en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

张世明(1975—),男,湖北随州人,教授级高级工程师,博士,从事油田开发理论、复杂介质油藏渗流机理及油藏数值模拟技术研究工作。E-mail:zhangshm855.slyt@sinopec.com。

通讯作者:

刘同敬(1972—),男,山东东营人,副研究员,博士。E-mail:Liutongjing@126.com。

中图分类号:TE348

文献标识码:A

文章编号:1009-9603(2020)06-0065-06

DOI:10.13673/j.cnki.cn37-1359/te.2020.06.008

参考文献 1
张昱.低渗油藏中泡沫对窜流通道封堵能力的影响因素研究 [D].北京:中国石油大学(北京),2016.ZHANG Yu.Study on influence factors of foam’s blocking ability on flow channels in low-permeability oil reservoir[D].Beijing:China University of Petroleum(Beijing),2016.
参考文献 2
YU Hongwei,SONG Xinmin,YANG Siyu,et al.Experimental and numerical simulation study on single layer injectivity for CO2 flooding in low permeability oil reservoir[C].SPE 144042,2011.
参考文献 3
万国赋,刘同敬,祝奎,等.低渗透油藏 CO2驱 SF6微量气体示踪实验研究[J].西南石油大学学报:自然科学版,2011,33(5):141-145.WAN Guofu,LIU Tongjing,ZHU Kui,et al.Experiment of microsize amount SF6 tracer for CO2 flooding in low permeability reser⁃ voir[J].Journal of Southwest Petroleum University:Science & Technology Edition,2011,33(5):141-145.
参考文献 4
杨红,赵习森,陈龙龙,等.气相示踪技术在延长油田特低渗透油藏CO2驱中的应用[J].中国矿业,2019,28(9):148-152.YANG Hong,ZHAO Xisen,CHEN Longlong,et al.Gas tracer technology application in CO2 flooding of extra-low permeability reservoir[J].China Mining Magazine,2019,28(9):148-152.
参考文献 5
唐诚.储层裂缝表征及预测研究进展[J].科技导报,2013,31(21):74-79.TANG Cheng.Progress in fracture characterization and prediction [J].Science & Technology Review,2013,31(21):74-79.
参考文献 6
陈衍,桑晓彤,程志超,等.低渗透储层裂缝表征——以车镇凹陷东南部为例[J].河南科学,2018,36(1):107-112.CHEN Yan,SANG Xiaotong,CHENG Zhichao,et al.Characteriza⁃ tion of low-permeability reservoir in southeast of Chezhen Sag[J].Henan Science,2018,36(1):107-112.
参考文献 7
桑晓彤.低渗透储层裂缝表征及成因研究[D].青岛:中国石油大学(华东),2017.SANG Xiaotong.Fracture mechanism and characterization of lowpermeability reservoir[D].Qingdao:China University of Petroleum(East China),2017.
参考文献 8
仲圆.鄂尔多斯盆地致密油储层裂缝识别与表征[J].西安文理学院学报:自然科学版,2019,22(5):103-106.ZHONG Yuan.Fracture identification and characterization of tight oil reservoirs in Ordos basin[J].Journal of Xi’an University of Arts and Science:Natural Science Edition,2019,22(5):103-106.
参考文献 9
王晓畅,李军,张松扬,等.裂缝孔隙参数定量表征和刻度及影响因素分析[J].地球物理学进展,2011,26(4):1 393-1 399.WANG Xiaochang,LI Jun,ZHANG Songyang,et al.Quantitative characterization and calibration of fracture pore parameters and the effect factors analysis[J].Progress in Geophysics,2011,26(4):1 393-1 399.
参考文献 10
李雪.裂缝性油气藏储层综合表征体系综述[J].中国科技论文,2015,10(15):1 861-1 870.LI Xue.A review on comprehensive characteristics of fractured reservoirs[J].China Sciencepaper,2015,10(15):1 861-1 870.
参考文献 11
贾品,程林松,黄世军,等.水平井体积压裂缝网表征及流动耦合模型[J].计算物理,2015,32(6):685-692.JIA Pin,CHENG Linsong,HUANG Shijun,et al.Characterization of fracture network by volume fracturing in horizontal wells and coupled flow model[J].Chinese Journal of Computational Phys⁃ ics,2015,32(6):686-692.
参考文献 12
郭印同,杨春和,贾长贵,等.页岩水力压裂物理模拟与裂缝表征方法研究[J].岩石力学与工程学报,2014,33(1):52-59.GUO Yintong,YANG Chunhe,JIA Changgui,et al.Research on hydraulic fracturing physical simulation of shale and fracture Characterization methods[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):52-59.
参考文献 13
尚校森,丁云宏,卢拥军,等.一种页岩体积压裂复杂裂缝的量化表征[J].石油与天然气地质,2017,38(1):189-196.SHANG Xiaosen,DING Yunhong,LU Yongjun,et al.Quantitative characterization of complex fractures after volume fracturing in shale[J].Oil & Gas Geology,2017,38(1):189-196.
参考文献 14
刘月田,丁祖鹏,屈亚光,等.油藏裂缝方向表征及渗透率各向异性参数计算[J].石油学报,2011,32(5):842-846.LIU Yuetian,DING Zupeng,QU Yaguang,et al.The characteriza⁃ tion of fracture orientation and the calculation of anisotropic per⁃ meability parameters of reservoirs[J].Acta Petrolei Sinica,2011,32(5):842-846.
参考文献 15
唐雁刚,张荣虎,魏红兴,等.致密砂岩储层多尺度裂缝渗透率定量表征及开发意义[J].特种油气藏,2018,25(5):30-34.TANG Yangang,ZHANG Ronghu,WEI Hongxing,et al.Quantita⁃ tive permeability characterization of multi-scale fractures and its development significance in tight sandstone gas reservoir[J].Spe⁃ cial Oil & Gas Reservoirs,2018,25(5):30-34.
参考文献 16
孙志勇,陈开远,冯建伟,等.致密砂岩多期裂缝形成机制及定量表征研究进展[J].力学学报,2017,23(2):272-279.SUN Zhiyong,CHEN Kaiyuan,FENG Jianwei,et al.Research progress on the formation mechanism and quantitative character⁃ ization of multiphase fracture networks of tight sandstone[J].Jour⁃ nal of Geomechanics,2017,23(2):272-279.
参考文献 17
徐加祥,丁云宏,杨立峰,等.致密油藏分段多簇压裂水平井复杂缝网表征及产能分析[J].油气地质与采收率,2019,26(5):132-138.XU Jiaxiang,DING Yunhong,YANG Lifeng,et al.Complex frac⁃ ture network characterization and productivity analysis of multi⁃ stage fractured horizontal well in tight oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(5):132-138.
参考文献 18
刘同敬,第五鹏祥,赵习森,等.致密油藏注气后储层渗流特征参数动态反演方法[J].油气地质与采收率,2020,27(1):93-100.LIU Tongjing,DIWU Pengxiang,ZHAO Xisen,et al.Dynamic in⁃ version method of percolation characteristic parameters after gas injection in tight reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):93-100.
参考文献 19
张世明.低渗透油藏CO2驱气窜通道识别方法[J].油气地质与采收率,2020,27(1):101-106.ZHANG Shiming.Study on indentification method for gas channel⁃ ing of CO2 flooding in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):101-106.
目录contents

    摘要

    致密油藏压裂后通常在近井附近形成复杂的裂缝网络系统,注采井间缝网特征参数的定量描述,对后期气窜封堵措施定制和开发方案调整具有重要意义。在前人研究成果的基础上,根据物质守恒原理,完善裂缝孔隙度、裂缝渗透率、裂缝开度和裂缝线密度等主要缝网特征参数的表征函数,提出了致密油藏见气后井间缝网特征参数量化的计算方法和求解步骤。以胜利油田 XN 井组为例,计算得到井间缝网特征参数的量化结果:裂缝孔隙度为 0.250%~0.251%,平均裂缝渗透率为 42~1563 mD,裂缝开度为 14~87 μm,裂缝线密度为 29~176 条/m。分析认为: XN井组的裂缝孔隙度整体上远小于储层平均孔隙度,裂缝发育程度较强;各气窜单井的井间平均裂缝渗透率和平均气窜速度差异较大,以微裂缝为主,存在一定规模的气窜裂缝通道;气窜速度快的单井,表现出平均裂缝渗透率高、裂缝开度大和裂缝线密度小等特点。

    Abstract

    After the fracturing in tight reservoirs,a complex fracture network system was usually formed near the well. The scientific and reasonable quantitative description of the characteristic parameters of the fracture network between injection-production wells was important to the customization of the sealing measures for gas channeling and the adjustment of devel- opment plans. Based on the previous research results,the characteristic functions of major characteristic parameters of the fracture network,such as porosity,permeability,opening,and line density of fractures,were improved with the principle of conservation of matter. Besides,the specific methods and steps for quantitative calculation of the characteristic parameters of inter-well fracture network after gas channeling in tight reservoirs were proposed. A case in point was the well group XN of Shengli Oilfield(Dongying City,Shandong Province). The quantitative calculation results of characteristic parameters of inter-well fracture network were obtained,namely fracture porosity of 0.250% -0.251%,average fracture permeability of 42-1563 mD,fracture opening of 14-87 μm,and fracture line density of 29-176/m. According to the analysis,the fracture porosity of well group XN is far less than the average porosity of reservoir on the whole and the fracture is strongly devel- oped. The average fracture permeability and average gas-channeling velocity vary drastically with each individual gas-channeling well. Micro-fractures are the majority,but there are some large fractures for gas channeling. The individual well with fast gas channeling is featured by high average permeability,large fracture opening,and low line density of fractures.

  • 致密油藏普遍具有孔隙度低、渗透率低的地质特征,开发前期需进行储层压裂。压裂后的储层会形成大量的裂缝或微裂缝,连通的裂缝网络系统为气体流动提供了便利,但也会使致密油藏气驱开发时的气窜问题尤为突出[1-4]。科学合理的实现注采井间缝网特征参数定量描述,对后期气窜封堵措施定制和开发方案调整具有重要意义。目前中外对裂缝描述的表征方法较多,包括储层地质、岩石力学、物探反演和油藏工程等各类研究方法[5-17]。相较于前 3 类研究方法的系统性,油藏工程研究方法起步较晚,理论性和实用性都有待完善。

  • 为此,笔者在研究区实际数据统计分析和前人研究成果的基础上,进一步完善裂缝孔隙度、裂缝渗透率、裂缝开度和裂缝线密度等主要缝网特征参数的表征函数,提出试井解释与动态反演相结合的致密油藏见气后的井间缝网特征参数量化方法和求解步骤,为判断井间缝网特征以及气窜封堵方案制订提供依据。

  • 1 井间缝网特征参数量化方法

  • 致密油藏在气驱开发过程中,若发生明显气窜,则说明气体注入储层后由于气体滑脱效应,无法与储层油水系统充分接触,未形成混相或近混相的混合流体体系,使得注气措施失效。气体产生滑脱效应的主要因素除了气液密度差导致的内因外,致密储层压裂后形成的复杂裂缝网络系统是诸多外部影响因素中的关键因素。

  • 1.1 函数表征

  • 裂缝孔隙度  根据研究区实际数据的统计分析,依据物质守恒原理,得出单井附近裂缝孔隙度的计算模型,其函数表达式为:

  • ϕf=0.35V0.65πR2Lfra×100%
    (1)
  • 裂缝渗透率  致密油藏发生气窜后,地下流体在储层渗流过程中会存在储层平均渗透率和气窜通道平均渗透率。前者为地下油、气、水三相混合液在储层渗流过程中的渗透率,后者为滑脱气体在气窜通道内运移过程中的渗透率。由于气窜通道通常由大裂缝或连通裂隙网络通道引起,因此,气窜通道平均渗透率可以等效为注采井间的裂缝渗透率。

  • 依据前人致密油藏注气后储层渗流特征参数动态反演方法研究成果[18],气窜通道平均渗透率的函数表达式为:

  • Kc=μmLVgKrmΔp
    (2)
  • 其中:

  • Vg=Lt
    (3)
  • 因此,注采井间的裂缝渗透率的函数表达式为:

  • Kf=Kc
    (4)
  • 裂缝开度与裂缝线密度  依据前人研究结果[19],裂缝孔隙度、裂缝渗透率、裂缝开度以及裂缝线密度之间的函数关系式为:

  • Kf=ρlb312000
    (5)
  • 其中:

  • ϕf=ρlb
    (6)
  • 1.2 求解步骤

  • 致密油藏见气后的井间缝网特征参数量化方法的主要计算步骤包括:①根据试井解释得到的内区半径,代入(1)式可得气窜单井附近的裂缝孔隙度。②依据前人致密油藏注气后储层渗流特征参数动态反演方法研究成果[18-19],代入(2)式先分别得到气窜单井各时间点的气窜通道平均渗透率,再计算气窜期间的气窜通道平均渗透率的均值,作为单井气窜期间注采井间的平均裂缝渗透率。③将步骤②求得的平均裂缝渗透率代入(5)式和(6)式,通过枚举裂缝开度的方法,得到单井附近的裂缝孔隙度和裂缝线密度。④依据步骤③的计算结果,绘制出单井附近的裂缝孔隙度-裂缝线密度-裂缝开度的关系曲线。⑤依据步骤①得到的单井附近的裂缝孔隙度,借助步骤④绘制的关系曲线,得到该裂缝孔隙度所对应的裂缝开度及裂缝线密度,作为气窜单井附近的裂缝开度和裂缝线密度。

  • 2 井间缝网特征参数量化

  • 2.1 研究区气窜特征

  • 胜利油田 XN 井组为研究区的注气井组,1 注 8 采。XN 井是该井组的 1 口转注井,于 2012 年 11 月投产注水,2013 年 6 月转注 CO2,注入方式为 CO2和泡沫交替注入。2014年4月前低速注入,此后,提高注入速度,注入量同时提高约3倍,但油压仅升高约 1 MPa。分析认为 XN 井组近井地带具有较强的应力敏感性,裂缝较为发育。

  • 以 XN 井组内的 1 口实际气窜单井 X6 井为例,说明致密油藏见气后井间缝网特征参数量化的具体计算方法和计算结果。X6井是XN井组的1口二线水平井,储层含油物性较好。压裂后投产,初期产能较高,裂缝发育;之后产油量缓慢下降,含水率基本稳定在 50%。XN 井开始低速注气后,X6 井含水率上升,但产油量递减趋势未得到改善;XN 井提高注气速度后,X6井的含水率基本维持稳定。表明 X6 井与 XN 井注入动态响应良好,井间连通关系较好。

  • XN 井组注气期间 X6 井发生气窜现象,根据开发动态监测结果,X6井产出气中 CO2含量的动态变化如图1 所示。该井生产初期,产出气中 CO2含量几乎为 0;从 2014 年 4 月起,产出气中 CO2含量明显升高,表明开始发生气窜现象;至2014年底,产出气中 CO2含量已超过 5%,并持续快速上升,表明该井气窜现象加剧。

  • 图1 X6井产出气体中CO2含量动态分布

  • Fig.1 Variation of CO2 content in produced gas in Well X6

  • 2.2 井间缝网特征参数计算

  • 按照井间缝网特征参数求解步骤,对X6井的裂缝孔隙度、裂缝渗透率、裂缝开度和裂缝线密度等特征参数进行求解。主要步骤包括:①通过试井解释,得到 X6 井近井范围内的内区半径为 4.26 m,代入(1)式得到 X6 井附近的裂缝孔隙度为 0.250 4%。 ②依据前人致密油藏注气后储层渗流特征参数动态反演方法研究成果,代入(2)式得到 X6井的气窜通道平均渗透率(图2)。由于气窜通道平均渗透率是随时间变化的量,为简化计算,取 X6井气窜期间气窜通道平均渗透率的均值,作为该井注采井间的平均裂缝渗透率,为 743.44 mD。同时,代入(3)式得到该井的平均气窜速度为1.63 m/d。③将步骤② 求得的X6井注采井间的平均裂缝渗透率代入(5)式和(6)式,通过枚举裂缝开度的方法,得到该井附近的裂缝孔隙度和裂缝线密度(表1)。④依据表1计算结果,绘制出 X6 井的裂缝孔隙度-裂缝线密度-裂缝开度关系曲线(图3)。⑤借助步骤④绘制的X6 井的裂缝孔隙度-裂缝线密度-裂缝开度关系曲线,得到裂缝孔隙度为 0.250 4%时,所对应的裂缝开度及裂缝线密度分别为 60 μm 和 42 条/m,即为 X6 井附近的裂缝开度和裂缝线密度。

  • 图2 X6井气窜通道平均渗透率动态分布

  • Fig.2 Variation of average permeability of fracture for gas-channeling in Well X6

  • 表1 X6井附近的裂缝孔隙度与裂缝线密度计算结果

  • Table1 Calculation results of fracture porosity and fracture line density near Well X6

  • 图3 X6井裂缝孔隙度-裂缝线密度-裂缝开度关系曲线

  • Fig.3 Fracture porosity-fracture linear density-fracture opening relation of Well X6

  • 3 井间缝网特征参数量化分析

  • 3.1 裂缝孔隙度

  • 通过井间缝网特征参数量化计算,得到 XN 井组裂缝孔隙度计算结果(表2),可以看出:XN 井组各单井近井附近的裂缝孔隙度差异不大,为 0.250 0%~0.250 9%。相较于测井解释得到的储层平均孔隙度为 8%,两者相差 30 倍左右,表明 XN 井组储层范围内的裂缝发育程度较强。

  • 表2 XN井组裂缝孔隙度计算结果

  • Table2 Calculation results of fracture porosity in well group XN

  • 3.2 裂缝渗透率

  • 通过井间缝网特征参数量化计算,得到 XN 井组平均裂缝渗透率和平均气窜速度计算结果(表3),可以看出:①XN 井组的 8 口生产井中有 6 口发生了气窜,各单井的平均裂缝渗透率差异较大,最大值和最小值相差近 40 倍。各单井的平均气窜速度差异较大,最大值和最小值相差近13倍。②相较于测井解释得到的储层平均渗透率 0.2 mD,各单井的平均裂缝渗透率均远大于储层平均渗透率。除 X1井外,其他 5口生产井的平均裂缝渗透率已超过低渗透率井的范畴,X6井甚至达到了高渗透率井的标准,X4井达到了特高渗透率井的标准。③在 6口气窜井中,X4井的平均裂缝渗透率和平均气窜速度均显著高于其他5口气窜井,表明X4井所处层位存在明显裂缝或窜流通道。

  • 表3 XN井组平均裂缝渗透率和平均气窜速度计算结果

  • Table3 Calculation results of average fracture permeability and average gas-channeling velocity in well group XN

  • 3.3 裂缝开度与裂缝线密度

  • 通过井间缝网特征参数量化计算,得到 XN 井组裂缝开度与裂缝线密度计算结果(表4),可以看出:①平均裂缝渗透率越大,裂缝开度越大,XN 井组的裂缝开度为 14~87 μm。②平均裂缝渗透率越大,裂缝线密度呈指数函数关系快速递减,XN 井组的裂缝线密度为29~176条/m。

  • 表4 XN井组裂缝开度与裂缝线密度计算结果

  • Table4 Calculation results of fracture opening and fracture line density in well group XN

  • 3.4 井间缝网发育程度分析

  • 通过井间缝网特征参数量化计算,结合 XN 井组的动、静态资料综合分析认为,XN 井组所在储层的整体含油性好,且储层压裂后裂缝相对发育。具体表现为:①注入井XN井附近裂缝发育,储层应力敏感性较强。②气窜井X1井附近裂缝发育,与注入井井间存在中等级别的水窜通道。③气窜井 X2井附近发育微裂缝,与注入井存在小规模的井间气窜微裂缝通道。④气窜井 X3井附近的裂缝发育程度相对较弱,与注入井的井间连通关系较好,可能存在级别较小的微裂缝通道。⑤气窜井 X4井气窜严重,储层水淹程度高,与注入井井间存在明显的裂缝或窜流通道,后期可考虑转为注气或注水井,与注入井 XN 井实施多井联注。⑥气窜井 X5 井附近发育微裂缝,与注入井存在一定规模的井间气窜微裂缝通道。⑦气窜井X6井附近裂缝发育,与注入井存在较大规模的井间气窜裂缝通道。⑧非气窜井 X7 井和 X8 井附近发育微裂缝,但未与注入井井间形成连通缝网通道。

  • 结合含水率上升规律和动态响应特征,XN 井组整体裂缝发育方向较明确。XN 井组靠近断层附近裂缝发育较强,北东向裂缝发育强度较大,共轭方向裂缝发育相对较弱,裂缝开度小于100 μm。各气窜单井的井间平均裂缝渗透率和平均气窜速度差异较大,以微裂缝为主,存在一定规模的气窜裂缝通道。气窜速度快的单井,表现出平均裂缝渗透率高、裂缝开度大、裂缝线密度小等特点。

  • 4 结论

  • 基于物质守恒原理,借助油藏实际开发动态资料,进行致密油藏见气后井间缝网特征参数量化研究。相较于储层地质、岩石力学、物探反演等研究方法,该方法从油藏工程角度出发,提出了一种动态反演井间缝网特征参数的量化计算方法,进一步完善了井间缝网特征参数定量研究的理论基础。应用该方法得到的井间缝网特征参数计算结果,能较好地与实际动、静态资料所反映的井间缝网特征相吻合,具有较强的适用性和可靠性。对科学描述井间缝网特征参数,以及后期气窜封堵措施定制和开发方案调整具有重要的借鉴价值。

  • 符号解释

  • b ——裂缝开度,μm;

  • K c——气窜通道平均渗透率,D;

  • K f ——注采井间的裂缝渗透率,D;

  • K rm——地下混合液的相对渗透率,f;

  • L ——油水井井距,cm;

  • L fra——压裂井段长度,m;

  • R ——试井解释得到的内区半径,m;

  • t ——从注气到气窜见气所用的时间,d;

  • V g——窜流速度,cm/s;

  • V——压裂砂注入总量,m3

  • Δp ——油水井间生产压差,atm;

  • μm——油、气、水三相混合液的地下黏度,mPa·s;

  • ρl ——裂缝线密度,条/m;

  • ϕf ——单井附近裂缝孔隙度,%。

  • 参考文献

    • [1] 张昱.低渗油藏中泡沫对窜流通道封堵能力的影响因素研究 [D].北京:中国石油大学(北京),2016.ZHANG Yu.Study on influence factors of foam’s blocking ability on flow channels in low-permeability oil reservoir[D].Beijing:China University of Petroleum(Beijing),2016.

    • [2] YU Hongwei,SONG Xinmin,YANG Siyu,et al.Experimental and numerical simulation study on single layer injectivity for CO2 flooding in low permeability oil reservoir[C].SPE 144042,2011.

    • [3] 万国赋,刘同敬,祝奎,等.低渗透油藏 CO2驱 SF6微量气体示踪实验研究[J].西南石油大学学报:自然科学版,2011,33(5):141-145.WAN Guofu,LIU Tongjing,ZHU Kui,et al.Experiment of microsize amount SF6 tracer for CO2 flooding in low permeability reser⁃ voir[J].Journal of Southwest Petroleum University:Science & Technology Edition,2011,33(5):141-145.

    • [4] 杨红,赵习森,陈龙龙,等.气相示踪技术在延长油田特低渗透油藏CO2驱中的应用[J].中国矿业,2019,28(9):148-152.YANG Hong,ZHAO Xisen,CHEN Longlong,et al.Gas tracer technology application in CO2 flooding of extra-low permeability reservoir[J].China Mining Magazine,2019,28(9):148-152.

    • [5] 唐诚.储层裂缝表征及预测研究进展[J].科技导报,2013,31(21):74-79.TANG Cheng.Progress in fracture characterization and prediction [J].Science & Technology Review,2013,31(21):74-79.

    • [6] 陈衍,桑晓彤,程志超,等.低渗透储层裂缝表征——以车镇凹陷东南部为例[J].河南科学,2018,36(1):107-112.CHEN Yan,SANG Xiaotong,CHENG Zhichao,et al.Characteriza⁃ tion of low-permeability reservoir in southeast of Chezhen Sag[J].Henan Science,2018,36(1):107-112.

    • [7] 桑晓彤.低渗透储层裂缝表征及成因研究[D].青岛:中国石油大学(华东),2017.SANG Xiaotong.Fracture mechanism and characterization of lowpermeability reservoir[D].Qingdao:China University of Petroleum(East China),2017.

    • [8] 仲圆.鄂尔多斯盆地致密油储层裂缝识别与表征[J].西安文理学院学报:自然科学版,2019,22(5):103-106.ZHONG Yuan.Fracture identification and characterization of tight oil reservoirs in Ordos basin[J].Journal of Xi’an University of Arts and Science:Natural Science Edition,2019,22(5):103-106.

    • [9] 王晓畅,李军,张松扬,等.裂缝孔隙参数定量表征和刻度及影响因素分析[J].地球物理学进展,2011,26(4):1 393-1 399.WANG Xiaochang,LI Jun,ZHANG Songyang,et al.Quantitative characterization and calibration of fracture pore parameters and the effect factors analysis[J].Progress in Geophysics,2011,26(4):1 393-1 399.

    • [10] 李雪.裂缝性油气藏储层综合表征体系综述[J].中国科技论文,2015,10(15):1 861-1 870.LI Xue.A review on comprehensive characteristics of fractured reservoirs[J].China Sciencepaper,2015,10(15):1 861-1 870.

    • [11] 贾品,程林松,黄世军,等.水平井体积压裂缝网表征及流动耦合模型[J].计算物理,2015,32(6):685-692.JIA Pin,CHENG Linsong,HUANG Shijun,et al.Characterization of fracture network by volume fracturing in horizontal wells and coupled flow model[J].Chinese Journal of Computational Phys⁃ ics,2015,32(6):686-692.

    • [12] 郭印同,杨春和,贾长贵,等.页岩水力压裂物理模拟与裂缝表征方法研究[J].岩石力学与工程学报,2014,33(1):52-59.GUO Yintong,YANG Chunhe,JIA Changgui,et al.Research on hydraulic fracturing physical simulation of shale and fracture Characterization methods[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):52-59.

    • [13] 尚校森,丁云宏,卢拥军,等.一种页岩体积压裂复杂裂缝的量化表征[J].石油与天然气地质,2017,38(1):189-196.SHANG Xiaosen,DING Yunhong,LU Yongjun,et al.Quantitative characterization of complex fractures after volume fracturing in shale[J].Oil & Gas Geology,2017,38(1):189-196.

    • [14] 刘月田,丁祖鹏,屈亚光,等.油藏裂缝方向表征及渗透率各向异性参数计算[J].石油学报,2011,32(5):842-846.LIU Yuetian,DING Zupeng,QU Yaguang,et al.The characteriza⁃ tion of fracture orientation and the calculation of anisotropic per⁃ meability parameters of reservoirs[J].Acta Petrolei Sinica,2011,32(5):842-846.

    • [15] 唐雁刚,张荣虎,魏红兴,等.致密砂岩储层多尺度裂缝渗透率定量表征及开发意义[J].特种油气藏,2018,25(5):30-34.TANG Yangang,ZHANG Ronghu,WEI Hongxing,et al.Quantita⁃ tive permeability characterization of multi-scale fractures and its development significance in tight sandstone gas reservoir[J].Spe⁃ cial Oil & Gas Reservoirs,2018,25(5):30-34.

    • [16] 孙志勇,陈开远,冯建伟,等.致密砂岩多期裂缝形成机制及定量表征研究进展[J].力学学报,2017,23(2):272-279.SUN Zhiyong,CHEN Kaiyuan,FENG Jianwei,et al.Research progress on the formation mechanism and quantitative character⁃ ization of multiphase fracture networks of tight sandstone[J].Jour⁃ nal of Geomechanics,2017,23(2):272-279.

    • [17] 徐加祥,丁云宏,杨立峰,等.致密油藏分段多簇压裂水平井复杂缝网表征及产能分析[J].油气地质与采收率,2019,26(5):132-138.XU Jiaxiang,DING Yunhong,YANG Lifeng,et al.Complex frac⁃ ture network characterization and productivity analysis of multi⁃ stage fractured horizontal well in tight oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(5):132-138.

    • [18] 刘同敬,第五鹏祥,赵习森,等.致密油藏注气后储层渗流特征参数动态反演方法[J].油气地质与采收率,2020,27(1):93-100.LIU Tongjing,DIWU Pengxiang,ZHAO Xisen,et al.Dynamic in⁃ version method of percolation characteristic parameters after gas injection in tight reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):93-100.

    • [19] 张世明.低渗透油藏CO2驱气窜通道识别方法[J].油气地质与采收率,2020,27(1):101-106.ZHANG Shiming.Study on indentification method for gas channel⁃ ing of CO2 flooding in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):101-106.

  • 参考文献

    • [1] 张昱.低渗油藏中泡沫对窜流通道封堵能力的影响因素研究 [D].北京:中国石油大学(北京),2016.ZHANG Yu.Study on influence factors of foam’s blocking ability on flow channels in low-permeability oil reservoir[D].Beijing:China University of Petroleum(Beijing),2016.

    • [2] YU Hongwei,SONG Xinmin,YANG Siyu,et al.Experimental and numerical simulation study on single layer injectivity for CO2 flooding in low permeability oil reservoir[C].SPE 144042,2011.

    • [3] 万国赋,刘同敬,祝奎,等.低渗透油藏 CO2驱 SF6微量气体示踪实验研究[J].西南石油大学学报:自然科学版,2011,33(5):141-145.WAN Guofu,LIU Tongjing,ZHU Kui,et al.Experiment of microsize amount SF6 tracer for CO2 flooding in low permeability reser⁃ voir[J].Journal of Southwest Petroleum University:Science & Technology Edition,2011,33(5):141-145.

    • [4] 杨红,赵习森,陈龙龙,等.气相示踪技术在延长油田特低渗透油藏CO2驱中的应用[J].中国矿业,2019,28(9):148-152.YANG Hong,ZHAO Xisen,CHEN Longlong,et al.Gas tracer technology application in CO2 flooding of extra-low permeability reservoir[J].China Mining Magazine,2019,28(9):148-152.

    • [5] 唐诚.储层裂缝表征及预测研究进展[J].科技导报,2013,31(21):74-79.TANG Cheng.Progress in fracture characterization and prediction [J].Science & Technology Review,2013,31(21):74-79.

    • [6] 陈衍,桑晓彤,程志超,等.低渗透储层裂缝表征——以车镇凹陷东南部为例[J].河南科学,2018,36(1):107-112.CHEN Yan,SANG Xiaotong,CHENG Zhichao,et al.Characteriza⁃ tion of low-permeability reservoir in southeast of Chezhen Sag[J].Henan Science,2018,36(1):107-112.

    • [7] 桑晓彤.低渗透储层裂缝表征及成因研究[D].青岛:中国石油大学(华东),2017.SANG Xiaotong.Fracture mechanism and characterization of lowpermeability reservoir[D].Qingdao:China University of Petroleum(East China),2017.

    • [8] 仲圆.鄂尔多斯盆地致密油储层裂缝识别与表征[J].西安文理学院学报:自然科学版,2019,22(5):103-106.ZHONG Yuan.Fracture identification and characterization of tight oil reservoirs in Ordos basin[J].Journal of Xi’an University of Arts and Science:Natural Science Edition,2019,22(5):103-106.

    • [9] 王晓畅,李军,张松扬,等.裂缝孔隙参数定量表征和刻度及影响因素分析[J].地球物理学进展,2011,26(4):1 393-1 399.WANG Xiaochang,LI Jun,ZHANG Songyang,et al.Quantitative characterization and calibration of fracture pore parameters and the effect factors analysis[J].Progress in Geophysics,2011,26(4):1 393-1 399.

    • [10] 李雪.裂缝性油气藏储层综合表征体系综述[J].中国科技论文,2015,10(15):1 861-1 870.LI Xue.A review on comprehensive characteristics of fractured reservoirs[J].China Sciencepaper,2015,10(15):1 861-1 870.

    • [11] 贾品,程林松,黄世军,等.水平井体积压裂缝网表征及流动耦合模型[J].计算物理,2015,32(6):685-692.JIA Pin,CHENG Linsong,HUANG Shijun,et al.Characterization of fracture network by volume fracturing in horizontal wells and coupled flow model[J].Chinese Journal of Computational Phys⁃ ics,2015,32(6):686-692.

    • [12] 郭印同,杨春和,贾长贵,等.页岩水力压裂物理模拟与裂缝表征方法研究[J].岩石力学与工程学报,2014,33(1):52-59.GUO Yintong,YANG Chunhe,JIA Changgui,et al.Research on hydraulic fracturing physical simulation of shale and fracture Characterization methods[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):52-59.

    • [13] 尚校森,丁云宏,卢拥军,等.一种页岩体积压裂复杂裂缝的量化表征[J].石油与天然气地质,2017,38(1):189-196.SHANG Xiaosen,DING Yunhong,LU Yongjun,et al.Quantitative characterization of complex fractures after volume fracturing in shale[J].Oil & Gas Geology,2017,38(1):189-196.

    • [14] 刘月田,丁祖鹏,屈亚光,等.油藏裂缝方向表征及渗透率各向异性参数计算[J].石油学报,2011,32(5):842-846.LIU Yuetian,DING Zupeng,QU Yaguang,et al.The characteriza⁃ tion of fracture orientation and the calculation of anisotropic per⁃ meability parameters of reservoirs[J].Acta Petrolei Sinica,2011,32(5):842-846.

    • [15] 唐雁刚,张荣虎,魏红兴,等.致密砂岩储层多尺度裂缝渗透率定量表征及开发意义[J].特种油气藏,2018,25(5):30-34.TANG Yangang,ZHANG Ronghu,WEI Hongxing,et al.Quantita⁃ tive permeability characterization of multi-scale fractures and its development significance in tight sandstone gas reservoir[J].Spe⁃ cial Oil & Gas Reservoirs,2018,25(5):30-34.

    • [16] 孙志勇,陈开远,冯建伟,等.致密砂岩多期裂缝形成机制及定量表征研究进展[J].力学学报,2017,23(2):272-279.SUN Zhiyong,CHEN Kaiyuan,FENG Jianwei,et al.Research progress on the formation mechanism and quantitative character⁃ ization of multiphase fracture networks of tight sandstone[J].Jour⁃ nal of Geomechanics,2017,23(2):272-279.

    • [17] 徐加祥,丁云宏,杨立峰,等.致密油藏分段多簇压裂水平井复杂缝网表征及产能分析[J].油气地质与采收率,2019,26(5):132-138.XU Jiaxiang,DING Yunhong,YANG Lifeng,et al.Complex frac⁃ ture network characterization and productivity analysis of multi⁃ stage fractured horizontal well in tight oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(5):132-138.

    • [18] 刘同敬,第五鹏祥,赵习森,等.致密油藏注气后储层渗流特征参数动态反演方法[J].油气地质与采收率,2020,27(1):93-100.LIU Tongjing,DIWU Pengxiang,ZHAO Xisen,et al.Dynamic in⁃ version method of percolation characteristic parameters after gas injection in tight reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):93-100.

    • [19] 张世明.低渗透油藏CO2驱气窜通道识别方法[J].油气地质与采收率,2020,27(1):101-106.ZHANG Shiming.Study on indentification method for gas channel⁃ ing of CO2 flooding in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):101-106.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告