃ gy,2012,39:253-267.
-
[46] BELLAHSEN N,LEROY S,AUTIN J,et al.Pre-existing oblique transfer zones and transfer/transform relationships in continental margins:New insights from the southeastern Gulf of Aden,Socotra Island,Yemen[J].Tectonophysics,2013,607(6):32-50.
-
[47] CARTWRIGHT J A,TRUDGILL B D,MANSFIELD C S.Fault growth by segment linkage:an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah[J].Journal of Structural Geology,1995,17(9):1 319-1 326.
-
[48] YOUNG M J,GAWTHORPE R L,HARDY S.Growth and linkage of a segmented normal fault zone;the Late Jurassic MurchisonStatfjord North Fault,northern North Sea[J].Journal of Structural Geology,2001,23(12):1 933-1 952.
-
[49] CONNEALLY J,CHILDS C,WALSH J J.Contrasting origins of breached relay zone geometries[J].Journal of Structural Geology,2014,58:59-68.
-
[50] FERRILL D A,MORRIS A P.Displacement gradient and deforma⁃ tion in normal fault systems[J].Journal of Structural Geology,2001,23(4):619-638.
-
[51] WALSH J J,BAILEY W R,CHILDS C,et al.Formation of seg⁃ mented normal faults:a 3-D perspective[J].Journal of Structural Geology,2003,25(8):1 251-1 262.
-
[52] 谢玉洪,童传新,范彩伟,等.琼东南盆地断裂系统特征与演化 [J].大地构造与成矿学,2015,39(5):795-807.XIE Yuhong,TONG Chuanxin,FAN Caiwei,et al.Characteristics and evolution of fault system in Qiongdongnan Basin[J].Geotec⁃ tonica et Metallogenia,2015,39(5):795-807.
-
[53] 孙思敏,彭仕宓,黄述旺.渤海湾盆地东濮凹陷横向调节带特征、成因及其区域分段作用[J].地质力学学报,2006,12(1):55-63.SUN Simin,PENG Shimi,HUANG Shuwang.Characteristics and origin of transverse accommodation zones in the Dongpu Subba⁃ sin,Bohai Gulf Basin,and their role in regional segmentation[J].Journal of Geomechanics,2006,12(1):55-63.
-
[54] SCHLISCHE R W,WITHJACK M O.Origin of fault domains and fault-domain boundaries(transfer zones and accommodation zones)in extensional provinces:Result of random nucleation and self-organized fault growth[J].Journal of Structural Geology,2009,31(9):910-925.
-
[55] HODGKINSON K M,STEIN R S,KING G C P.The 1954 rainbow mountain-fairview peak-dixie valley earthquakes:A triggered normal faulting sequence[J].Journal of Geophysical Research,1996,101(B11):25 459-25 471.
-
[56] 华保钦.构造应力场、地震泵和油气运移[J].沉积学报,1995,13(2):77-85.HUA Baoqin.Stress field,seismic pumping and oil-gas migration [J].Acta Sedimentologica Sinica,1995,13(2):77-85.
-
[57] 刘静静,刘震,王子嵩,等.琼东南盆地深水区中央峡谷天然气藏输导模式研究[J].石油实验地质,2019,41(2):193-199.LIU Jingjing,LIU Zhen,WANG Zisong,et al.Gas migration mode for the central canyon in deep-water Qiongdongnan Basin[J].Pe⁃ troleum Geology & Experiment,2019,41(2):193-199.
-
[58] 于海涛,孙雨,孙同文,等.断-砂复合输导体系及优势输导通道表征方法与应用[J].油气地质与采收率,2019,26(5):31-40.YU Haitao,SUN Yu,SUN Tongwen,et al.Characterization meth⁃ ods and application of fault-sandstone composite transport system and dominant migration pathways[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(5):31-40.
-
摘要
为进一步认识裂陷盆地对倾叠覆型变换带形成和演化过程,根据地震反射资料和平衡剖面技术对琼东南盆地北部地区松西-松东变换带进行构造解析。结果表明,松西-松东变换带属于5号断层和6号断层之间的对倾叠覆型变换带,其发育过程可分为初始发育(始新世)、定型发育(崖城组沉积时期)、稳定发育(陵水组沉积时期)和消亡发育(三亚组沉积时期)等4个演化阶段。根据现有变换带成因理论及平衡剖面分析结果,松西-松东变换带主要是由于5号断层和6号断层分段生长作用造成的,其形成演化过程可以采用应力降低带理论进行解释。在裂陷阶段松西-松东变换带始终处于构造高部位,可同时捕集两侧凹陷生成的油气,且受应力降低带影响形成的大量次级断层及盆地抬升期间的风化剥蚀能有效改善储集性能,具有极为有利的油气成藏条件。
Abstract
Songxi-Songdong transfer zone in the northern Qiongdongnan Basin was analyzed with seismic reflection data and the balanced cross-section technique to understand the generation and evolution of the convergent overlapping transfer zone in rift basins. Consequently,it belongs to the convergent overlapping transfer zone between faults 5 and 6. Its evolution has gone through four tectonic stages:initial development(Eocene),stereotyped development(depositional period of Yacheng Formation),stable development(depositional period of Lingshui Formation),and extinction(depositional period of Sanya Formation). According to the existing genetic theory of transfer zones and the results of balanced cross-section analysis,it is considered that Songxi-Songdong transfer zone is generated mainly from the segmented growth of faults 5 and 6,and its generation and evolution processes can be explained by the theory of stress reduction zones. During the chasmic stage,Songxi-Songdong transfer zone is always tectonically high and can entrap and accumulate hydrocarbon generated by the sags on both sides. In addition,the storage and reservoir can be effectively enhanced by the plentiful secondary faults formed under the influence of the stress reduction zone and the weathering and erosion during the uplift stage of the basin. All these signal the extremely favorable conditions for hydrocarbon accumulation.