en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

伍劲(1990—),男,四川成都人,硕士,工程师,从事沉积储层研究工作。E-mail:wuj_hz@petrochina.com.cn。

中图分类号:TE122

文献标识码:A

文章编号:1009-9603(2020)06-0038-09

DOI:10.13673/j.cnki.cn37-1359/te.2020.06.005

参考文献 1
吕修祥,金之钧,周新源,等.塔里木盆地乌什凹陷温宿凸起油气勘探前景[J].中国石油大学学报:自然科学版,2006,30(1):17-21,25.LÜ Xiuxiang,JIN Zhijun,ZHOU Xinyuan,et al.Oil and gas explo⁃ ration prospect in Wushi sag and Wensu uplift of Tarim Basin[J].Journal of China University of Petroleum:Edition of Natural Sci⁃ ence,2006,30(1):17-21,25.
参考文献 2
焦志峰,高志前.塔里木盆地主要古隆起的形成、演化及控油气地质条件分析[J].天然气地球科学,2008,19(5):639-646.JIAO Zhifeng,GAO Zhiqian.Formation,evolution and hydrocar⁃ bon-controlling geological conditions of major paleohighs,Tarim basin[J].Natural Gas Geoscience,2008,19(5):639-646.
参考文献 3
王俊鹏,赵继龙,曾庆鲁,等.塔北隆起玉东地区盐下薄砂岩高分辨地震预测[J].地球物理学进展,2018,33(2):730-739.WANG Junpeng,ZHAO Jilong,ZENG Qinglu,et al.High resolu⁃ tion seismic prediction of thin sandstone under gypsum-salt in the Yudong area of the uplift in the north of the Tarim basin[J].Progress in Geophysics,2018,33(2):730-739.
参考文献 4
辛福东,许浩,汤达祯,等.基于小波变换的黔西北地区龙潭组煤系地层层序划分[J].油气地质与采收率,2018,25(1):49-55.XIN Fudong,XU Hao,TANG Dazhen,et al.Sequence division of Longtan coal measure strata based on wavelet transform in north⁃ western Guizhou[J].Petroleum Geology and Recovery Efficiency,2018,25(1):49-55.
参考文献 5
王志强,刘波,胡忠益,等.海拉尔盆地苏德尔特地区南屯组高分辨率层序地层格架及沉积特征[J].大庆石油地质与开发,2019,38(4):7-14.WANG Zhiqiang,LIU Bo,HU Zhongyi,et al.High-resolution se⁃ quence stratigraphic framework and sedimentary characteristics of Nantun Formation in Sudeerte area of Hailar Basin[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2019,38(4):7-14.
参考文献 6
秦国省,胡文瑞,邹存友,等.基准面旋回对冲积扇沉积演化及储层质量的控制作用——以百口泉油田百21井区百口泉组为例[J].油气地质与采收率,2018,25(3):1-10.QIN Guosheng,HU Wenrui,ZOU Cunyou,et al.Effects of baselevel cycles on alluvial fan evolution and reservoir quality:A case study of the Baikouquan Formation in Bai21 Block,Baikouquan Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(3):1-10.
参考文献 7
汪彦,彭军,游李伟,等.中国高分辨率层序地层学的研究现状 [J].天然气地球科学,2005,16(3):352-358.WANG Yan,PENG Jun,YOU Liwei,et al.Current status of high resolution sequence stratigrahy in China[J].Natural Gas Geosci⁃ ence,2005,16(3):352-358.
参考文献 8
林畅松,张燕梅,刘景彦,等.高精度层序地层学和储层预测 [J].地学前缘,2000,7(3):111-117.LIN Changsong,ZHANG Yanmei,LIU Jingyan,et al.High resolu⁃ tion sequence stratigrahy and reservoir prediction[J].Earth Sci⁃ ence Frontiers,2000,7(3):111-117.
参考文献 9
林畅松,刘景彦,刘丽军,等.高精度层序地层分析:建立沉积相和储层规模的等时地层格架[J].现代地质,2002,16(3):276-281.LIN Changsong,LIU Jingyan,LIU Lijun,et al.High resolution se⁃ quence stratigraphy analysis:Construction of chronostratigraphic sequence framework on facies and reservoir scale[J].Geoscience,2002,16(3):276-281.
参考文献 10
林畅松.沉积盆地的层序和沉积充填结构及过程响应[J].沉积学报,2009,27(5):849-862.LIN Changsong.Sequence and depositional architecture of sedi⁃ mentary basin and process responses[J].Acta Sedimentologica Si⁃ nica,2009,27(5):849-862.
参考文献 11
赵俊青,纪友亮,夏斌,等.扇三角洲沉积体系高精度层序地层学研究[J].沉积学报,2004,22(2):302-309.ZHAO Junqing,JI Youliang,XIA Bin,et al.High-resolution se⁃ quence research in fan-delta sedimentary system[J].Acta Sedi⁃ mentologica Sinica,2004,22(2):302-309.
参考文献 12
EINSELE G,RICKEN W,SEILACHER A.Cycles and events in stratigraphy[C].Berlin:Springer-Verlag,1991:617-659.
参考文献 13
卢伟,李国福.最大熵谱分解结合小波变换技术在层序地层划分中的应用[J].油气藏评价与开发,2018,8(1):1-3,11.LU Wei,LI Guofu.Application of maximum entropy spectrum de⁃ composition combined with wavelet transform in the division of se⁃ quence stratigraphy[J].Reservoir Evaluation and Development,2018,8(1):1-3,11.
参考文献 14
POSAMENTIER H W,ALLEN G P.Variability of the sequence stratigraphy model:effects of local basin factors[J].Sedimentary Geology,1993,86(1/2):91-109.
参考文献 15
刘景彦,丁孝忠,邱以钢,等.新疆库车坳陷古近系苏维依组高精度层序地层及其发育的主控因素探讨[J].高校地质学报,2009,15(3):318-327.LIU Jingyan,DING Xiaozhong,QIU Yigang,et al.High-resolu⁃ tion sequence stratigraphic study on the Palaeogene Suweiyi for⁃ mation in Kuqa depression of Xinjiang region and discussion on its major controlling factors[J].Geological Journal of China Uni⁃ versities,2009,15(3):318-327.
参考文献 16
VAN WAGONER J C,MITCHUM R M,CAMPION K M,et al.Si⁃ liciclastic sequence stratigraphy in well logs,cores and outcrops:concepts for high resolution correlation of time and facies[M].Tul⁃ sa:The American Association of Petroleum Geologists,1990:1-55.
参考文献 17
田景春,邵晓岩,张翔,等.塔里木盆地志留系-泥盆系层序界面的“四位一体”响应特征及其油气地质意义[J].现代地质,2013,27(5):1 042-1 050.TIAN Jingchun,SHAO Xiaoyan,ZHANG Xiang,et al“.Four-inOne”response characteristic in sequence boundary surfaces of Si⁃ lurian to Devonian in Tarim Basin and its significance to petro⁃ leum geology[J].Geoscience,2013,27(5):1 042-1 050.
参考文献 18
裴健翔,董贵能,朱其.北部湾盆地涠西南凹陷流一段强制湖退沉积体的特征及其油气地质意义[J].石油与天然气地质,2016,37(4):520-527.PEI Jianxiang,DONG Guineng,ZHU Qi.Characteristics and pe⁃ troleum geological significance of lacustrine forced regressive de⁃ posits in the1st Member of Liushagang Formation in Weixi’nan Sag,Beibuwan Basin[J].Oil & Gas Geology,2016,37(4):520-527.
参考文献 19
武群虎,郝冉冉,周红科,等.埕岛东坡东营组高精度层序地层格架与储层预测[J].特种油气藏,2019,26(5):1-7.WU Qunhu,HAO Ranran,ZHOU Hongke,et al.High-precision sequence stratigraphic framework and reservoir prediction of Don⁃ gying formation in the eastern slope of Chengdao[J].Special Oil & Gas Reservoirs,2019,26(5):1-7.
参考文献 20
杜学斌,陆永潮,刘惠民,等.细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J].石油实验地质,2018,40(2):244-252.DU Xuebin,LU Yongchao,LIU Huimin,et al.Division of highfrequency sequences of different orders in fine-grained deposits and its geologic significance:A case study of mud shale from the lower section of the third member to the upper section of the fourth member of Shahejie Formation in Dongying Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2018,40(2):244-252.
参考文献 21
李曰俊,杨海军,张光亚,等.重新划分塔里木盆地塔北隆起的次级构造单元[J].岩石学报,2012,28(8):2 466-2 478.LI Yuejun,YANG Haijun,ZHANG Guangya,et al.Redivision of the tectonic units of Tabei Rise in Tarim Basin,NW China[J].Ac⁃ ta Petrologica Sinica,2012,28(8):2 466-2 478.
参考文献 22
安海亭,李海银,王建忠,等.塔北地区构造和演化特征及其对油气成藏的控制[J].大地构造与成矿学,2009,33(1):142-147.AN Haiting,LI Haiyin,WANG Jianzhong,et al.Tectonic evolu⁃ tion and its controlling on oil and gas accumulation in the North⁃ ern Tarim Basin[J].Geotectonica et Metallogenia,2009,33(1):142-147.
参考文献 23
赵文智,许大丰,张朝军,等.库车坳陷构造变形层序划分及在油气勘探中的意义[J].石油学报,1998,19(3):1-5.ZHAO Wenzhi,XU Dafeng,ZHANG Chaojun,et al.Division of structural deformed sequence in Kuche depression and signifi⁃ cance for oil gas exploration[J].Acta Petrolei Sinica,1998,19(3):1-5.
参考文献 24
孙镇城,渠永宏,李东明,等.塔里木盆地东北部新生代介形类与沉积环境[J].现代地质,2000,14(2):123-132.SUN Zhencheng,QU Yonghong,LI Dongming,et al.Cenozoic os⁃ tracoda and palaeoenvironments of the northeastern Tarim Basin [J].Geoscience,2000,14(2):123-132.
参考文献 25
许丽,李江海,王洪浩,等.库车坳陷大北地区古近纪沉积特征及盐湖演化[J].特种油气藏,2016,23(5):56-61.XU Li,LI Jianghai,WANG Honghao,et al.Paleogene sedimentary properties and salt lake evolution in Dabei of Kuqa Depression [J].Special Oil & Gas Reservoirs,2016,23(5):56-61.
目录contents

    摘要

    塔里木盆地塔北隆起西部温宿凸起周缘-英买力隆起地区库姆格列木群底砂岩段是近年来岩性油气藏勘探的热点层位,且玉东1井区已获得了规模的油气产量,但底砂岩段高精度层序地层特征、沉积微相类型及其时空演化规律有待落实。综合利用岩心、钻井、测井和地震资料,识别可以等时追踪对比的标志层、层序界面和湖泛面,构建底砂岩段的高精度层序地层格架,分析各高频层序单元的沉积微相类型和特征,并揭示沉积相的时空演化规律。库姆格列木群底砂岩段为三级层序ESQ1的上升半旋回,可分为4个准层序组,从下到上依次为4砂组、3砂组、2砂组和1砂组。库姆格列木群底砂岩段沉积时期为湖水不断变深、湖盆逐渐扩大的“水进砂退”的沉积背景,发育扇三角洲、辫状河三角洲和湖泊3种沉积相类型,其中4砂组至3砂组沉积时期,为低可容纳空间的低位域体系,物源供给充足,且湖平面上升缓慢,温宿凸起物源区和英买力隆起物源区均发育较大规模的三角洲,英买力隆起物源区还发育规模较大的滨浅湖砂坝。2砂组至1砂组沉积时期,为高可容纳空间的湖侵域体系,湖水迅速变深,温宿凸起物源区沉积物供给迅速减少,扇三角洲迅速向盆地边缘退积迁移,湖水将早期砂体淘洗再沉积形成小型砂坝。英买力隆起物源区三角洲逐渐萎缩,滨浅湖砂坝规模显著变小。

    Abstract

    The lower sand member of Paleogene Kumugeliemu Group in the margin of Wensu Uplift-Yingmaili Uplift area in Tarim Basin has become the focus for lithologic reservoir exploration in recent years,and the massive oil and gas has been produced from Well Yudong1 Block. However,the high-resolution sequence stratigraphy characteristics,sedimentary microfacies types,and temporal-spatial evolution laws were not yet clear. Based on core,drilling,logging and 3D seismic data,the markers,sequence interfaces,and flooding surfaces which can be isochronally tracked and compared were identi- fied. A high-resolution sequence stratigraphy framework was constructed,under the constraint of which the types and char- acteristics of sedimentary microfacies of each high-frequency sequence unit were analyzed and the temporal-spatial evolu-tion laws of sedimentary microfacies were revealed. The results show that the lower sand member of Paleogene Kumuge- liemu Group is the ascending half cycle of the third-order sequence ESQ1 and can be divided into four parasequence sets, namely sand member 4,sand member 3,sand member 2,and sand member 1 from bottom to top. The sedimentary period of the lower sand member of Paleogene Kumugeliemu Group is characterized by gradually deeper lake water and bigger lake basin,thus resulting in“water progradation and sand retrogradation”. Three types of sedimentary facies such as fan delta, braided river delta,and lake are developed here,in which the sediment period from sand member 4 to sand member 3 fea- tures the lowstand system tract with small accommodation space,adequate source supply,and slowly rising lake level. Large deltas are developed in the source areas of Wensu Uplift and Yingmaili Uplift and large near lakeshore sand bars are developed in Yingmaili Uplift source area. The sediment period from sand member 2 to sand member1 is featured by the transgressive system tract with large accommodation space and fast deeper lake water. Swiftly,the source area supply of Wensu Uplift decreases;the fan delta retrogrades towards the basin edge;the early developed sand is washed by the water and redeposited to be small sand bars. The delta in Yingmaili Uplift source area shrinks gradually and the near lakeshore sand bars apparently shrink.

  • 塔北隆起西部温宿凸起周缘-英买力隆起地区被库车坳陷和北部坳陷两个生烃凹陷相夹,是油气运移的有利指向区,喜马拉雅期构造运动导致古近系地层北部整体下沉、向南抬升,为岩性圈闭的形成创造了条件[1-2]。温宿凸起周缘古近系库姆格列木群底砂岩段含油气丰富,2011年,玉东1岩性圈闭的发现拉开了在温宿凸起周缘底砂岩段寻找岩性油气藏的序幕。而底砂岩段以厚度为20~40 m的三角洲前缘亚相细粒沉积为主,砂体厚度薄,横向等时对比困难[3]。而中外勘探已经证明,高精度层序地层学的研究为岩性油气藏的勘探提供了有效的研究思路和方法[4-6]

  • 高精度层序地层学依赖精细测井、露头或岩心等垂向分析,识别出由高频湖平面变化形成的间断面、沉积相突变界面及水进面,从而实现高精度地层格架的横向等时对比[7-9]。四级层序或四级旋回是高精度层序地层格架的基本单元[10],但由于三级层序内部不应存在明显不整合面,故实现高精度地层格架等时对比的关键是识别等时对比界面[11-13]。有学者认为,四级、五级层序等时界面应划在水进面上[914-15]。也有学者认为,四级、五级层序界面应划在水退界面上[16-18]。对中国陆相湖盆和滨浅海盆的沉积层序研究表明,四级沉积旋回的水进面在盆地范围或盆地大部分地区都可追踪对比。林畅松等在研究江汉油田江陵凹陷新沟咀组高精度层序地层对比剖面时发现,以湖相或前三角洲泥岩代表的水进面在凹陷内等时可对比性很好[9]。随着含油气盆地勘探精度的提高,尤其是对岩性圈闭勘探,高精度层序地层学理论和分析方法越来越多的用于油气勘探工作中,中外已有很多成功的实例[19-20]

  • 为此,笔者以塔北隆起西部温宿凸起周缘-英买力隆起地区古近系库姆格列木群底砂岩段为例,以高精度层序地层学为理论指导,综合运用岩心、录井、测井和地震资料,通过精细识别各级层序界面特征,识别可以等时对比的四级旋回,建立高精度的等时地层格架,明确了库姆格列木群底砂岩段的高精度层序地层特征和沉积微相演化特征,并总结底砂岩段沉积模式,以期对研究区岩性油气藏的勘探奠定基础。

  • 1 区域地质概况

  • 塔里木盆地塔北隆起西部地区位于盆地西北部,区域构造隶属塔北古隆起。塔北隆起位于塔里木盆地北部的库车坳陷和北部坳陷之间,为古生界克拉通残余古隆起,自东向西倾没,是油气运移的有利指向区,次级单元主要包括温宿凸起、英买力隆起低凸起、轮南低凸起和库尔勒鼻状凸起(图1)[21]。塔北隆起最西段的温宿凸起在古生代多次发生隆起。三叠纪,随着南天山洋盆闭合后的陆— 陆碰撞,塔北地区隆起并与温宿凸起连成一体[22]。研究区主要位于靠近温宿凸起的塔北隆起西部地区,主体包括温宿凸起周缘、英买力隆起低凸起和轮南低凸起西部。

  • 古近纪—新近纪,库车前陆盆地经历了多次构造逆冲活动,每次构造逆冲控制一次从水进到水退的沉积充填[23],水进时,早期古隆起被淹没,形成河道充填、三角洲、滨浅湖砂坝等底砂岩沉积,随后以沉积干旱气候下的蒸发盐类为主[23-25]。依据层序地层划分方案与区域地层对比,古近系可分为苏维依组和库姆格列木群,其中苏维依组为一个三级旋回,库姆格列木群可分为上膏泥岩段、膏盐岩段、下膏泥岩段和底砂岩段,其中上膏泥岩段与膏盐岩段为一个三级旋回,下膏泥岩段与底砂岩段为一个三级旋回。库姆格列木群底砂岩段与之上发育的膏泥岩段和膏盐岩段形成良好的储盖组合。

  • 图1 塔北隆起构造单元划分及研究区位置

  • Fig.1 Tectonic framework of North Tarim Uplift and regional location of study area

  • 2 高精度地层格架

  • 高精度层序地层学是同时代地层与地层、界面与界面或地层与界面的对比,故识别等时的标志层和各级层序界面是保证地层等时对比的核心。以塔北隆起西部库姆格列木群三级层序格架为基础,综合利用地震、测井、录井和岩心资料识别追踪了三级层序界面、标志层、三级旋回最大湖泛面和四级旋回湖泛面,最后以最大湖泛面和三级层序底界面为顶底等时面,以识别的四级湖泛面和标志层为等时对比面和等时对比层,从点—线—面三维角度建立塔北隆起西部库姆格列木群底砂岩段高精度层序地层格架(图2)。

  • 2.1 高频层序界面识别与层序单元划分

  • 2.1.1 标志层

  • 标志层具有显著特征且在区域内稳定分布。温宿凸起周缘古近系内部发育 3 套标志层,可确定古近系内部地层分布特征。第1套标志层位于库姆格列木群顶部,为高伽马、低电阻特征的全区分布的泥岩、膏泥岩段;第2套标志层位于库姆格列木群中部,为低伽马、高电阻特征的受流动性影响较大的膏盐岩、盐岩段(图2b);第3套标志层位于库姆格列木群下部,为低伽马、低电阻的区域分布的泥灰岩、白云岩薄互层段(图3)。

  • 图2 塔北隆起西部古近系层序地层格架特征

  • Fig.2 Paleogene sequence stratigraphy characteristics of western North Tarim Uplift

  • 图3 羊塔5井库姆格列木群标志层、层序界面、准层序组界面及底砂岩段高精度层序地层单元划分

  • Fig.3 Markers,sequence interfaces,and parasequence sets and unit division of high-resolution sequence stratigraphy of lower sand member of Paleogene Kumugeliemu Group drilled by Well YT5

  • 2.1.2 三级层序界面

  • 三级层序界面为不整合面及其所对应的整合面,靠近盆地边缘表现为不整合面,向盆地中心过渡为整合面。三级层序界面之上常发育代表地层超覆的上超尖灭、下切谷充填或长期暴露形成风化壳和底砾岩,界面之下发育削截、顶超等地震反射终止类型。研究区古近系底部和顶部各存在一个不整合面TE和TN1j,2个界面在地震上均可区域对比追踪(图2a)。由于采集的地震剖面离盆地边缘较远,2个界面表现为整合接触面,在局部地区表现为凹凸不平的冲刷面。TE 与第 2 套标志层底部限定三级层序 ESQ1,其中最大湖泛面(mfs)位于第 2 套标志层和第3套标志层之间的下膏泥岩段中厚层泥岩中高伽马处,第 2 套标志层底与第 1 套标志层底限定三级层序ESQ2,第1套标志层底与TN1j限定三级层序ESQ3。

  • 2.1.3 准层序组界面(四级层序界面)

  • 准层序组是由一套成因相关、堆砌特征相似的准层序组成,其界面为海(湖)泛面或与之可对比的等时界面,表现为准层序叠加样式变化面。准层序组界面可与体系域界面或层序界面一致。研究区库姆格列木群底砂岩段识别出 3 个准层序组界面,自下而上分别为 fs1,fs2 和 fs3。其识别标志表现为高伽马低电阻的湖泛面,位于泥岩段内部或砂岩与泥岩的突变处。相邻2个准层序组界面限定了一期砂泥岩沉积组合(图3)。

  • 在塔北隆起西部库姆格列木群底砂岩段共识别出 3 套标志层和 6 个不同级别的等时界面(TE, TN1j,fs1,fs2,fs3,mfs):3套区域分布的标志层分别位于库姆格列木群的顶部、中部和下部,横向分布稳定且易于追踪,有效的控制了地层划分的精度; 三级层序界面2个,即古近系的顶和底;最大湖泛面 1个,位于第2套标志层和第3套标志层之间的膏泥岩内部;底砂岩段内部识别3个准层序组界面,为四级湖泛面。古近系下部三级层序可分为 3 个体系域,即低位体系域(LST,TE—fs2),湖侵体系域 (TST,fs2—mfs)和高位体系域(mfs—第 2 套标志层底部)。低位体系域和湖侵体系域均可进一步划分为2个准层序组,从下到上依次为4砂组(TE—fs1)、 3 砂组(fs1—fs2)、2 砂层组(fs2—fs3)和 1 砂层组 (fs3—mfs)。

  • 2.2 高精度层序地层结构特征

  • 通过井-震联合标定,古近系底界面(TE)、顶界面(TN1j)、ESQ1 最大湖泛面(mfs)和 3 套标志层均可在地震剖面上识别。由于底砂岩段厚度较薄且地震分辨率有限,其内部 3 个准层序组界面在地震剖面上不可识别。故只能在三级层序界面及标志层控制下所建立的区域等时地层格架下,通过识别单井的准层序组界面,进行连井剖面准层序组精细对比,建立了塔北隆起西部库姆格列木群底砂岩段尺度更小、精度更高的等时层序地层对比格架,为研究底砂岩段高精度层序格架特征和砂体展布特征提供了基础的地质依据。

  • 库姆格列木群底砂岩段全区发育,其内部 4 期准层序组在单井上可较好区分,在连井剖面上可进行追踪对比(图4)。低位体系域 4 砂组和 3 砂组主要为中厚层细砂岩、少量含砾细砂岩和薄层泥岩不等厚互层沉积,GR 曲线呈箱形与钟形组合特征,地震剖面上底砂岩段底部表现为凹凸不平接触,为冲刷面特征。湖侵体系域 2砂组和 1砂组主要为厚层泥岩夹薄层细砂岩、粉砂岩和泥质粉砂岩沉积。底砂岩段由下到上(4 砂组—1 砂组)砂岩厚度逐渐由中厚层变为薄层,砂岩岩性由细砂岩和含砾细砂岩变为粉砂岩和泥质粉砂岩,岩性组合由中厚层砂岩夹薄层泥岩变为厚层泥岩夹薄层砂岩。据此推测,库姆格列木群底砂岩段从 4砂组到 1砂组整体表现为相对湖平面逐渐上升的演化过程,湖岸线位置向物源方向不断迁移、物源持续后退或萎缩,砂质碎屑物主要沉积在底砂岩段下部4砂组和3砂组,2砂组和 1 砂组以泥质沉积为主,夹薄层的细砂岩和粉砂岩。4期准层序组包含了 4期砂岩沉积体的发育过程。

  • 图4 温宿凸起周缘-英买力隆起地区库姆格列木群底砂岩段连井高精度层序地层结构特征

  • Fig.4 Structural characteristics of high-resolution sequence stratigraphy in well-tie profile of lower sand member of Kumugeliemu Group

  • 3 沉积相及演化规律

  • 通过对薄砂岩段进行高精度层序格架的建立,将储集砂体归入全区统一的等时地层框架下,综合利用岩心相、垂向组合序列和测井相,在研究区识别出了扇三角洲、辫状河三角洲和湖泊3种沉积相, 5种沉积亚相和4种主要微相砂体。

  • 3.1 沉积相类型

  • 研究区温宿凸起物源供应区在库姆格列木群底砂岩段发育扇三角洲和小型滨浅湖沉积体系,扇三角洲相以扇三角洲前缘亚相为主,包括水下分流河道、楔状砂和分流间湾微相,以水下分流河道为主。英买力隆起物源区发育辫状河三角洲和大型滨浅湖沉积体系,其中辫状河三角洲与巴西改组辫状河三角洲具有继承性,主要发育辫状河三角洲前缘亚相,砂体微相主要为辫状河三角洲前缘水下分流河道。滨浅湖相包括滨浅湖泥和滨浅湖砂坝微相。

  • 3.1.1 扇三角洲相

  • 3.1.1.1 水下分流河道微相

  • 扇三角洲前缘的水下分流河道沉积为平原环境的分流河道在水下的延伸,为扇三角洲前缘沉积的主体,其沉积特征与砂质辫状河道相似,只是水动力稍弱,粒度略细。

  • 该微相岩石类型组合为中-厚层砂岩夹薄层的间湾泥岩。岩性以棕褐色中-细-粉砂岩主,其次为粉砂质泥岩和泥质粉砂岩。砂岩主要为长石岩屑质砂岩,其次为岩屑长石砂岩和长石砂岩。碎屑石英含量平均为 68.3%,长石含量平均为 19.7%,岩屑含量平均为12%,颗粒磨圆度和分选性中等。

  • 沉积构造丰富,常见流水成因和波浪成因的粒序层理和块状层理、小型槽状交错层理、斜层理、平行层理等(图5a—5c)。砂岩底部具有侵蚀冲刷面,长扁形泥砾多具定向排列。

  • 单个河道表现为向上变细的沉积序列,GR曲线形态为钟形。多个河道切割叠置表现为垂向加积的沉积序列,GR曲线形态多呈箱形(图6)。

  • 3.1.1.2 楔状砂微相

  • 楔状砂微相位于扇三角洲前缘亚相的最前部和侧缘,是由于水体深度的增加或地形坡降突然变缓,分流河道带来的碎屑物质在河道前缘沉积或受湖浪作用改造而在三角洲侧缘沉积形成的,大多数可见反粒序特征,沉积颗粒细,岩性主要为棕褐色粉砂岩、泥质粉砂岩夹粉砂质泥岩。粒度概率曲线多呈两段式或三段式,尤其是具有明显双跳跃总体,反映波浪、水流对沉积物的改造作用,分选相对较好。成分成熟度也较好,石英含量可达50%~60%。

  • 沉积构造丰富、多样,常见波浪和流水成因的各种交错层理、波状层理、变形层理、平行层理、水平层理等。垂向结构剖面多显示出向上变粗和垂向加积式的沉积序列,GR曲线呈漏斗形(图6)。

  • 3.1.1.3 分流间湾微相

  • 分流间湾微相的岩石类型主要由块状泥岩、粉砂质泥岩、泥质粉砂岩和粉砂岩组成。泥岩及粉砂岩的颜色主要为灰绿色和暗褐色。发育透镜状层理、脉状层理、滑塌构造等三角洲前缘的典型标志 (图5e,5f),还可见少量虫孔。单层厚度为 1.5~5 m,横向分布不稳定,是洪水期间沉积物从水下分流河道中溢到河道间沉积而形成。测井曲线呈锯齿状(图6)。

  • 图5 塔北隆起西部库姆格列木群底砂岩段沉积构造

  • Fig.5 Sedimentary structures in the lower sand member of Kumugeliemu Group

  • 图6 塔北隆起西部玉东5井库姆格列木群底砂岩段沉积微相砂体响应特征

  • Fig.6 Drilling/Logging responses of sedimentary microfacies of the lower sand member of Kumugeliemu Group

  • 3.1.2 辫状河三角洲相

  • 辫状河三角洲水下分流河道是平原亚相辫状河入湖后在水下的延伸部分,粒度较平原亚相的辫状河道沉积稍细,形成于辫状河三角洲前缘靠陆一侧。岩石类型以中砂岩、细砂岩和含砾砂岩为主,其次为粉砂岩和含泥砾砂岩,夹褐色泥岩。岩石呈颗粒支撑,杂基含量极少,组成若干个向上变细层序,旋回底部为冲刷面,冲刷面分布滞留砾石沉积。沉积构造见板状交错层理、槽状交错层理和平行层理(图5g)。

  • 3.1.3 滨浅湖相

  • 3.1.3.1 滨浅湖砂坝微相

  • 滨浅湖砂坝岩性为褐紫色、紫红色、粉红色细砂岩、中砂岩及粉砂岩,有时可能有砂质砾岩出现。砂岩分选和磨圆较好,泥质杂基极少,既可出现由粗变细的正韵律,又可见到由细变粗的逆韵律,底部具冲刷面和泥砾,发育平行层理及各种交错层理 (图5h),见浪成波痕和流水波浪(图5d),局部泥裂及重荷模发育,还可见到直立生物潜穴,局部含丰富的顺层分布的钙质结核。对应的 GR曲线呈漏斗形和钟形(图6)。

  • 3.1.3.2 滨浅湖泥微相

  • 滨浅湖泥微相由褐紫色、紫红色、粉红色的泥岩、粉砂质泥岩组成,局部为粉砂与泥岩互层(图5i),局部见垂直生物潜穴和水平生物潜穴,还可见到钙质结核。对应的GR曲线较平直(图6)。

  • 3.2 沉积相演化

  • 以沉积相和高精度层序为基础所编制的层序岩相古地理图是现阶段油气勘探预测砂体最直接的技术手段。参考地层厚度、砂体厚度、砂地比等数据,精细研究了 ESQ1 上升半旋回高精度层序格架内4期砂体的沉积微相。

  • 4砂组沉积时期为湖水快速下降的低位体系域早期,湖盆面积较小且水体较浅,可容纳空间较小。温宿凸起物源和英买力隆起物源供给量丰富,物源供给速率大于可容纳空间增加速率,总体表现为砂体向湖盆进积的特征。温宿凸起物源区以扇三角洲和小型滨浅湖砂坝为主,向湖盆延伸较远。英买力隆起物源区发育辫状河三角洲前缘和滨浅湖砂坝,砂坝规模较大,沿湖岸线分布于辫状河三角洲的前缘和侧缘(图7a)。

  • 3砂组沉积时期为湖水缓慢下降到缓慢上升的低位体系域中期-晚期,湖盆面积缓慢扩大,水体逐渐加深,可容纳空间逐渐变大。2 个物源区的沉积物供给充足。其中温宿凸起物源区沉积物供给速率小于等于可容纳空间增加速率,发育扇三角洲,沉积微相以扇三角洲前缘水下分流河道、楔状砂和滨湖砂坝为主,比 4 砂组延伸较近。英买力隆起物源区沉积物供给速率小于等于可容纳空间增加速率,发育辫状河三角洲和滨浅湖砂坝,两者的规模均小于4砂组(图7b)。

  • 2砂组沉积时期为湖水迅速上升的湖侵体系域早期,湖盆面积迅速扩大,水体迅速加深,可容纳空间迅速变大,2个物源区的沉积物供给量均减小,砂体向物源区退积。温宿凸起物源区沉积物供给速率远小于可容纳空间增加速率,砂体迅速向温宿凸起退积,发育远小于 3 砂组和 4 砂组沉积时期的扇三角洲。由于 2 砂组沉积时期湖水能量较强,将前期沉积的砂体淘洗卷起,再沉积形成沿湖岸线分布的砂坝。英买力隆起物源区沉积物供给速率小于可容纳空间增加速率,辫状河三角洲和滨浅湖砂坝规模均减小(图7c)。

  • 图7 塔北隆起西部库姆格列木群底砂岩段不同时期沉积微相平面分布

  • Fig.7 Planar distribution and evolution of sedimentary microfacies in parasequence sets from sand member 4 to sand member 1 of Kumugeliemu Group

  • 1砂组沉积时期为湖水迅速上升的湖侵体系域晚期,湖盆面积大,水体深,可容纳空间大,沉积物供给少。温宿凸起物源区沉积物供给量不足,扇三角洲朵体萎缩变小,被湖浪淘洗卷起的沉积物在扇三角洲前缘地势相对较高地区再沉积形成砂坝。英买力隆起物源区沉积物供给缓慢减少,辫状河三角洲和滨浅湖砂坝规模持续变小(图7d)。

  • 库姆格列木群底砂岩段沉积时期,湖平面上升,湖盆逐渐变大,沉积特征总体表现为“水进砂退”,发育的砂体类型主要包括扇三角洲前缘水下分流河道砂、辫状河三角洲前缘水下分流河道砂、滨浅湖砂坝砂及三角洲前缘楔状砂。低可容纳空间的低位域期(4砂组和 3砂组),物源供给充足,且湖水上升缓慢,两大物源区均发育较大规模的三角洲,英买力隆起物源区发育规模较大的滨浅湖砂坝。高可容纳空间的湖侵体系域期间(2砂组和1砂组),湖水迅速变深,温宿凸起物源区沉积物供给迅速减少,扇三角洲迅速向盆地边缘退积迁移,湖水将早期砂体淘洗再沉积形成小型砂坝。英买力隆起物源区沉积物供给也逐渐减少,三角洲逐渐向盆地边缘退积,且英买力隆起物源区发育的滨浅湖砂坝规模显著变小。

  • 4 结论

  • 根据钻井、测井、地震等相关资料,塔北隆起西部温宿凸起周缘-英买力隆起地区库姆格列木群底砂岩段为 ESQ1 的上升半旋回,在该上升半旋回中识别出 3 个四级湖泛面,从下到上依次是 fs1,fs2 和 fs3,3个湖泛面将底砂岩段分为 4个砂层组(四级层序),从下到上为 4 砂组、3 砂组、2 砂组和 1 砂组,其中 4砂组和 3砂组为低位体系域,2砂组和 1砂组为湖侵体系域。

  • 底砂岩段为发育扇三角洲、辫状河三角洲和滨浅湖砂坝的复合沉积,识别出扇三角洲前缘水下分流河道、辫状河三角洲前缘水下分流河道、楔状砂和滨浅湖砂坝 4 种主要微相砂体,并确定了不同相的钻井、测井和地震综合特征。

  • 研究区库姆格列木群底砂岩段为湖水不断加深,湖盆不断变大的“水进砂退”的沉积背景。早期为低可容纳空间的低位体系域(4砂组和3砂组),物源供给充足,且湖平面上升缓慢,两大物源区均发育较大规模的三角洲,英买力隆起物源区发育规模较大的滨浅湖砂坝;晚期为高可容纳空间的湖侵体系域(2砂组和 1砂组),湖水迅速变深,温宿凸起物源区沉积物供给迅速减少,扇三角洲迅速向盆地边缘退积迁移,湖水将早期砂体淘洗再沉积形成小型砂坝,英买力隆起物源区扇三角洲逐渐萎缩,滨浅湖砂坝规模显著变小。

  • 参考文献

    • [1] 吕修祥,金之钧,周新源,等.塔里木盆地乌什凹陷温宿凸起油气勘探前景[J].中国石油大学学报:自然科学版,2006,30(1):17-21,25.LÜ Xiuxiang,JIN Zhijun,ZHOU Xinyuan,et al.Oil and gas explo⁃ ration prospect in Wushi sag and Wensu uplift of Tarim Basin[J].Journal of China University of Petroleum:Edition of Natural Sci⁃ ence,2006,30(1):17-21,25.

    • [2] 焦志峰,高志前.塔里木盆地主要古隆起的形成、演化及控油气地质条件分析[J].天然气地球科学,2008,19(5):639-646.JIAO Zhifeng,GAO Zhiqian.Formation,evolution and hydrocar⁃ bon-controlling geological conditions of major paleohighs,Tarim basin[J].Natural Gas Geoscience,2008,19(5):639-646.

    • [3] 王俊鹏,赵继龙,曾庆鲁,等.塔北隆起玉东地区盐下薄砂岩高分辨地震预测[J].地球物理学进展,2018,33(2):730-739.WANG Junpeng,ZHAO Jilong,ZENG Qinglu,et al.High resolu⁃ tion seismic prediction of thin sandstone under gypsum-salt in the Yudong area of the uplift in the north of the Tarim basin[J].Progress in Geophysics,2018,33(2):730-739.

    • [4] 辛福东,许浩,汤达祯,等.基于小波变换的黔西北地区龙潭组煤系地层层序划分[J].油气地质与采收率,2018,25(1):49-55.XIN Fudong,XU Hao,TANG Dazhen,et al.Sequence division of Longtan coal measure strata based on wavelet transform in north⁃ western Guizhou[J].Petroleum Geology and Recovery Efficiency,2018,25(1):49-55.

    • [5] 王志强,刘波,胡忠益,等.海拉尔盆地苏德尔特地区南屯组高分辨率层序地层格架及沉积特征[J].大庆石油地质与开发,2019,38(4):7-14.WANG Zhiqiang,LIU Bo,HU Zhongyi,et al.High-resolution se⁃ quence stratigraphic framework and sedimentary characteristics of Nantun Formation in Sudeerte area of Hailar Basin[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2019,38(4):7-14.

    • [6] 秦国省,胡文瑞,邹存友,等.基准面旋回对冲积扇沉积演化及储层质量的控制作用——以百口泉油田百21井区百口泉组为例[J].油气地质与采收率,2018,25(3):1-10.QIN Guosheng,HU Wenrui,ZOU Cunyou,et al.Effects of baselevel cycles on alluvial fan evolution and reservoir quality:A case study of the Baikouquan Formation in Bai21 Block,Baikouquan Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(3):1-10.

    • [7] 汪彦,彭军,游李伟,等.中国高分辨率层序地层学的研究现状 [J].天然气地球科学,2005,16(3):352-358.WANG Yan,PENG Jun,YOU Liwei,et al.Current status of high resolution sequence stratigrahy in China[J].Natural Gas Geosci⁃ ence,2005,16(3):352-358.

    • [8] 林畅松,张燕梅,刘景彦,等.高精度层序地层学和储层预测 [J].地学前缘,2000,7(3):111-117.LIN Changsong,ZHANG Yanmei,LIU Jingyan,et al.High resolu⁃ tion sequence stratigrahy and reservoir prediction[J].Earth Sci⁃ ence Frontiers,2000,7(3):111-117.

    • [9] 林畅松,刘景彦,刘丽军,等.高精度层序地层分析:建立沉积相和储层规模的等时地层格架[J].现代地质,2002,16(3):276-281.LIN Changsong,LIU Jingyan,LIU Lijun,et al.High resolution se⁃ quence stratigraphy analysis:Construction of chronostratigraphic sequence framework on facies and reservoir scale[J].Geoscience,2002,16(3):276-281.

    • [10] 林畅松.沉积盆地的层序和沉积充填结构及过程响应[J].沉积学报,2009,27(5):849-862.LIN Changsong.Sequence and depositional architecture of sedi⁃ mentary basin and process responses[J].Acta Sedimentologica Si⁃ nica,2009,27(5):849-862.

    • [11] 赵俊青,纪友亮,夏斌,等.扇三角洲沉积体系高精度层序地层学研究[J].沉积学报,2004,22(2):302-309.ZHAO Junqing,JI Youliang,XIA Bin,et al.High-resolution se⁃ quence research in fan-delta sedimentary system[J].Acta Sedi⁃ mentologica Sinica,2004,22(2):302-309.

    • [12] EINSELE G,RICKEN W,SEILACHER A.Cycles and events in stratigraphy[C].Berlin:Springer-Verlag,1991:617-659.

    • [13] 卢伟,李国福.最大熵谱分解结合小波变换技术在层序地层划分中的应用[J].油气藏评价与开发,2018,8(1):1-3,11.LU Wei,LI Guofu.Application of maximum entropy spectrum de⁃ composition combined with wavelet transform in the division of se⁃ quence stratigraphy[J].Reservoir Evaluation and Development,2018,8(1):1-3,11.

    • [14] POSAMENTIER H W,ALLEN G P.Variability of the sequence stratigraphy model:effects of local basin factors[J].Sedimentary Geology,1993,86(1/2):91-109.

    • [15] 刘景彦,丁孝忠,邱以钢,等.新疆库车坳陷古近系苏维依组高精度层序地层及其发育的主控因素探讨[J].高校地质学报,2009,15(3):318-327.LIU Jingyan,DING Xiaozhong,QIU Yigang,et al.High-resolu⁃ tion sequence stratigraphic study on the Palaeogene Suweiyi for⁃ mation in Kuqa depression of Xinjiang region and discussion on its major controlling factors[J].Geological Journal of China Uni⁃ versities,2009,15(3):318-327.

    • [16] VAN WAGONER J C,MITCHUM R M,CAMPION K M,et al.Si⁃ liciclastic sequence stratigraphy in well logs,cores and outcrops:concepts for high resolution correlation of time and facies[M].Tul⁃ sa:The American Association of Petroleum Geologists,1990:1-55.

    • [17] 田景春,邵晓岩,张翔,等.塔里木盆地志留系-泥盆系层序界面的“四位一体”响应特征及其油气地质意义[J].现代地质,2013,27(5):1 042-1 050.TIAN Jingchun,SHAO Xiaoyan,ZHANG Xiang,et al“.Four-inOne”response characteristic in sequence boundary surfaces of Si⁃ lurian to Devonian in Tarim Basin and its significance to petro⁃ leum geology[J].Geoscience,2013,27(5):1 042-1 050.

    • [18] 裴健翔,董贵能,朱其.北部湾盆地涠西南凹陷流一段强制湖退沉积体的特征及其油气地质意义[J].石油与天然气地质,2016,37(4):520-527.PEI Jianxiang,DONG Guineng,ZHU Qi.Characteristics and pe⁃ troleum geological significance of lacustrine forced regressive de⁃ posits in the1st Member of Liushagang Formation in Weixi’nan Sag,Beibuwan Basin[J].Oil & Gas Geology,2016,37(4):520-527.

    • [19] 武群虎,郝冉冉,周红科,等.埕岛东坡东营组高精度层序地层格架与储层预测[J].特种油气藏,2019,26(5):1-7.WU Qunhu,HAO Ranran,ZHOU Hongke,et al.High-precision sequence stratigraphic framework and reservoir prediction of Don⁃ gying formation in the eastern slope of Chengdao[J].Special Oil & Gas Reservoirs,2019,26(5):1-7.

    • [20] 杜学斌,陆永潮,刘惠民,等.细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J].石油实验地质,2018,40(2):244-252.DU Xuebin,LU Yongchao,LIU Huimin,et al.Division of highfrequency sequences of different orders in fine-grained deposits and its geologic significance:A case study of mud shale from the lower section of the third member to the upper section of the fourth member of Shahejie Formation in Dongying Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2018,40(2):244-252.

    • [21] 李曰俊,杨海军,张光亚,等.重新划分塔里木盆地塔北隆起的次级构造单元[J].岩石学报,2012,28(8):2 466-2 478.LI Yuejun,YANG Haijun,ZHANG Guangya,et al.Redivision of the tectonic units of Tabei Rise in Tarim Basin,NW China[J].Ac⁃ ta Petrologica Sinica,2012,28(8):2 466-2 478.

    • [22] 安海亭,李海银,王建忠,等.塔北地区构造和演化特征及其对油气成藏的控制[J].大地构造与成矿学,2009,33(1):142-147.AN Haiting,LI Haiyin,WANG Jianzhong,et al.Tectonic evolu⁃ tion and its controlling on oil and gas accumulation in the North⁃ ern Tarim Basin[J].Geotectonica et Metallogenia,2009,33(1):142-147.

    • [23] 赵文智,许大丰,张朝军,等.库车坳陷构造变形层序划分及在油气勘探中的意义[J].石油学报,1998,19(3):1-5.ZHAO Wenzhi,XU Dafeng,ZHANG Chaojun,et al.Division of structural deformed sequence in Kuche depression and signifi⁃ cance for oil gas exploration[J].Acta Petrolei Sinica,1998,19(3):1-5.

    • [24] 孙镇城,渠永宏,李东明,等.塔里木盆地东北部新生代介形类与沉积环境[J].现代地质,2000,14(2):123-132.SUN Zhencheng,QU Yonghong,LI Dongming,et al.Cenozoic os⁃ tracoda and palaeoenvironments of the northeastern Tarim Basin [J].Geoscience,2000,14(2):123-132.

    • [25] 许丽,李江海,王洪浩,等.库车坳陷大北地区古近纪沉积特征及盐湖演化[J].特种油气藏,2016,23(5):56-61.XU Li,LI Jianghai,WANG Honghao,et al.Paleogene sedimentary properties and salt lake evolution in Dabei of Kuqa Depression [J].Special Oil & Gas Reservoirs,2016,23(5):56-61.

  • 参考文献

    • [1] 吕修祥,金之钧,周新源,等.塔里木盆地乌什凹陷温宿凸起油气勘探前景[J].中国石油大学学报:自然科学版,2006,30(1):17-21,25.LÜ Xiuxiang,JIN Zhijun,ZHOU Xinyuan,et al.Oil and gas explo⁃ ration prospect in Wushi sag and Wensu uplift of Tarim Basin[J].Journal of China University of Petroleum:Edition of Natural Sci⁃ ence,2006,30(1):17-21,25.

    • [2] 焦志峰,高志前.塔里木盆地主要古隆起的形成、演化及控油气地质条件分析[J].天然气地球科学,2008,19(5):639-646.JIAO Zhifeng,GAO Zhiqian.Formation,evolution and hydrocar⁃ bon-controlling geological conditions of major paleohighs,Tarim basin[J].Natural Gas Geoscience,2008,19(5):639-646.

    • [3] 王俊鹏,赵继龙,曾庆鲁,等.塔北隆起玉东地区盐下薄砂岩高分辨地震预测[J].地球物理学进展,2018,33(2):730-739.WANG Junpeng,ZHAO Jilong,ZENG Qinglu,et al.High resolu⁃ tion seismic prediction of thin sandstone under gypsum-salt in the Yudong area of the uplift in the north of the Tarim basin[J].Progress in Geophysics,2018,33(2):730-739.

    • [4] 辛福东,许浩,汤达祯,等.基于小波变换的黔西北地区龙潭组煤系地层层序划分[J].油气地质与采收率,2018,25(1):49-55.XIN Fudong,XU Hao,TANG Dazhen,et al.Sequence division of Longtan coal measure strata based on wavelet transform in north⁃ western Guizhou[J].Petroleum Geology and Recovery Efficiency,2018,25(1):49-55.

    • [5] 王志强,刘波,胡忠益,等.海拉尔盆地苏德尔特地区南屯组高分辨率层序地层格架及沉积特征[J].大庆石油地质与开发,2019,38(4):7-14.WANG Zhiqiang,LIU Bo,HU Zhongyi,et al.High-resolution se⁃ quence stratigraphic framework and sedimentary characteristics of Nantun Formation in Sudeerte area of Hailar Basin[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2019,38(4):7-14.

    • [6] 秦国省,胡文瑞,邹存友,等.基准面旋回对冲积扇沉积演化及储层质量的控制作用——以百口泉油田百21井区百口泉组为例[J].油气地质与采收率,2018,25(3):1-10.QIN Guosheng,HU Wenrui,ZOU Cunyou,et al.Effects of baselevel cycles on alluvial fan evolution and reservoir quality:A case study of the Baikouquan Formation in Bai21 Block,Baikouquan Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(3):1-10.

    • [7] 汪彦,彭军,游李伟,等.中国高分辨率层序地层学的研究现状 [J].天然气地球科学,2005,16(3):352-358.WANG Yan,PENG Jun,YOU Liwei,et al.Current status of high resolution sequence stratigrahy in China[J].Natural Gas Geosci⁃ ence,2005,16(3):352-358.

    • [8] 林畅松,张燕梅,刘景彦,等.高精度层序地层学和储层预测 [J].地学前缘,2000,7(3):111-117.LIN Changsong,ZHANG Yanmei,LIU Jingyan,et al.High resolu⁃ tion sequence stratigrahy and reservoir prediction[J].Earth Sci⁃ ence Frontiers,2000,7(3):111-117.

    • [9] 林畅松,刘景彦,刘丽军,等.高精度层序地层分析:建立沉积相和储层规模的等时地层格架[J].现代地质,2002,16(3):276-281.LIN Changsong,LIU Jingyan,LIU Lijun,et al.High resolution se⁃ quence stratigraphy analysis:Construction of chronostratigraphic sequence framework on facies and reservoir scale[J].Geoscience,2002,16(3):276-281.

    • [10] 林畅松.沉积盆地的层序和沉积充填结构及过程响应[J].沉积学报,2009,27(5):849-862.LIN Changsong.Sequence and depositional architecture of sedi⁃ mentary basin and process responses[J].Acta Sedimentologica Si⁃ nica,2009,27(5):849-862.

    • [11] 赵俊青,纪友亮,夏斌,等.扇三角洲沉积体系高精度层序地层学研究[J].沉积学报,2004,22(2):302-309.ZHAO Junqing,JI Youliang,XIA Bin,et al.High-resolution se⁃ quence research in fan-delta sedimentary system[J].Acta Sedi⁃ mentologica Sinica,2004,22(2):302-309.

    • [12] EINSELE G,RICKEN W,SEILACHER A.Cycles and events in stratigraphy[C].Berlin:Springer-Verlag,1991:617-659.

    • [13] 卢伟,李国福.最大熵谱分解结合小波变换技术在层序地层划分中的应用[J].油气藏评价与开发,2018,8(1):1-3,11.LU Wei,LI Guofu.Application of maximum entropy spectrum de⁃ composition combined with wavelet transform in the division of se⁃ quence stratigraphy[J].Reservoir Evaluation and Development,2018,8(1):1-3,11.

    • [14] POSAMENTIER H W,ALLEN G P.Variability of the sequence stratigraphy model:effects of local basin factors[J].Sedimentary Geology,1993,86(1/2):91-109.

    • [15] 刘景彦,丁孝忠,邱以钢,等.新疆库车坳陷古近系苏维依组高精度层序地层及其发育的主控因素探讨[J].高校地质学报,2009,15(3):318-327.LIU Jingyan,DING Xiaozhong,QIU Yigang,et al.High-resolu⁃ tion sequence stratigraphic study on the Palaeogene Suweiyi for⁃ mation in Kuqa depression of Xinjiang region and discussion on its major controlling factors[J].Geological Journal of China Uni⁃ versities,2009,15(3):318-327.

    • [16] VAN WAGONER J C,MITCHUM R M,CAMPION K M,et al.Si⁃ liciclastic sequence stratigraphy in well logs,cores and outcrops:concepts for high resolution correlation of time and facies[M].Tul⁃ sa:The American Association of Petroleum Geologists,1990:1-55.

    • [17] 田景春,邵晓岩,张翔,等.塔里木盆地志留系-泥盆系层序界面的“四位一体”响应特征及其油气地质意义[J].现代地质,2013,27(5):1 042-1 050.TIAN Jingchun,SHAO Xiaoyan,ZHANG Xiang,et al“.Four-inOne”response characteristic in sequence boundary surfaces of Si⁃ lurian to Devonian in Tarim Basin and its significance to petro⁃ leum geology[J].Geoscience,2013,27(5):1 042-1 050.

    • [18] 裴健翔,董贵能,朱其.北部湾盆地涠西南凹陷流一段强制湖退沉积体的特征及其油气地质意义[J].石油与天然气地质,2016,37(4):520-527.PEI Jianxiang,DONG Guineng,ZHU Qi.Characteristics and pe⁃ troleum geological significance of lacustrine forced regressive de⁃ posits in the1st Member of Liushagang Formation in Weixi’nan Sag,Beibuwan Basin[J].Oil & Gas Geology,2016,37(4):520-527.

    • [19] 武群虎,郝冉冉,周红科,等.埕岛东坡东营组高精度层序地层格架与储层预测[J].特种油气藏,2019,26(5):1-7.WU Qunhu,HAO Ranran,ZHOU Hongke,et al.High-precision sequence stratigraphic framework and reservoir prediction of Don⁃ gying formation in the eastern slope of Chengdao[J].Special Oil & Gas Reservoirs,2019,26(5):1-7.

    • [20] 杜学斌,陆永潮,刘惠民,等.细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J].石油实验地质,2018,40(2):244-252.DU Xuebin,LU Yongchao,LIU Huimin,et al.Division of highfrequency sequences of different orders in fine-grained deposits and its geologic significance:A case study of mud shale from the lower section of the third member to the upper section of the fourth member of Shahejie Formation in Dongying Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2018,40(2):244-252.

    • [21] 李曰俊,杨海军,张光亚,等.重新划分塔里木盆地塔北隆起的次级构造单元[J].岩石学报,2012,28(8):2 466-2 478.LI Yuejun,YANG Haijun,ZHANG Guangya,et al.Redivision of the tectonic units of Tabei Rise in Tarim Basin,NW China[J].Ac⁃ ta Petrologica Sinica,2012,28(8):2 466-2 478.

    • [22] 安海亭,李海银,王建忠,等.塔北地区构造和演化特征及其对油气成藏的控制[J].大地构造与成矿学,2009,33(1):142-147.AN Haiting,LI Haiyin,WANG Jianzhong,et al.Tectonic evolu⁃ tion and its controlling on oil and gas accumulation in the North⁃ ern Tarim Basin[J].Geotectonica et Metallogenia,2009,33(1):142-147.

    • [23] 赵文智,许大丰,张朝军,等.库车坳陷构造变形层序划分及在油气勘探中的意义[J].石油学报,1998,19(3):1-5.ZHAO Wenzhi,XU Dafeng,ZHANG Chaojun,et al.Division of structural deformed sequence in Kuche depression and signifi⁃ cance for oil gas exploration[J].Acta Petrolei Sinica,1998,19(3):1-5.

    • [24] 孙镇城,渠永宏,李东明,等.塔里木盆地东北部新生代介形类与沉积环境[J].现代地质,2000,14(2):123-132.SUN Zhencheng,QU Yonghong,LI Dongming,et al.Cenozoic os⁃ tracoda and palaeoenvironments of the northeastern Tarim Basin [J].Geoscience,2000,14(2):123-132.

    • [25] 许丽,李江海,王洪浩,等.库车坳陷大北地区古近纪沉积特征及盐湖演化[J].特种油气藏,2016,23(5):56-61.XU Li,LI Jianghai,WANG Honghao,et al.Paleogene sedimentary properties and salt lake evolution in Dabei of Kuqa Depression [J].Special Oil & Gas Reservoirs,2016,23(5):56-61.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告