en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

徐冰(1988—),男,吉林松原人,工程师,博士,主要从事油田化学和提高采收率技术研究与应用工作。E-mail:xubing001@pet-rochina.com.cn。

中图分类号:TE357.46

文献标识码:A

文章编号:1009-9603(2020)06-0071-10

DOI:10.13673/j.cnki.cn37-1359/te.2020.06.009

参考文献 1
冈秦麟.高含水期油田改善水驱效果新技术[M].北京:石油工业出版社,1999.GANG Qinlin.New technology of improving water drive effect in high water cut oilfield[M].Beijing:Petroleum Industry Press,1999.
参考文献 2
SMITH J E.The transition pressure:a quick method for quantify⁃ ing poly-acrylamide gel strength[R].SPE 18739,1989:473-480.
参考文献 3
罗文利,吴肇亮,牛亚斌.胶态分散凝胶研究的新进展[J].油田化学,1999,16(2):188-194.LUO Wenli,WU Zhaoliang,NIU Yabin.Progresses in colloidal dispersion gel[J].Oilfield Chemistry,1999,16(2):188-194.
参考文献 4
李秋言,岳湘安,杨长春,等.聚合物微球有效作用距离对调剖效果的影响:以高浅南油藏为例[J].断块油气田,2018,25(2):262-265.LI Qiuyan,YUE Xiang’an,YANG Changchun,et al.Effect of ef⁃ fective distance of polymer microspheres on profile control:a case study of Gaoqiannan reservoir[J].Fault-Block Oil and Gas Field,2018,25(2):262-265.
参考文献 5
何涛,王健,余恒,等.裂缝性注水开发油藏多轮次调剖机理研究[J].油气藏评价与开发,2018,8(2):68-72.HE Tao,WANG Jian,YU Heng,et al.Mechanism study on multiround profile control technique in fractured water flooding reser⁃ voir[J].Reservoir Evaluation and Development,2018,8(2):68-72.
参考文献 6
廖月敏,付美龙,杨松林.耐温抗盐凝胶堵水调剖体系的研究与应用[J].特种油气藏,2019,26(1):158-162.LIAO Yuemin,FU Meilon,YANG Songlin.Study and application of water plugging and profile control system of heat and salt resis⁃ tant gel[J].Special Oil & Gas Reservoirs,2019,26(1):158-162.
参考文献 7
梁守成,李强,吕鑫,等.多级调剖调驱技术效果及剩余油分布 [J].大庆石油地质与开发,2018,37(6):108-115.LIANG Shoucheng,LI Qiang,LÜ Xin,et al.Effects of multistage profile controlling-displacing technology and the remained oil dis⁃ tribution[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(6):108-115.
参考文献 8
吴岱峰,鲁晓兵,刘庆杰,等.低渗岩心驱替过程中的压力分布特征研究[J].力学与实践,2012,34(5):27-31,51.WU Daifeng,LU Xiaobing,LIU Qingjie,et al.Pressure distribu⁃ tion in flooding of low permeability reservoirs[J].Mechanics in Engineering,2012,34(5):27-31,51.
参考文献 9
刘凯,文章,梁杏,等.一维低渗透介质非达西渗流实验[J].水动力学研究与进展:A辑,2013,28(1):81-87.LIU Kai,WEN Zhang,LIANG Xing,et al.One-dimensional col⁃ umn test for non-Darcy flow in low permeability media[J].Chi⁃ nese Journal of Hydrodynamics,2013,28(1):81-87.
参考文献 10
闫庆来,何秋轩,尉立岗,等.低渗透油层中单相液体渗流特征的实验研究[J].西安石油学院学报,1990,5(2):1-6.YAN Qinglai,HE Qiuxuan,WEI Ligang,et al.A laboratory study on percolation characteristics of single phase flow in low-permea⁃ bility reservoirs[J].Journal of Xi’an Petroleum Institute,1990,5(2):1-6.
参考文献 11
于倩男,刘义坤,刘学,等.非均质低渗透储层渗流特征实验研究[J].西南石油大学学报:自然科学版,2018,40(3):105-114.YU Qiannan,LIU Yikun,LIU Xue,et al.An experimental study on the porous-flow characteristics of heterogeneous low-permea⁃ bility reservoirs[J].Journal of Southwest Petroleum University:Science & Technology Edition,2018,40(3):105-114.
参考文献 12
BUTLER R M.Rise of Interfering Steam Chambers[J].Journal of Canadian Petroleum Technology,1987,26(3):70-75.
参考文献 13
SASKOIL S S,BUTLER R M.The production of conventional heavy oil reservoirs with bottom water using steam-assisted gravi⁃ ty drainage[J].Journal of Canadian Petroleum Technology,1990,29(2):1-10.
参考文献 14
MESZAROS G,CHAKMA A.Sealed model studies and numerical simulation of inert gas injection with Horizontal wells[R].SPE 20259,1990:22-26.
参考文献 15
ISLAM M R,CHAKMA A.A new recovery technique for heavyoil reservoirs with bottom-water[J].SPE Reservoir Engineering,1992,7(2):180-186.
参考文献 16
罗宪波,蒲万芬,武海燕,等.交联聚合物溶液在多孔介质中调驱效果实验研究[J].油田化学,2004,21(4):340-342.LUO Xianbo,PU Wanfen,WU Haiyan,et al.Experimental studies on displacement efficiency of linked polymer solution in porous media[J].Oilfield Chemistry,2004,21(4):340-342.
参考文献 17
徐轩,刘学伟,杨正明,等.特低渗透砂岩大型露头模型单相渗流特征实验[J].石油学报,2012,33(3):453-458.XU Xuan,LIU Xuewei,YANG Zhengming,et al.An experimental study on single-phase seepage characteristics with a large-scale model made of ultra-low permeability sandstone outcrops[J].Ac⁃ ta Petrolei Sinica,2012,33(3):453-458.
参考文献 18
薛成国.特低渗透储层大型物理模拟实验研究[D].廊坊:中国科学院研究生院(渗流流体力学研究所),2011.XUE Chengguo.Large physical simulation experimental study on the ultra-low permeability reservoir[D].Langfang:Institute of Po⁃ rous Flow and Fluid Mechanics,Chinese Academy of Sciences,2011.
参考文献 19
于倩男.杏南开发区精控压裂薄差储层渗流特征研究[D].大庆:东北石油大学,2017.YU Qiannan.Research on seepage flow patterns of fine controlled fractured thin and poor reservoir in Xingnan development aera [D].Daqing:Northeast Petroleum University,2017.
参考文献 20
王志华,李宜强,钟会影.基于平面模型的微电极技术在聚合物驱油水前缘测定中的应用[J].西安石油大学学报:自然科学版,2007,22(S1):51-55.WANG Zhihua,LI Yiqiang,ZHONG Huiying.Application of mi⁃ cro-electrode technology based on plane model in the determina⁃ tion of polymer flooding oil-water front[J].Journal of Xi’an Shiy⁃ ou University:Natural Science Edition,2007,22(S1):51-55.
参考文献 21
宋吉水,李宜强,王华菁.聚合物驱、调剖后聚合物驱三维模型驱油效果评价[J].油田化学,2002,19(2):162-166.SONG Jishui,LI Yiqiang,WANG Huajing.Oil-displacing effi⁃ ciency of polymer flood and successive permeability control and polymer flood determined on three-dimensional heterogeneous physical models[J].Oilfield Chemistry,2002,19(2):162-166.
参考文献 22
姜言里,戚连庆.厚油层中纵向非均质状态对聚合物驱油效果的影响[J].大庆石油地质与开发,1991,10(2):35-40,46.JIANG Yanli,QI Lianqing.Effect of vertical heterogeneity in thick reservoir on results of polymer flooding[J].Petroleum Geology & Oilfield Development in Daqing,1991,10(2):35-40,46.
参考文献 23
张继红,董欣,叶银珠,等.聚合物驱后凝胶与表面活性剂交替注入驱油效果[J].大庆石油学院学报,2010,34(2):85-88.ZHANG Jihong,DONG Xin,YE Yinzhu,et al.Effect of the gel and surfactant alternating injection after polymer flooding[J].Journal of Daqing Petroleum Institute,2010,34(2):85-88.
参考文献 24
沈平平,王家禄,田玉玲,等.三维油藏物理模拟的饱和度测量技术研究[J].石油勘探与开发,2004,31(增刊):71-76.SHEN Pingping,WANG Jialu,TIAN Yuling,et al.Saturation mea⁃ surement technique for 3D reservoir physical modeling[J].Petro⁃ leum Exploration and Development,2004,31(Supplement):71-76.
参考文献 25
皮彦夫.石英砂环氧树脂胶结人造岩心的技术与应用[J].科学技术与工程,2010,10(28):6 998-7 000,7 010.PI Yanfu.Technology and application of making artificial cores by the cementation of quartzite and colophony[J].Science Technolo⁃ gy and Engineering,2010,10(28):6 998-7 000,7 010.
参考文献 26
徐宏光,熊钰,王永清,等.特高渗疏松砂岩人造岩心的制作及评价[J].石油钻采工艺,2017,39(4):477-483.XU Hongguang,XIONG Yu,WANG Yongqing,et al.Preparation and evaluation on artificial core of extra high permeability uncon⁃ solidated sandstone[J].Oil Drilling & Production Technology,2017,39(4):477-483.
参考文献 27
王家禄,沈平平,陈永忠,等.三元复合驱提高原油采收率的三维物理模拟研究[J].石油学报,2005,26(5):61-66.WANG Jialu,SHEN Pingping,CHEN Yongzhong,et al.3-D phys⁃ ical modeling of enhanced oil recovery by alkali-surfactant-poly⁃ mer flooding[J].Acta Petrolei Sinica,2005,26(5):61-66.
参考文献 28
雷乐,金崯,高江取.松滋油田红花套组厚层底水油藏物理模拟试验研究[J].江汉石油科技,2013,23(2):36-40.LEI Le,JIN Yin,GAO Jiangqu.Physical simulation test of thick bottom water reservoir of Honghuatao formation in Songzi Oilfield [J].Jianghan Petroleum Science and Technology,2013,23(2):36-40.
参考文献 29
张惠敏.RQ潜山碳酸盐岩油藏大模型水驱油实验研究[D].成都:西南石油大学,2017.ZHANG Huimin.Experimental study on water flooding using larg⁃ escale model of RQ buried hill carbonate oil reservoir[D].Cheng⁃ du:Southwest Petroleum University,2017.
目录contents

    摘要

    设计、制作了带有饱和度场监测的含电极两层纵向非均质平板岩心模型,通过电阻率法实现对非均质模型中剩余油分布定量描述,通过模拟正韵律厚油层水驱、聚合物驱、凝胶调剖实验,测试调剖前后剩余油分布,得出不同注入方案、不同驱替阶段下模型内调剖驱替效果及剩余油分布特征。实验结果表明,渗透率级差越大,低渗透层内剩余油越富集,调剖后波及程度提高幅度越大,高渗透层水流优势通道越明显,波及程度越大、洗油效果越好;不同注水量对低渗透层的波及效果没有明显改善,不同方案开发效果基本一致;聚合物注入量越小,调剖时机越早,提高采收率幅度越大;调剖剂用量越大,对高渗透层的封堵半径越大,低渗透层的波及体积大幅度提高,剩余油动用程度越高,油水前缘向生产井推进越远。

    Abstract

    A double-layer vertical heterogeneous plate model of core that can monitor saturation field was designed and fab- ricated. The remaining oil distribution in the model was quantitatively described with the resistivity method. Through simu- lation of the water flooding,polymer flooding,and gel profile control experiments of thick positive-rhythm oil layers,the re- maining oil distribution before and after gel profile control was tested,and the displacement efficiency and remaining oil distribution characteristics of the profile control of models in different injection schemes and displacement stages were ob- tained. According to the experimental results,the larger permeability ratio led to the more rich remaining oil and the bigger increase in swept volume in low-permeability layer after profile control. A greater permeability ratio also resulted in the more evident preferential migration passage of water flow in the high-permeability layer,larger swept volume,and better displacement efficiency. The different water injection volumes received almost the same development effects with little im- provement on swept volume in the low-permeability layer. A smaller polymer injection volume and earlier profile control brought about higher enhanced oil recovery(EOR). The more profile control agent led to larger plugging radius of the high-permeability layer,more increment of swept volume in the low-permeability layer,more percentage of producing remaining oil,and longer distance that the oil-water front advances to the production well.

    关键词

    非均质平板模型凝胶剩余油调剖

  • 非均质油藏注水开发进入高含水期,生产井含水率急剧上升,注入水沿着强水淹层(高渗透层)形成水流优势通道,弱、未水淹层(低渗透层)内剩余油无法得到有效动用。大量的室内实验和现场试验表明,深部调剖措施是改善低效、无效循环的有效手段,可有效解决窜流和绕流问题[1-7]。深部调剖措施对纵向非均质储层的剩余油动用情况是急需解决的基础问题。通过对调剖前后高、低渗透层的剩余油的定量表征,可为深入研究不同调剖措施的效果及指导现场施工提供科学的理论依据。

  • 目前开展的有关调剖对剩余油动用情况方面的研究多见于室内一维、二维物理模型模拟方法,利用三维物理模型开展的模拟实验研究很少。一维物理模型应用广泛、成本低廉、测试方便,但受模型尺寸的限制,无法对注采关系进行模拟,因此对矿场实践的指导价值低[8-10]。二维物理模型可表征物性的平面非均质性,但无法模拟纵向非均质性[11-16]。三维物理模型可实现对注采关系的模拟,其优势在于能够反映油气渗流中某些参数(如温度场、饱和度场)在三维空间的非均匀展布和变化过程,这是一维、二维物理模型模拟实验无法替代的[17-19]。三维纵向非均质平板模型可实现储层物性差异的模拟,同时能表征不同措施对剩余油动用情况的影响。

  • 笔者通过电阻率法对纵向非均质模型中剩余油分布进行定量表征[20-24],通过模拟正韵律厚油层水驱、聚合物驱、凝胶体系调剖实验,测量调剖前后电阻率分布情况,根据岩-电关系曲线绘制剩余油分布图,分析不同储层物性差异、不同注水规模、不同注聚合物规模以及不同调剖措施对剩余油分布的影响规律。

  • 1 实验部分

  • 1.1 实验原理

  • 岩心模型孔隙介质中存在油、水两相,其中水相中的盐可电离出阴、阳离子,离子在电场的作用下会定向移动而产生电流,且电流强度与水相中的离子含量有关。假设岩心模型中其他物性不变,电阻率只是关于孔隙中油水含量的函数,可建立一条电阻率与含油饱和度的标准曲线。应用阿尔奇饱和度与岩性关系的理论方法进行饱和度标定,由于岩心中其他组分均不导电,所以可以通过不同电阻率直观的反映岩心中的含油饱和度,即:

  • I=RtRa
    (1)
  • 利用微电极岩心模型测定不同渗透率岩心在不同含油饱和度条件下的电阻率,建立岩-电关系标准曲线。在三维纵向非均质带电极模型进行驱替实验过程中,通过统计监测不同测试点的电阻率,可依据标准曲线反算各测试点的含油饱和度。通过软件可绘制整个非均质模型在某一时刻含油饱和度的分布情况。不同渗透率岩心的电阻率与含油饱和度标准曲线(图1)表明:随着地层流体中含油饱和度的降低,含水饱和度增加、水中离子含量增加,电阻率降低;在相同含油饱和度条件下,岩心渗透率越大电阻率越低。

  • 图1 电阻率与含油饱和度标准曲线

  • Fig.1 Standard curves of resistivity and oil saturation

  • 1.2 平板模型

  • 1.2.1 平板模型设计

  • 实验设计三维两层纵向非均质带电极平板模型,各渗透层等厚且正韵律分布,每层模型几何尺寸为300 mm×300 mm×45 mm。其中,低渗透层有效渗透率固定为200 mD,高渗透层有效渗透率分别设计为1 000,2 000,3 000,4 000 mD,渗透率级差相应为5,10,15,20。注采方式模拟五点法井网1/4井网开发,单块岩心含油饱和度测试点有9个,岩心实物图及电阻率(含油饱和度)测点如图2及图3所示。

  • 1.2.2 平板模型制备及质量控制方法

  • 平板模型制备步骤包括配料、拌砂、装模、初步加压、电极埋置、二次加压、加温固化、焊锡等,并对岩心孔隙度和水测渗透率进行测定[25-29]。通过配制最佳的环氧树脂用量,使平板模型的硬度一致、均匀程度一致、承受高温高压后驱替效果一致;通过一定的加压强度、环氧树脂用量及石英砂粒度分布方差来控制平板模型的渗透率;通过环氧树脂的含量控制孔隙度;通过添加天然岩心碎屑和黏土矿物实现对孔隙结构的表征模拟。通过反复的设计-实验-验证,模型的密封性能和实验尺寸均满足实验要求和标准。

  • 1.3 实验条件

  • 1.3.1 实验设备

  • 岩心驱替实验设备包括耐高温-高压恒温箱、ISCO 高精度柱塞泵、中间容器、氮气瓶、岩心夹持器、手摇围压泵、压力表和流量计、原油脱水仪等。

  • 图2 双层纵向非均质带电极岩心模型

  • Fig.2 Double-layer vertical heterogeneous plate model of core with electrodes

  • 图3 测试点分布

  • Fig.3 Distribution of measurement points

  • 1.3.2 实验材料

  • 采用大庆油田第一采油厂注入污水配制聚合物溶液及凝胶体系,实验用水离子组成为:阳离子 Na+,Ca2+ ,Mg2+ 质量浓度分别为 1 265.0,32.10,7.30 mg/L,阴离子 HCO3 2-,Cl-,SO4 2-,CO3 2- 质量浓度分别为 1 708.56,780.12,9.61,210.07 mg/L,总矿化度为 4 012.76 mg/L。

  • 将大庆油田第一采油厂采出原油经过脱水及过滤处理,与航空煤油按照质量比为3.2∶1混合配制模拟油,油藏温度45℃下模拟油黏度为8.8 mPa·s。

  • 聚合物为常规聚丙烯酰胺,有效含量为 90%,相对分子质量为 1 600×104~1 900×104,大庆炼化公司生产;不同质量聚合物溶液在剪切速率为 7.314 s-1 时黏度实测值如表1所示。

  • 凝胶体系用聚合物为常规聚丙烯酰胺,有效含量为 90%,大庆炼化公司生产,Cr3+ 交联剂有效含量为90%,稳定剂有效含量为90%,均来自大庆油田采油工程研究院。成胶时间分别为0,4,8,12,24,48, 72,120 和 168 h,对应的凝胶体系黏度分别为 42.3, 63.5,132.1,435.2,1 125,3 653,4 242,4 164 和 4 159 mPa·s。

  • 表1 不同质量聚合物溶液黏度实测值及提高值

  • Table1 Measurement and increment of viscosity of polymer solution at different concentrations

  • 1.3.3 实验步骤

  • 实验步骤包括:①水测渗透率测定,依据达西公式计算岩心渗透率。②检查模型是否漏气。③ 抽真空,饱和水,饱和油。④开展水驱、常规聚合物驱、注凝胶体系、常规聚合物驱、后续水驱。在饱和水及饱和油的过程中,利用万用表测量模型不同位置的电阻率直至模型各测试点电阻率均匀分布且达到饱和状态。实验流程图如图4所示。

  • 图4 实验流程

  • Fig.4 Experimental process

  • 1.3.4 实验方案

  • 实验方案(表2)主要包括:①利用平板模型,测试不同渗透率级差(5,10,15,20)对调驱前后剩余油分布的影响(方案1-1—1-4),得到不同纵向非均质条件下凝胶体系的调剖效果。②在相同平板模型条件下(低、高渗透层渗透率分别为 200 和 2 000 mD),测试不同注水量(水驱模型见水、模型含水率为50%、模型含水率为80%)转注化学驱对调剖前后剩余油分布的影响(方案2-1—2-3),得到不同注水开发阶段转注化学驱的开发效果。③在相同平板模型条件下(低、高渗透层渗透率分别为 200 和 2 000 mD),测试不同聚合物注入量(聚合物驱空白实验,聚合物注入量分别为 0.1,0.3,0.5,0.7 PV)转调剖对剩余油分布的影响(方案3-1—3-5),得到不同注聚合物阶段进行调剖开发效果。④在相同平板模型条件下(低、高渗透层渗透率分别为 200 和 2 000 mD),测试不同调剖剂用量(方案4-1—4-2,1/ 3,1/2半径调剖剂用量)对调驱前后剩余油分布及调剖效果的影响。

  • 表2 实验设计方案汇总

  • Table2 Summary of design schemes

  • 2 实验结果与讨论

  • 通过电极法测量模型各渗透层在不同驱替时刻各测试点的电阻率,依据电阻率与含油饱和度间的标准曲线反算出各测试点的含油饱和度,利用 SUFER软件形成不同渗透层、不同驱替阶段模型含油饱和度分布。

  • 2.1 渗透率级差的影响

  • 将4组不同渗透率级差岩心模型最终剩余油饱和度进行对比(图5)发现,渗透率级差越大,低渗透层内剩余油越富集,调剖后近井地带洗油效果较差。对高渗透层来说,渗透率级差越大,水流优势通道越明显,波及程度越大,洗油效果越好。

  • 由于模型渗透率级差不同,水驱阶段各渗透层的开发效果存在较大差异,因此模型的最终含油饱和度场分布不能直观的反映调剖效果。将后续水驱阶段(调剖后)含油饱和度场与前置聚合物驱 0.5 PV(调剖前)含油饱和度场做差值,并绘制差值云图来反映凝胶体系对剩余油的作用情况。结果(图6) 表明,渗透率级差越大,调剖效果越好。特别是渗透率级差大于 15,聚合物驱不能有效波及低渗透层,经凝胶体系调剖后,低渗透层内剩余油得到有效动用。

  • 4组不同渗透率级差岩心模型采收率对比结果表明,渗透率级差越大,调剖效果越好。渗透率级差为 5,水驱采收率为 41.1%,调剖后采收率提高 13.81%;渗透率级差为 10,水驱采收率为 36.9%,调剖后采收率提高16.3%;渗透率级差为15,水驱采收率为 32.1%,调剖后采收率提高 17.9%;渗透率级差为 20,水驱采收率为 28.3%,调剖后采收率提高 17.1%。渗透率级差大于 15 时,表现出极佳的调驱效果。

  • 2.2 注水量的影响

  • 对比不同注水量条件下调剖后模型剩余油饱和度分布(图7)可知,注水量对低渗透层的波及效果没有明显改善,不同方案开发效果基本一致。

  • 将方案 2-1—2-3 与方案 1-2(含水率达 100% 转化学驱作为对比方案)的最终含油饱和度做差值,并绘制差值云图来反映调剖体系对剩余油的作用情况,结果(图8)表明,不同注水量转注化学驱,对剩余油的影响较小,几乎可忽略不计。

  • 水驱至模型见水转注化学驱,水驱采收率为 19.1%,总采收率为 56.8%;水驱至模型含水率达 50%转注化学驱,水驱采收率为28.6%,总采收率为 54.3%;水驱至模型含水率达80%转注化学驱,水驱采收率为 34.4%,总采收率为 53.8%;水驱至模型含水率达 100% 转注化学驱,水驱采收率为 36.9%,总采收率为53.2%。不同方案开发效果基本一致。

  • 2.3 聚合物注入量的影响

  • 将不同聚合物注入量调剖后模型剩余油饱和度进行对比分析(图9)可知,聚合物注入量越小,调剖时机越早,对低渗透层的波及程度越大。

  • 图5 不同渗透率级差平板模型剩余油饱和度对比

  • Fig.5 Comparison of remaining oil saturation of the plate models with varied permeability ratios

  • 图6 不同渗透率级差平板模型含油饱和度差值云图(调剖前后)

  • Fig.6 Cloud chart of oil saturation differences of plate models with varied permeability ratio(before and after profile control)

  • 图7 不同注水量调剖后剩余油饱和度对比

  • Fig.7 Comparison of remaining oil saturation after profile control with different water injection volumes

  • 图8 不同注水量的含油饱和度差值云图(调剖前后)

  • Fig.8 Cloud chart of oil saturation differences in plate models with different water injection volumes(before and after profile control)

  • 将方案 3-2—3-5 与方案 3-1(空白实验-聚合物驱1.0 PV)最终含油饱和度做差值,并绘制差值云图来反映调剖体系对剩余油的作用情况。结果(图10)表明,方案 3-2 调剖效果最好。方案 3-1—3-5最终采收率分别为 46.6%,59.9%,55.5%,53.2% 和 52.1%,方案3-2最终采收率最高。

  • 图9 不同聚合物注入量的剩余油饱和度对比

  • Fig.9 Comparison of remaining oil saturation after profile control with different polymer injection volumes

  • 图10 不同聚合物注入量的含油饱和度差值云图(调剖前后)

  • Fig.10 Cloud chart of oil saturation differences in plate models with different polymer injection volumes(before and after profile control)

  • 2.4 调剖剂用量的影响

  • 将2组不同调剖剂用量的剩余油饱和度进行对比(图11)表明,调剖剂用量越大,调剖半径越大,低渗透层动用程度越高,油水前缘向生产井推进越远。

  • 将方案 4-1—4-2 与方案 3-1 的最终含油饱和度做差值,并绘制差值云图来反映调剖剂用量对剩余油的作用情况,结果(图12)表明,调剖剂用量越大,调剖效果越好,低渗透层动用程度越高,油水前缘向生产井推进越远。将2组不同调剖剂用量下开发效果进行对比分析,结果表明,化学驱采收率随着调剖剂用量的增加而增大,调剖半径由 1/3 增加至1/2,化学驱采收率由13.1%增加至21.4%。

  • 图11 不同调剖剂用量剩余油饱和度对比

  • Fig.11 Comparison of remaining oil saturation in plate models with different amount of profile control agents

  • 图12 不同调剖剂用量含油饱和度差值云图(调剖前后)

  • Fig.12 Cloud chart of oil saturation differences in plate models with different amount of profile control agent(before and after profile control)

  • 3 结论

  • 利用微电极岩心模型测定4组不同渗透率岩心在不同含油饱和度条件下的电阻率,建立岩-电关系标准曲线。随着地层流体中含油饱和度的降低,含水饱和度增加、水中离子含量增加,电阻率降低。相同含油饱和度条件下,岩心渗透率越大,电阻率越低。

  • 渗透率级差越大,低渗透层内剩余油越富集,调剖后波及程度提高幅度越大,高渗透层水流优势通道越明显,波及程度越大,洗油效果越好。渗透率级差大于15时,表现出极佳的调驱效果。随着注水量的降低,总采收率增加,但增加幅度不大。采收率的差异主要是由于开展化学驱时机越早,高渗透层内剩余油越富集,后期洗油效率越高。注聚合物量越小,调剖时机越早,提高采收率幅度越大。聚合物驱 0.1 PV 后注入凝胶体系调剖,低渗透层可形成水流通道;聚合物驱注入量越多,低渗透层主流线的调剖半径越小。调剖剂用量越大,对高渗透层的封堵半径越大,即调剖半径越大,低渗透层的波及体积大幅度提高,剩余油动用程度越高,油水前缘向生产井推进越远。调剖半径由 1/3增加至 1/ 2,化学驱采收率由13.1%增加至21.4%。

  • 符号解释

  • I ——含油饱和度,f;

  • R o——岩石完全含水时的电阻率,Ω•m;

  • R t ——岩石含油时的电阻率,Ω•m。

  • 参考文献

    • [1] 冈秦麟.高含水期油田改善水驱效果新技术[M].北京:石油工业出版社,1999.GANG Qinlin.New technology of improving water drive effect in high water cut oilfield[M].Beijing:Petroleum Industry Press,1999.

    • [2] SMITH J E.The transition pressure:a quick method for quantify⁃ ing poly-acrylamide gel strength[R].SPE 18739,1989:473-480.

    • [3] 罗文利,吴肇亮,牛亚斌.胶态分散凝胶研究的新进展[J].油田化学,1999,16(2):188-194.LUO Wenli,WU Zhaoliang,NIU Yabin.Progresses in colloidal dispersion gel[J].Oilfield Chemistry,1999,16(2):188-194.

    • [4] 李秋言,岳湘安,杨长春,等.聚合物微球有效作用距离对调剖效果的影响:以高浅南油藏为例[J].断块油气田,2018,25(2):262-265.LI Qiuyan,YUE Xiang’an,YANG Changchun,et al.Effect of ef⁃ fective distance of polymer microspheres on profile control:a case study of Gaoqiannan reservoir[J].Fault-Block Oil and Gas Field,2018,25(2):262-265.

    • [5] 何涛,王健,余恒,等.裂缝性注水开发油藏多轮次调剖机理研究[J].油气藏评价与开发,2018,8(2):68-72.HE Tao,WANG Jian,YU Heng,et al.Mechanism study on multiround profile control technique in fractured water flooding reser⁃ voir[J].Reservoir Evaluation and Development,2018,8(2):68-72.

    • [6] 廖月敏,付美龙,杨松林.耐温抗盐凝胶堵水调剖体系的研究与应用[J].特种油气藏,2019,26(1):158-162.LIAO Yuemin,FU Meilon,YANG Songlin.Study and application of water plugging and profile control system of heat and salt resis⁃ tant gel[J].Special Oil & Gas Reservoirs,2019,26(1):158-162.

    • [7] 梁守成,李强,吕鑫,等.多级调剖调驱技术效果及剩余油分布 [J].大庆石油地质与开发,2018,37(6):108-115.LIANG Shoucheng,LI Qiang,LÜ Xin,et al.Effects of multistage profile controlling-displacing technology and the remained oil dis⁃ tribution[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(6):108-115.

    • [8] 吴岱峰,鲁晓兵,刘庆杰,等.低渗岩心驱替过程中的压力分布特征研究[J].力学与实践,2012,34(5):27-31,51.WU Daifeng,LU Xiaobing,LIU Qingjie,et al.Pressure distribu⁃ tion in flooding of low permeability reservoirs[J].Mechanics in Engineering,2012,34(5):27-31,51.

    • [9] 刘凯,文章,梁杏,等.一维低渗透介质非达西渗流实验[J].水动力学研究与进展:A辑,2013,28(1):81-87.LIU Kai,WEN Zhang,LIANG Xing,et al.One-dimensional col⁃ umn test for non-Darcy flow in low permeability media[J].Chi⁃ nese Journal of Hydrodynamics,2013,28(1):81-87.

    • [10] 闫庆来,何秋轩,尉立岗,等.低渗透油层中单相液体渗流特征的实验研究[J].西安石油学院学报,1990,5(2):1-6.YAN Qinglai,HE Qiuxuan,WEI Ligang,et al.A laboratory study on percolation characteristics of single phase flow in low-permea⁃ bility reservoirs[J].Journal of Xi’an Petroleum Institute,1990,5(2):1-6.

    • [11] 于倩男,刘义坤,刘学,等.非均质低渗透储层渗流特征实验研究[J].西南石油大学学报:自然科学版,2018,40(3):105-114.YU Qiannan,LIU Yikun,LIU Xue,et al.An experimental study on the porous-flow characteristics of heterogeneous low-permea⁃ bility reservoirs[J].Journal of Southwest Petroleum University:Science & Technology Edition,2018,40(3):105-114.

    • [12] BUTLER R M.Rise of Interfering Steam Chambers[J].Journal of Canadian Petroleum Technology,1987,26(3):70-75.

    • [13] SASKOIL S S,BUTLER R M.The production of conventional heavy oil reservoirs with bottom water using steam-assisted gravi⁃ ty drainage[J].Journal of Canadian Petroleum Technology,1990,29(2):1-10.

    • [14] MESZAROS G,CHAKMA A.Sealed model studies and numerical simulation of inert gas injection with Horizontal wells[R].SPE 20259,1990:22-26.

    • [15] ISLAM M R,CHAKMA A.A new recovery technique for heavyoil reservoirs with bottom-water[J].SPE Reservoir Engineering,1992,7(2):180-186.

    • [16] 罗宪波,蒲万芬,武海燕,等.交联聚合物溶液在多孔介质中调驱效果实验研究[J].油田化学,2004,21(4):340-342.LUO Xianbo,PU Wanfen,WU Haiyan,et al.Experimental studies on displacement efficiency of linked polymer solution in porous media[J].Oilfield Chemistry,2004,21(4):340-342.

    • [17] 徐轩,刘学伟,杨正明,等.特低渗透砂岩大型露头模型单相渗流特征实验[J].石油学报,2012,33(3):453-458.XU Xuan,LIU Xuewei,YANG Zhengming,et al.An experimental study on single-phase seepage characteristics with a large-scale model made of ultra-low permeability sandstone outcrops[J].Ac⁃ ta Petrolei Sinica,2012,33(3):453-458.

    • [18] 薛成国.特低渗透储层大型物理模拟实验研究[D].廊坊:中国科学院研究生院(渗流流体力学研究所),2011.XUE Chengguo.Large physical simulation experimental study on the ultra-low permeability reservoir[D].Langfang:Institute of Po⁃ rous Flow and Fluid Mechanics,Chinese Academy of Sciences,2011.

    • [19] 于倩男.杏南开发区精控压裂薄差储层渗流特征研究[D].大庆:东北石油大学,2017.YU Qiannan.Research on seepage flow patterns of fine controlled fractured thin and poor reservoir in Xingnan development aera [D].Daqing:Northeast Petroleum University,2017.

    • [20] 王志华,李宜强,钟会影.基于平面模型的微电极技术在聚合物驱油水前缘测定中的应用[J].西安石油大学学报:自然科学版,2007,22(S1):51-55.WANG Zhihua,LI Yiqiang,ZHONG Huiying.Application of mi⁃ cro-electrode technology based on plane model in the determina⁃ tion of polymer flooding oil-water front[J].Journal of Xi’an Shiy⁃ ou University:Natural Science Edition,2007,22(S1):51-55.

    • [21] 宋吉水,李宜强,王华菁.聚合物驱、调剖后聚合物驱三维模型驱油效果评价[J].油田化学,2002,19(2):162-166.SONG Jishui,LI Yiqiang,WANG Huajing.Oil-displacing effi⁃ ciency of polymer flood and successive permeability control and polymer flood determined on three-dimensional heterogeneous physical models[J].Oilfield Chemistry,2002,19(2):162-166.

    • [22] 姜言里,戚连庆.厚油层中纵向非均质状态对聚合物驱油效果的影响[J].大庆石油地质与开发,1991,10(2):35-40,46.JIANG Yanli,QI Lianqing.Effect of vertical heterogeneity in thick reservoir on results of polymer flooding[J].Petroleum Geology & Oilfield Development in Daqing,1991,10(2):35-40,46.

    • [23] 张继红,董欣,叶银珠,等.聚合物驱后凝胶与表面活性剂交替注入驱油效果[J].大庆石油学院学报,2010,34(2):85-88.ZHANG Jihong,DONG Xin,YE Yinzhu,et al.Effect of the gel and surfactant alternating injection after polymer flooding[J].Journal of Daqing Petroleum Institute,2010,34(2):85-88.

    • [24] 沈平平,王家禄,田玉玲,等.三维油藏物理模拟的饱和度测量技术研究[J].石油勘探与开发,2004,31(增刊):71-76.SHEN Pingping,WANG Jialu,TIAN Yuling,et al.Saturation mea⁃ surement technique for 3D reservoir physical modeling[J].Petro⁃ leum Exploration and Development,2004,31(Supplement):71-76.

    • [25] 皮彦夫.石英砂环氧树脂胶结人造岩心的技术与应用[J].科学技术与工程,2010,10(28):6 998-7 000,7 010.PI Yanfu.Technology and application of making artificial cores by the cementation of quartzite and colophony[J].Science Technolo⁃ gy and Engineering,2010,10(28):6 998-7 000,7 010.

    • [26] 徐宏光,熊钰,王永清,等.特高渗疏松砂岩人造岩心的制作及评价[J].石油钻采工艺,2017,39(4):477-483.XU Hongguang,XIONG Yu,WANG Yongqing,et al.Preparation and evaluation on artificial core of extra high permeability uncon⁃ solidated sandstone[J].Oil Drilling & Production Technology,2017,39(4):477-483.

    • [27] 王家禄,沈平平,陈永忠,等.三元复合驱提高原油采收率的三维物理模拟研究[J].石油学报,2005,26(5):61-66.WANG Jialu,SHEN Pingping,CHEN Yongzhong,et al.3-D phys⁃ ical modeling of enhanced oil recovery by alkali-surfactant-poly⁃ mer flooding[J].Acta Petrolei Sinica,2005,26(5):61-66.

    • [28] 雷乐,金崯,高江取.松滋油田红花套组厚层底水油藏物理模拟试验研究[J].江汉石油科技,2013,23(2):36-40.LEI Le,JIN Yin,GAO Jiangqu.Physical simulation test of thick bottom water reservoir of Honghuatao formation in Songzi Oilfield [J].Jianghan Petroleum Science and Technology,2013,23(2):36-40.

    • [29] 张惠敏.RQ潜山碳酸盐岩油藏大模型水驱油实验研究[D].成都:西南石油大学,2017.ZHANG Huimin.Experimental study on water flooding using larg⁃ escale model of RQ buried hill carbonate oil reservoir[D].Cheng⁃ du:Southwest Petroleum University,2017.

  • 参考文献

    • [1] 冈秦麟.高含水期油田改善水驱效果新技术[M].北京:石油工业出版社,1999.GANG Qinlin.New technology of improving water drive effect in high water cut oilfield[M].Beijing:Petroleum Industry Press,1999.

    • [2] SMITH J E.The transition pressure:a quick method for quantify⁃ ing poly-acrylamide gel strength[R].SPE 18739,1989:473-480.

    • [3] 罗文利,吴肇亮,牛亚斌.胶态分散凝胶研究的新进展[J].油田化学,1999,16(2):188-194.LUO Wenli,WU Zhaoliang,NIU Yabin.Progresses in colloidal dispersion gel[J].Oilfield Chemistry,1999,16(2):188-194.

    • [4] 李秋言,岳湘安,杨长春,等.聚合物微球有效作用距离对调剖效果的影响:以高浅南油藏为例[J].断块油气田,2018,25(2):262-265.LI Qiuyan,YUE Xiang’an,YANG Changchun,et al.Effect of ef⁃ fective distance of polymer microspheres on profile control:a case study of Gaoqiannan reservoir[J].Fault-Block Oil and Gas Field,2018,25(2):262-265.

    • [5] 何涛,王健,余恒,等.裂缝性注水开发油藏多轮次调剖机理研究[J].油气藏评价与开发,2018,8(2):68-72.HE Tao,WANG Jian,YU Heng,et al.Mechanism study on multiround profile control technique in fractured water flooding reser⁃ voir[J].Reservoir Evaluation and Development,2018,8(2):68-72.

    • [6] 廖月敏,付美龙,杨松林.耐温抗盐凝胶堵水调剖体系的研究与应用[J].特种油气藏,2019,26(1):158-162.LIAO Yuemin,FU Meilon,YANG Songlin.Study and application of water plugging and profile control system of heat and salt resis⁃ tant gel[J].Special Oil & Gas Reservoirs,2019,26(1):158-162.

    • [7] 梁守成,李强,吕鑫,等.多级调剖调驱技术效果及剩余油分布 [J].大庆石油地质与开发,2018,37(6):108-115.LIANG Shoucheng,LI Qiang,LÜ Xin,et al.Effects of multistage profile controlling-displacing technology and the remained oil dis⁃ tribution[J].Petroleum Geology & Oilfield Development in Daq⁃ ing,2018,37(6):108-115.

    • [8] 吴岱峰,鲁晓兵,刘庆杰,等.低渗岩心驱替过程中的压力分布特征研究[J].力学与实践,2012,34(5):27-31,51.WU Daifeng,LU Xiaobing,LIU Qingjie,et al.Pressure distribu⁃ tion in flooding of low permeability reservoirs[J].Mechanics in Engineering,2012,34(5):27-31,51.

    • [9] 刘凯,文章,梁杏,等.一维低渗透介质非达西渗流实验[J].水动力学研究与进展:A辑,2013,28(1):81-87.LIU Kai,WEN Zhang,LIANG Xing,et al.One-dimensional col⁃ umn test for non-Darcy flow in low permeability media[J].Chi⁃ nese Journal of Hydrodynamics,2013,28(1):81-87.

    • [10] 闫庆来,何秋轩,尉立岗,等.低渗透油层中单相液体渗流特征的实验研究[J].西安石油学院学报,1990,5(2):1-6.YAN Qinglai,HE Qiuxuan,WEI Ligang,et al.A laboratory study on percolation characteristics of single phase flow in low-permea⁃ bility reservoirs[J].Journal of Xi’an Petroleum Institute,1990,5(2):1-6.

    • [11] 于倩男,刘义坤,刘学,等.非均质低渗透储层渗流特征实验研究[J].西南石油大学学报:自然科学版,2018,40(3):105-114.YU Qiannan,LIU Yikun,LIU Xue,et al.An experimental study on the porous-flow characteristics of heterogeneous low-permea⁃ bility reservoirs[J].Journal of Southwest Petroleum University:Science & Technology Edition,2018,40(3):105-114.

    • [12] BUTLER R M.Rise of Interfering Steam Chambers[J].Journal of Canadian Petroleum Technology,1987,26(3):70-75.

    • [13] SASKOIL S S,BUTLER R M.The production of conventional heavy oil reservoirs with bottom water using steam-assisted gravi⁃ ty drainage[J].Journal of Canadian Petroleum Technology,1990,29(2):1-10.

    • [14] MESZAROS G,CHAKMA A.Sealed model studies and numerical simulation of inert gas injection with Horizontal wells[R].SPE 20259,1990:22-26.

    • [15] ISLAM M R,CHAKMA A.A new recovery technique for heavyoil reservoirs with bottom-water[J].SPE Reservoir Engineering,1992,7(2):180-186.

    • [16] 罗宪波,蒲万芬,武海燕,等.交联聚合物溶液在多孔介质中调驱效果实验研究[J].油田化学,2004,21(4):340-342.LUO Xianbo,PU Wanfen,WU Haiyan,et al.Experimental studies on displacement efficiency of linked polymer solution in porous media[J].Oilfield Chemistry,2004,21(4):340-342.

    • [17] 徐轩,刘学伟,杨正明,等.特低渗透砂岩大型露头模型单相渗流特征实验[J].石油学报,2012,33(3):453-458.XU Xuan,LIU Xuewei,YANG Zhengming,et al.An experimental study on single-phase seepage characteristics with a large-scale model made of ultra-low permeability sandstone outcrops[J].Ac⁃ ta Petrolei Sinica,2012,33(3):453-458.

    • [18] 薛成国.特低渗透储层大型物理模拟实验研究[D].廊坊:中国科学院研究生院(渗流流体力学研究所),2011.XUE Chengguo.Large physical simulation experimental study on the ultra-low permeability reservoir[D].Langfang:Institute of Po⁃ rous Flow and Fluid Mechanics,Chinese Academy of Sciences,2011.

    • [19] 于倩男.杏南开发区精控压裂薄差储层渗流特征研究[D].大庆:东北石油大学,2017.YU Qiannan.Research on seepage flow patterns of fine controlled fractured thin and poor reservoir in Xingnan development aera [D].Daqing:Northeast Petroleum University,2017.

    • [20] 王志华,李宜强,钟会影.基于平面模型的微电极技术在聚合物驱油水前缘测定中的应用[J].西安石油大学学报:自然科学版,2007,22(S1):51-55.WANG Zhihua,LI Yiqiang,ZHONG Huiying.Application of mi⁃ cro-electrode technology based on plane model in the determina⁃ tion of polymer flooding oil-water front[J].Journal of Xi’an Shiy⁃ ou University:Natural Science Edition,2007,22(S1):51-55.

    • [21] 宋吉水,李宜强,王华菁.聚合物驱、调剖后聚合物驱三维模型驱油效果评价[J].油田化学,2002,19(2):162-166.SONG Jishui,LI Yiqiang,WANG Huajing.Oil-displacing effi⁃ ciency of polymer flood and successive permeability control and polymer flood determined on three-dimensional heterogeneous physical models[J].Oilfield Chemistry,2002,19(2):162-166.

    • [22] 姜言里,戚连庆.厚油层中纵向非均质状态对聚合物驱油效果的影响[J].大庆石油地质与开发,1991,10(2):35-40,46.JIANG Yanli,QI Lianqing.Effect of vertical heterogeneity in thick reservoir on results of polymer flooding[J].Petroleum Geology & Oilfield Development in Daqing,1991,10(2):35-40,46.

    • [23] 张继红,董欣,叶银珠,等.聚合物驱后凝胶与表面活性剂交替注入驱油效果[J].大庆石油学院学报,2010,34(2):85-88.ZHANG Jihong,DONG Xin,YE Yinzhu,et al.Effect of the gel and surfactant alternating injection after polymer flooding[J].Journal of Daqing Petroleum Institute,2010,34(2):85-88.

    • [24] 沈平平,王家禄,田玉玲,等.三维油藏物理模拟的饱和度测量技术研究[J].石油勘探与开发,2004,31(增刊):71-76.SHEN Pingping,WANG Jialu,TIAN Yuling,et al.Saturation mea⁃ surement technique for 3D reservoir physical modeling[J].Petro⁃ leum Exploration and Development,2004,31(Supplement):71-76.

    • [25] 皮彦夫.石英砂环氧树脂胶结人造岩心的技术与应用[J].科学技术与工程,2010,10(28):6 998-7 000,7 010.PI Yanfu.Technology and application of making artificial cores by the cementation of quartzite and colophony[J].Science Technolo⁃ gy and Engineering,2010,10(28):6 998-7 000,7 010.

    • [26] 徐宏光,熊钰,王永清,等.特高渗疏松砂岩人造岩心的制作及评价[J].石油钻采工艺,2017,39(4):477-483.XU Hongguang,XIONG Yu,WANG Yongqing,et al.Preparation and evaluation on artificial core of extra high permeability uncon⁃ solidated sandstone[J].Oil Drilling & Production Technology,2017,39(4):477-483.

    • [27] 王家禄,沈平平,陈永忠,等.三元复合驱提高原油采收率的三维物理模拟研究[J].石油学报,2005,26(5):61-66.WANG Jialu,SHEN Pingping,CHEN Yongzhong,et al.3-D phys⁃ ical modeling of enhanced oil recovery by alkali-surfactant-poly⁃ mer flooding[J].Acta Petrolei Sinica,2005,26(5):61-66.

    • [28] 雷乐,金崯,高江取.松滋油田红花套组厚层底水油藏物理模拟试验研究[J].江汉石油科技,2013,23(2):36-40.LEI Le,JIN Yin,GAO Jiangqu.Physical simulation test of thick bottom water reservoir of Honghuatao formation in Songzi Oilfield [J].Jianghan Petroleum Science and Technology,2013,23(2):36-40.

    • [29] 张惠敏.RQ潜山碳酸盐岩油藏大模型水驱油实验研究[D].成都:西南石油大学,2017.ZHANG Huimin.Experimental study on water flooding using larg⁃ escale model of RQ buried hill carbonate oil reservoir[D].Cheng⁃ du:Southwest Petroleum University,2017.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告