-
深水重力流沉积是极其重要的油气勘探开发领域和学术研究热点之一[1-5]。重力流是指由重力驱动的含有大量碎屑物质的高密度流体,其形成条件包括充足的水深、足够的坡度角和密度差、充沛的物源和一定的触发机制[6]。湖泊水深大于 50 m 或40~110 m的浅海可形成重力流沉积,坡度角大于 0.5°,触发机制包括地震、海啸甚至洪水等诱因[7-8]。有学者提出异重流的概念,专指洪水形成的重力流,其沉积具有反粒序-正粒序成对出现的特点[9-10]。
-
重力流的流体类型有多种,普遍认可的包括水下泥石流、颗粒流、液化流和浊流[11],重力流事件之后可发育牵引流沉积。目前,关于深水重力流的流体类型、搬运机制及其所形成的砂体内部构成仍存在诸多争议[12-14]。Kuenen 于 1950 年发现了一种有别于牵引流的流体,命名为浊流(Turbidity),并于 1957 年建立了浊流的概念。Bouma 在 1962 年建立了浊积岩的垂向序列,这就是著名的鲍马序列,然而现实中发育完整的鲍马序列很少见,不能涵盖所有的浊积类型。后来Stow和Lowe补充了鲍马序列,建立了 Stow 序列和 Lowe 序列[15]。这 3 种序列的共同点是注意到了很多现象,但在成因机理解释方面有所欠缺。2000年左右,Shanmugam 对鲍马序列提出质疑,并提出了重力流形成与演化新认识[14],他的观点被中国许多学者接受[17-18],但不被欧美同行认可。Shanmugam 把重力流按沉积过程分为滑动、滑塌、碎屑流和浊流4个过程,并按照搬运机制把重力流分为以层流为主的块体搬运和以紊流为主的浊流沉积 2 个阶段,这有利于对重力流的形成机制进行理解和认识,但把块体流和浊流混在一起,依然没能清晰地反映重力流的本质。
-
2010 年以来,随着英国北海 Buzzard 和 Golden Eagle油田的发现及投入开发,中海油 Nexen公司资助英国曼彻斯特大学、利兹大学在深入研究南非 Karoo 盆地二叠系深水沉积露头的基础上,于 2014 年提出深水重力流形成新认识。作者有幸参与了这项工作,在观察了大量英国北海上侏罗统-下白垩统深海重力流沉积岩心的基础上,认为这一新认识具有很强的客观性。
-
1 深水浊积体沉积露头特征
-
进行野外地质考察、观察沉积露头的目的在于为已有井的沉积储层认识提供直观依据,并据此推测井间沉积充填特征,从而得到更加接近真实情况的沉积储层预测结果,指导油气勘探与开发工作。通过研究地质露头,可以更好地理解和揭示储集砂体的特征与性质,例如砂体的大小、几何形态、砂体连通情况等[19]。英国北海上侏罗统-下白垩统广泛发育深水浊积体,并已发现大量油气田。由于砂体相互叠置,砂泥岩交互沉积,并被断距大小不等的断层复杂化,局部发育的滑塌沉积使砂体分布更为复杂。以Buzzard油田为例,注水监测资料表明各油组之间压力分布不均衡,注入水波及程度差异很大,储层空间分布复杂。但示踪剂示踪结果表明,尽管有的注采井距很大,但注入水仍可以从构造低部位向高部位较均匀推进。破解储集砂体分布的复杂性对减小勘探及开发的不确定性至关重要。
-
南非 Karoo 盆地出露的二叠系深水浊积体,无论在区域规模上,还是沉积特征上,都与英国北海深水浊积体非常相似;通过对 Karoo 盆地露头砂体的考察,有助于深入理解和认识北海上侏罗统-下白垩统深水浊积体的储层特征。Karoo 盆地位于开普敦东北方向 Inverdoorn 自然保护区,距离开普敦约 170 km。Karoo 盆地深水浊积事件发生在二叠纪,距今约 3 亿年;该时期 Karoo 盆地位于古冈瓦纳大陆的西南边缘,近封闭的半深海-深海环境,大范围接受来自西南方向的陆源碎屑物质。在随后的地质历史时期,二叠系受东南-西南构造应力挤压,产生开普敦褶皱带并抬升 Karoo 盆地,同时不断遭受剥蚀,直至出露地表。
-
南非 Karoo盆地二叠系深水露头由多期重力流沉积组成,包括浊积沟道、朵叶、沟道复合体、朵体、块体流沉积(MTD)以及它们之间的过渡类型(图1)。浊积沟道在露头上多以复合体出现,表现为下切侵蚀、侧向叠置,从核部富砂沉积向侧翼富泥沉积过渡,单期浊积沟道砂岩厚度可超过5 m(图1b)。其整体可识别出 4 期朵体(图1a),以黑色线性沉积 (海相泥岩)分隔,顶部朵体四为残留沉积。一期朵体中发育多个朵叶,有时两个朵叶叠置在一起,不易区分,以朵体三为例,详细解剖了单个朵体的组成(图1c);每个朵叶又可细分为核部、外核、边缘、远缘等部分。块体流沉积与水下泥石流沉积相似,侵蚀面之上是多种成分、分选和磨圆差异很大的杂乱堆积,其上是碎屑流沉积,Shanmugam提出的浊流沉积就是这一种类型。重力流是一种高能流体,分为头部、主体和尾流。当其在高部位陡坡处向下冲的时候,头部和主体冲下斜坡,进入深海平原,尾流以薄层砂岩的形式沉积下来。
-
在意大利 Tuscan盆地始新统-渐新统钙质浊积岩露头中[20] (图2),图2a属于高能浊流沉积(水的混合物,不含泥质);图2b 属于高能碎屑流沉积(液化流+颗粒流,泥质支撑,糨糊状);图2c 和 2d 为高能流体之后的低能流体阶段,以牵引流为主,为近源砂质沉积;图2e和2f以牵引流为主,离物源较远,为砂泥岩薄互层;图2g和 2h以牵引流为主,是浊积体的最远部分,由于其中发育变形层理,仍具有浊流沉积的特点。
-
图1 南非Karoo盆地二叠系深水沉积露头特征
-
Fig.1 Characteristics of Permian deep-water sedimentary outcrops in Karoo Basin,South Africa
-
图2 意大利Tuscan盆地始新统-渐新统深水沉积露头特征[20]
-
Fig.2 Characteristics of Eocene-Oligocene deep-water sedimentary outcrops in Tuscan Basin,Italy[20]
-
2 深水重力流沉积新认识
-
在详细研究南非 Karoo盆地二叠系深水沉积等露头和大量观察英国北海上侏罗统-下白垩统深水浊积岩心的基础上,建立了深水重力流沉积机理。
-
2.1 深水重力流沉积类型及其特征
-
重力流包括泥石流、颗粒流、液化流和浊流4种流体,重力流沉积主要体现为块体流沉积和浊流沉积(Turbidite),它们是上述4种流体和牵引流沉积的有机组合。块体流沉积与浊流沉积的发育背景不同,前者发育于陡岸,其高能流体来不及分异,或分异不彻底,以水下泥石流沉积为主;后者高能流体分异较好,由浊流、碎屑流(包括颗粒流和液化流)、牵引流沉积组成。
-
2.1.1 块体流沉积
-
块体流沉积主要发育于盆地裂陷初期陆架不发育的陡岸,物源区位于陡坡高地,汇水面积小。在洪水季节,分选和磨圆极差的碎屑物质从陡岸直接落于半深海-深海之中而形成,流体来不及分异,往往沿陡岸坡底呈裙状分布。同样位于陡岸,在潮湿多雨的时期,物源充沛条件下,汇水面积较大,碎屑物质受限制程度小且可以相对长期、多期次供应,在陡岸坡地形成高能流体有一定分异的块体流沉积。相比于高能流体来不及分异的块体流沉积,有一定分异的块体流沉积碎屑物质供应充足,规模较前者大得多,但在空间上仍受限制,碎屑物质以粗颗粒为主,分选和磨圆差,垂向上二者经常交互出现。
-
高能流体来不及分异形成的块体流沉积主体为水下泥石流沉积(图3),上部为低能牵引流形成的砂泥岩薄互层,砂岩具有波纹交错层理;下部为高能水下泥石流沉积,可分为砂质杂基碎屑支撑砂砾岩和泥质杂基碎屑支撑砂砾岩 2 种,前者颗粒杂乱无章,可以是正粒序,也可以是反粒序。有一定分异的块体流沉积可分为内扇、中扇和外扇,其内扇岩性与来不及分异的块体流沉积的主体相似,以水下泥石流沉积为主。此外,还有一种块体流沉积来自富泥区,以泥岩为主,常与浊流沉积伴生。
-
2.1.2 浊流沉积
-
浊流沉积层序中发育浊流-碎屑流-牵引流沉积垂向组合(图4a),下部为浊流沉积,岩性为砂岩、砂砾岩,正粒序,发育递变层理、块状层理或平行层理;中部为碎屑流沉积,发育漂浮砾、泥岩撕裂屑、泄水构造等;上部为牵引流沉积(图4b),岩性为粉砂岩、泥质粉砂岩、泥岩,发育波纹交错、波纹、水平层理。具体到每期重力流事件,这 3 种岩相的发育程度可能有很大的变化(图4c)。
-
2.2 深水浊流沉积模式
-
根据南非 Karoo盆地二叠系深水沉积露头并结合油田大量岩心数据,建立了英国北海上侏罗统-下白垩统深水浊流沉积模式,并对其沉积特征进行了总结(表1)。浊流沉积垂向序列的成因可以解释为:在陆架上的某一汇水区,由于受到一定的触发机制,位于下部的密度大、高流态的粗碎屑受重力作用快速沿陡坡下滑到深海中形成砂岩、砂砾岩浊流沉积;密度较小但也是高流态的泥质及其中的漂浮物以碎屑流的形式随后沿陡坡下滑叠置在浊流沉积之上;其上具有层理的牵引流沉积属于低流态,是事件末期相对平静时期的沉积。由此形成的浊积体分布于局限或开阔的海域中,有的离陆架近,有淡水注入标志,如菱铁矿团块等。
-
浊积沟道 浊积沟道具有底部冲刷面,下部砂岩、砂砾岩段含有递变层理、块状层理。递变层理为浊流沉积特有,经常可见不同来源的杂砾和泥岩撕裂屑,其中泥岩撕裂屑是高能浊流将前期沉积顶部泥岩捕获并改造的产物。块状层理砂岩表明其为快速堆积产物,泄水沟造发育。中部碎屑流沉积为糨糊状泥质支撑沉积,且伴有大的漂浮砾、包卷层理等,振动筛作用明显。上部为层理状细砂岩、粉砂岩和泥岩段,为重力流高能事件之后相对低能的牵引流沉积。
-
图3 阿根廷Cabo Viamonte中新世深水露头中的块体流沉积[21]
-
Fig.3 Characteristics of mass transport deposits in the Miocene deep-water sedimentary outcrops of Cabo Viamonte,Argentina[21]
-
图4 浊流沉积垂向序列及典型岩心特征
-
Fig.4 Vertical sequence of turbidite deposition and typical cores
-
溢岸 在限制性或弱限制性浊积沟道沉积层序中还发育溢岸沉积,包括天然堤和决口扇。决口扇为正粒序砂岩叠置在下伏泥岩、粉砂岩之上,底冲刷不明显;天然堤为纹层状粉砂岩、泥岩的频繁互层。
-
朵体 浊积沟道沉积和朵体是一个整体,自然过渡,没有明显的界限。一般来说,形成朵体的流体能量小于形成浊积沟道的。朵体往往由多个朵叶组成,单个朵叶可分为核部、核缘、边缘和远缘 4 部分。朵叶核部主要为块状砂岩,由下至上由浊积砂岩、碎屑流沉积、牵引流沉积组成,泄水沟造发育;朵叶核缘牵引流沉积增多,朵叶边缘及远缘以泥岩为主,夹向上变细的薄层砂岩。
-
在富泥陆架区,受重力影响滑向深海盆地形成的块体流沉积以泥岩为主,常与浊流沉积伴生;其内部发育大量撕裂、变形、挤入构造,这种块体流沉积常出现在浊积沟道核部和靠近断层处。图5a 为浊积沟道核部的块体流沉积岩心,块体流沉积覆盖在层理状泥岩之上,相对干净的砂岩中夹有大量从毫米级到厘米级的次棱-圆泥砾,上覆层理状砂岩含油,类似于浊流递变层理砂岩。图5b为靠近断层的块体流沉积(其顶底分别用红蓝线表明),为一套杂乱的泥砾岩,下伏和上覆均为含薄层砂岩的泥岩,此块体流沉积以薄层粉砂岩、砂岩撕裂屑为特征,大砾微变形且与泥岩层理呈低角度接触。
-
3 油气地质意义
-
在广泛分析整理英国北海上侏罗统-下白垩统、墨西哥湾古近系、中国南海琼东南盆地新近系中央大峡谷[19-22] 等深水沉积资料基础上,参考巴西、西非等地区的相关资料[23-28],认识到存在不同类型的浊积岩,需要采取不同的勘探开发策略。
-
3.1 深水浊流沉积类型
-
针对上述多个地区的深水浊流沉积,按照近源短距离和多级长距离(中央大峡谷型)分为 2 种类型,自然界中也许存在更多。受古地貌、物源、构造背景等因素控制,浊流沉积表现为不同的主流态、规模,因而具有不同的岩性、岩相组成(表2)。
-
3.1.1 近源短距离
-
英国北海上侏罗统-下白垩统多发育近源短距离深水浊流沉积,一般长20~40 km,宽10~20 km,以浊流为主流态,是很好的勘探开发目标,研究程度也比较深。以某油田为例,简要剖析其构造演化与沉积充填过程。第1期:朵体中的砂岩少,分布范围局限,侧向连续性差,明显受海底地貌控制;此为裂陷初期,以滑塌沉积为主。第2期:随着断裂活动增强,砂体沿与断裂活动有关的海底低地分布,明显加厚且侧向分布范围扩大,以浊流沉积为主,局部发育滑塌沉积。第3期:为全区广泛分布的泥岩段,认为是长期的富泥块体流沉积,该泥岩中含有大量的陆源碎屑物质,典型的为木质碎屑,表明接近滨岸地带。第 4期:由总厚度约为 90 m的多期席状浊积砂岩组成,可进一步分为 3个单元;第 1单元为富砂层,由极粗颗粒砂岩组成,几乎不含泥质,为浊流沉积;第2单元为层理状砂岩,由细-中粒砂岩组成,以牵引流沉积为主,在其底部局部为泥砾或混杂砾石层,认为是碎屑流沉积;第3单元为厚层状浊积砂岩,全盆分布,但往盆缘减薄。
-
图5 来自富泥陆架区的块体流沉积(右下为底,左上为顶)
-
Fig.5 Mass transport deposits from mud rich shelf(bottom on right and top on left)
-
3.1.2 多级长距离(中央大峡谷型)
-
墨西哥湾古近系发育多级长距离(中央大峡谷 Ⅰ型)深水浊流沉积,2条水系经过超过400 km的陆架,从陆架坡折到深海平原又经过了 360 km,沿途没有其它物源补充,深水扇的粒径以极细砂为主。发育多级陡坡,形成了以滑塌为主流态的重力流沉积,夹有大量泥砾,严重影响了储层物性。
-
琼东南发育多点物源长距离(中央大峡谷Ⅱ 型)深水浊流沉积,为一条长约 580 km,下宽 3~5 km,上宽 15 km 的大峡谷,沿途有多条支流注入,有丰富的碎屑物质补充,是以牵引流为主流态的浊流沉积。岩心上可见大量的层理构造与变形、负载、球枕、透镜状构造伴生。牵引流与重力流的双重作用非常明显,勘探前景广阔。
-
3.2 深水浊积内部非均质性
-
尽管浊积沟道中的浊流沉积部分、朵体核部以及决口扇砂岩储层物性较好,但浊积岩内部非均质性很强。由于受碎屑流沉积影响,有时沟道内部比朵体非均质性更强。根据来自英国北海的一个油田实例,浊积沟道内部有多个隔层(碎屑流沉积),而下伏朵体为主的油藏内部几乎是均匀的。新的重力流成因机理研究揭示了这种内部非均质性强的原因,为准确认识并预测提供了指导。
-
4 结论
-
重力流主要包括水下泥石流、颗粒流、液化流和浊流。根据地质背景、物源、坡度、触发机制等,重力流沉积可分为块体流沉积(水下泥石流为主体)和浊流沉积(浊流、碎屑流、牵引流沉积),二者均是多种流体沉积的有机组合。影响重力流沉积的因素很多,无论近源陡坡短距离的英国北海类型,还是多级长距离的墨西哥湾古近系、琼东南盆地新近系深水浊流沉积,其形成机理相似。不同类型重力流形成的沉积物岩性、岩相差别很大,有的物性较好,如浊流沉积、牵引流沉积中的砂岩部分,有的储层物性差,如碎屑流沉积、水下泥石流沉积,这是造成此类油藏非均质性的主要因素。
-
本文的重力流沉积成因新认识是基于露头和岩心观察,客观性强。但重力流形成机理研究是公认的学界难题,要有更加清楚的认识,还需要基于实际资料的大量工作,可谓任重而道远。
-
参考文献
-
[1] BOURGET J,ZARAGOSI S,MULDER T,et al.Hyperpycnal-fed turbidite lobe architecture and recent sedimentary processes:A case study from the Al Batha turbidite system,Oman Margin[J].Sedimentary Geology,2010,229(3):144-159.
-
[2] DALLA V G,GAMBERI F.Erosional sculpting of the Caprera con⁃ fined deep-sea fan as a result of distal basin-spilling processes(eastern Sardinian margin,Tyrrhenian Sea)[J].Marine Geology,2010,268(1/4):55-66.
-
[3] CLAUDIO D C.Sedimentology,architecture and depositional evo⁃ lution of a coarse-grained submarine canyon fill from the Gelasian(early Pleistocene)of the Peri-Adriatic Basin,Offida,central Italy [J].Sedimentary Geology,2011,23(3):233-253.
-
[4] 姜超.断陷湖盆斜坡带重力流砂体沉积特征及沉积模式—— 以沾化凹陷渤南洼陷南部斜坡带沙三段为例[J].油气地质与采收率,2018,25(1):6-13.JIANG Chao.Characteristics and model of gravity flow sand body deposition in the slope zone of rifted lacustrine basin:A case study from the Sha3 member in the south slope zone of Bonan Sag,Zhanhua Depression[J].Petroleum Geology and Recovery Ef⁃ ficiency,2018,25(1):6-13.
-
[5] 费李莹,王仕莉,吴涛,等.坡折带对砂质碎屑流沉积的控制作用——以准噶尔盆地盆1井西凹陷及周缘侏罗系三工河组为例[J].油气地质与采收率,2020,27(2):26-34.FEI Liying,WANG Shili,WU Tao,et al.Control of slope break zone on sandy debris flow deposition:A case study of Jurassic Sangonghe Formation in west sag of Well Pen-1 and its periphery in Junggar Basin[J].Petroleum Geology and Recovery Efficiency,2020,27(2):26-34.
-
[6] 黄银涛,姚光庆,周锋德.莺歌海盆地黄流组浅海重力流砂体物源分析及油气地质意义[J].地球科学——中国地质大学学报,2016,41(9):1 526-1 538.HUANG Yintao,YAO Guangqing,ZHOU Fengde.Provenance analysis and petroleum geological significance of shallow-marine gravity flow sandstone for Huangliu Formation of Dongfang Area in Yinggehai Basin,the South China Sea[J].Earth Science-Jour⁃ nal of China University of Geosciences,2016,41(9):1 526-1 538.
-
[7] 李振鹏,王航,常涛,等.歧南断阶带沙一段重力流类型及勘探潜力分析[J].断块油气田,2019,26(1):7-11.LI Zhenpeng,WANG Hang,CHANG Tao,et al.Gravity flow iden⁃ tification characteristics and exploration potential in Es1 of Qinan Fault step belt[J].Fault-Block Oil and Gas Field,2019,26(1):7-11.
-
[8] 解习农,任建业.沉积盆地分析基础[M].武汉:中国地质大学出版社,2013.XIE Xinong,REN Jianye.Basis of sedimentary basin analysis[M].Wuhan:China University of Geosciences Press,2013.
-
[9] 潘树新,刘化清,ZAVALA Carlos,等.大型坳陷湖盆异重流成因的水道—湖底扇系统——以松辽盆地白垩系嫩江组一段为例[J].石油勘探与开发,2017,44(6):860-870.PAN Shuxin,LIU Huaqing,ZAVALA Carlos,et al.Sublacustrine hyperpycnal channel-fan system in a large depression basin:A case study of Nen1 Member,Cretaceous Nenjiang Formation in the Songliao Basin,NE China[J].Petroleum Exploration and De⁃ velopment,2017,44(6):860-870.
-
[10] 陈广坡,李娟,吴海波,等.陆相断陷湖盆滑塌型深水重力流沉积特征、识别标志及形成机制——来自海拉尔盆地东明凹陷明D2井全井段连续取心的证据[J].石油学报,2018,39(10):1 119-1 129.CHEN Guangpo,LI Juan,WU Haibo,et al.Sedimentary character⁃ istics,identification mark and formation mechanism of the slump⁃ ing deepwater gravity flow in fault lacustrine basin:a case study on the consecutive coring well of Ming D2 in Dongming sag,Hai⁃ laer Basin[J].Acta Petrolei Sinica,2018,39(10):1 119-1 129.
-
[11] 多里克A V斯托.沉积岩野外地质工作指南[M].周川闽,高志勇,罗平,译.北京:科学出版社,2018.DORIC A V Stowe.Guide for field geological work of sedimentary rocks[M].ZHOU Chuanmin,GAO Zhiyong,LUO Ping,trans.Bei⁃ jing:Science Press,2018.
-
[12] SHANMUGAM G.Ten turbidite myths[J].Earth-Science Review,2002,58(3/4):311-341.
-
[13] GANI M R.From turbid to lucid:A straightforward approach to sediment gravity flows and their deposits[J].The Sedimentary Re⁃ cord,2004,2(4):4-8.
-
[14] TALLING P J,MASSON D G,SIMNER E J,et al.Subaqueous sed⁃ iment density flows:Depositional processes and deposit types[J].Sedimentology,2012,59(7):1 937-2 003.
-
[15] 赵贤正,蒲秀刚,周立宏,等.断陷湖盆深水沉积地质特征与斜坡区勘探发现——以渤海湾盆地歧口凹陷板桥—歧北斜坡区沙河街组为例[J].石油勘探与开发,2017,44(2):165-176.ZHAO Xianzheng,PU Xiugang,ZHOU Lihong,et al.Geologic characteristics of deep water deposits and exploration discoveries in slope zones of fault lake basin:A case study of Paleogene Sha⁃ hejie Formation in Banqiao-Qibei slope,Qikou sag,Bohai Bay Basin[J].Petroleum Exploration and Development,2017,44(2):165-176.
-
[16] SHANMUGAM G.50 years of the turbidite paradigm|(1950s1990s):Deep-water processes and facies models-a critical per⁃ spective[J].Marine and Petroleum Geololgy,2000,17(1):285-342.
-
[17] 高永德,孙殿强,陈鸣,等.陵水17-2深水气田黄流组重力流沉积特征及模式[J].中国海上油气,2018,30(1):22-30.GAO Yongde,SUN Dianqiang,CHEN Ming,et al.Gravity flow sedimentary characteristics and patterns of Huangliu Formation in LS17-2 deep water gas field[J].China Offshore Oil and Gas,2018,30(1):22-30.
-
[18] 康洪全,孟金落,程涛,等.巴西坎波斯盆地深水沉积体系特征 [J].石油勘探与开发,2018,45(1):93-104.KANG Hongquan,MENG Jinluo,CHENG Tao,et al.Characteris⁃ tics of deep water depositional system in Campos basin,Brazil[J].Petroleum Exploration and Development,2018,45(1):93-104.
-
[19] 姚哲,王振峰,左倩媚,等.琼东南盆地中央大峡谷深水大气田形成关键要素与勘探前景[J].石油学报,2015,36(11):1 358-1 366.YAO Zhe,WANG Zhenfeng,ZUO Qianmei,et al.Critical factors for the formation of large-scale deepwater gas field in Central Canyon System of Southeast Hainan Basin and its exploration po⁃ tential[J].Acta Petrolei Sinica,2015,36(11):1 358-1 366.
-
[20] LELPI A,CORNAMUSINI G.An outer ramp to basin plain tran⁃ sect:Interacting pelagic and calciturbidite deposition in the Eo⁃ cene-Oligocene of the Tuscan Domain,Adria Microplate(Italy)[J].Sedimentology Geology,2013,294(15):83-104.
-
[21] PONCE J J,CARMONA N B.Miocene deep-marine hyperpycnal channel levee complexes,Tierra del Fuego,Argentina:Facies as⁃ sociations and architectural elements[C]//SLATT R M,ZAVALA C.Sediment transfer from shelf to deep water:Revisiting the deliv⁃ ery system.AAPG Studies in Geology 61,2011:75-93.
-
[22] 许怀智,蔡东升,孙志鹏,等.琼东南盆地中央峡谷沉积充填特征及油气地质意义[J].地质学报,2012,86(4):641-650.XU Huaizhi,CAI Dongsheng,SUN Zhipeng,et al.Filling charac⁃ ters of central submarine canyon of Qiongdongnan Basin and its significance of petroleum geology[J].Acta Geologica Sinica,2012,86(4):641-650.
-
[23] 付彦辉,吕福亮,袁圣强,等.琼东南盆地陆坡区深水浊积水道的地震相特征[J].热带海洋学报,2009,28(4):87-92.FU Yanhui,LÜ Fuliang,YUAN Shengqiang,et al.Characteristics of seismic facies in the deepwater turbidite channel system on the slope of the Qiongdongnan Basin[J].Journal of Tropical Oceanog⁃ raphy,2009,28(4):87-92.
-
[24] 李冬,王英民,王永凤,等.琼东南盆地中央峡谷深水天然堤— 溢岸沉积[J].沉积学报,2011,29(4):689-694.LI Dong,WANG Yingmin,WANG Yongfeng,et al.The sedimenta⁃ ry and foreground of prospect for levee-overbank in Central Can⁃ yon,Qiongdongnan Basin[J].Acta Sedimentologica Sinica,2011,29(4):689-694.
-
[25] 赵鹏飞,杨香华,张会来,等.深海浊积扇朵叶复合体的沉积构成特征与油气水系统:以尼日尔三角洲前缘深水区K油田为例[J].地球科学,2017,42(11):1 972-1 983.ZHAO Pengfei,YANG Xianghua,ZHANG Huilai,et al.The sedi⁃ mentary architecture characteristics and fluid system of the deep sea turbidite-lobe complex sandbodies:A case study of the deepwater region in the Niger Delta Front[J].Earth Science,2017,42(11):1 972-1 983.
-
[26] 卜范青,张宇焜,杨宝泉,等.深水复合浊积水道砂体连通性精细表征技术及应用[J].断块油气田,2015,22(3):309-313,337.BU Fanqing,ZHANG Yukun,YANG Baoquan,et al.Technique and application of fine connectivity characterization of composite deep water turbidite channels[J].Fault-Block Oil and Gas Field,2015,22(3):309-313,337.
-
[27] 张文彪,段太忠,刘志强,等.深水浊积水道多点地质统计模拟——以安哥拉Plutonio油田为例[J].石油勘探与开发,2016,43(3):403-410.ZHANG Wenbiao,DUAN Taizhong,LIU Zhiqiang,et al.Applica⁃ tion of multi-point geostatistics in deep-water turbidity channel simulation:A case study of Plutonio oilfield in Angola[J].Petro⁃ leum Exploration and Development,2016,43(3):403-410.
-
[28] 林煜,吴胜和,王星,等.深水浊积水道体系构型模式研究—— 以西非尼日尔三角洲盆地某深水研究区为例[J].地质论评,2013,59(3):510-520.LIN Yu,WU Shenghe,WANG Xing,et al.Research on architec⁃ ture model of deepwater turbidity channel system:a case study of a deepwater research area in Niger Delta Basin,West Africa[J].Geological Review,2013,59(3):510-520.
-
摘要
关于深水重力流的流体类型、发育机制及其所形成的砂体内部构成存在诸多争议。基于对南非Karoo盆地二叠系深水沉积露头及意大利Tuscan盆地始新统-渐新统钙质浊积岩露头、英国北海上侏罗统-下白垩统大量深水岩心实物的精细解剖,重新厘定深水重力流沉积类型及其特征,构建深水浊流沉积模式,并进一步探讨其油气地质意义。研究结果表明:深水重力流沉积可划分为块体流沉积和浊流沉积;前者以水下泥石流为主体,垂向上分异不明显,而后者从下至上依次表现为浊流、碎屑流和牵引流沉积,发育大量层理构造,垂向分异性好。受古地貌、物源、构造背景等因素控制,浊流沉积表现为不同的主流态、规模,具有不同的岩性、岩相组成,主要包括沟道、溢岸和朵体3种深水沉积类型。流体性质决定了砂体储层物性、内部非均质性及其勘探价值,浊积沟道中的浊流沉积部分及牵引流沉积部分、朵体核部以及决口扇砂岩储层物性较好,而碎屑流沉积和水下泥石流沉积储层物性差,这也是造成油藏非均质性的主要因素。
Abstract
There are still many controversies about the fluid types,mechanism and the architecture of sand bodies formed by gravity flow in deep water. Based on the detailed analysis of Permian deep-water sedimentary outcrops in Karoo Basin of South Africa,Eocene-Oligocene calcareous turbidite outcrops in Tuscan Basin of Italy and a large number of deep-water cores from Upper Jurassic to lower Cretaceous in the North Sea of England,the sedimentary types formed by deep-water gravity flow and their characteristics are redefined,the deep-water turbidite deposition model is constructed,and its oilgas significance is further discussed. The results show that the deep-water gravity flow deposits can be divided into mass transport deposits(MTD)and turbidite deposits;the former is dominated by underwater mud-supported clast flow with poor- ly differentiation vertically;and the latter is characterized by turbidity current,debris flow and traction flow deposits from bottom to top,with a large number of bedding structures and well differentiation. Controlled by paleogeomorphology,prove- nance,tectonic setting,etc.,turbidite deposits show different main flow state and scale,which form different lithology and lithofacies,and they can be divided into gully channel,overflow bank and lobe. Fluid properties determine the physical properties,internal heterogeneity and exploration value of reservoirs. The reservoir quality of turbidite deposits and traction flow deposits in turbidity channel,the core of lobes and crevasse splay reservoir are beneficial,while the debris flow deposit and mud-supported clast flow deposit are poor,which are the main factors that cause reservoir heterogeneity.
Keywords
deep-water gravity flow ; mass transport deposits ; turbidite deposits ; mechanism ; outcrop ; deposition model