en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

胡渤(1973—),男,陕西宝鸡人,高级工程师,硕士,从事油田开发工作。E-mail:hubo755@sinopec.com。

中图分类号:TE357.46

文献标识码:A

文章编号:1009-9603(2020)06-0091-09

DOI:10.13673/j.cnki.cn37-1359/te.2020.06.011

参考文献 1
李耿,刘强,彭通曙,等.稠油油藏提高采收率技术对策探讨 [J].西部探矿工程,2012,24(4):93-95.LI Geng,LIU Qiang,PENG Tongshu,et al.Discussion on techni⁃ cal countermeasures of enhanced oil recovery in heavy oil reser⁃ voirs[J].West-China Exploration Engineering,2012,24(4):93-95.
参考文献 2
刘广友.孤东油田九区稠油油藏化学蒸汽驱提高采收率技术 [J].油气地质与采收率,2012,19(3):78-80,83.LIU Guangyou.Study on chemical steam flood to enhance recov⁃ ery ratio of ninth block of Gudong oilfield[J].Petroleum Geology and Recovery Efficiency,2012,19(3):78-80,83.
参考文献 3
王学忠.多轮次蒸汽吞吐井开发接替技术研究[J].当代石油石化,2019,27(6):30-34.WANG Xuezhong.Research on development replacement technol⁃ ogy of multi-cycle steam huff and puff wells[J].Petroleum & Pet⁃ rochemical Today,2019,27(6):30-34.
参考文献 4
刘宁.浅薄层稠油油藏高轮次蒸汽吞吐后剩余油分布及潜力评价[J].石化技术,2019,26(4):115-116.LIU Ning.Residual oil distribution and potential evaluation of shallow and thin heavy oil reservoirs after high round steam huff and puff[J].Petrochemical Industry Technology,2019,26(4):115-116.
参考文献 5
胡德鹏,费永涛,刘宁,等.井楼油田中区稠油油藏蒸汽吞吐后期开发潜力分析[J].石油地质与工程,2015,29(1):110-112.HU Depeng,FEI Yongtao,LIU Ning,et al.Analysis of late-stage development potential of steam huff and puff in heavy oil reser⁃ voirs in central area of Jinglou oilfield[J].Petroleum Geology and Engineering,2015,29(1):110-112.
参考文献 6
陈兆芳.乐安油田南区蒸汽吞吐后期开采方式研究[J].江汉石油学院学报,2003,25(2):85-86.CHEN Zhaofang.Late production mode of steam stimulation in south region of Le’an oilfield[J].Journal of Jianghan Petroleum Institute,2003,25(2):85-86.
参考文献 7
董甜甜.辽河油田稠油蒸汽吞吐开发后接替技术的研究[J].化工管理,2014,(32):113.DONG Tiantian.Study on the succession technology of heavy oil steam huff and puff development in Liaohe oilfield[J].Chemical Enterprise Management,2014,(32):113.
参考文献 8
夏晞冉.陈家庄油田陈25北降粘复合驱方案优化[J].内江科技,2019,40(3):21-22.XIA Xiran.Optimization of composite flooding scheme for viscosi⁃ ty reducing in Chen25 north of Chenjiazhuang Oilfield[J].Neiji⁃ ang Technology,2019,40(3):21-22.
参考文献 9
杨勇.胜利油田特低渗透油藏CO2驱技术研究与实践[J].油气地质与采收率,2020,27(1):11-19.YANG Yong.Research and application of CO2 flooding technology in extra-low permeability reservoirs of Shengli Oilfield[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(1):11-19.
参考文献 10
夏晞冉.聚合物-降粘剂复合驱注入速度界限确定方法[J].油气地质与采收率,2018,25(6):89-95.XIA Xiran.A method of calculating injection rate limit for poly⁃ mer/viscosity reducer combination flooding[J].Petroleum Geology and Recovery Efficiency,2018,25(6):89-95.
参考文献 11
陈广宇,田燕春,赵新,等.大庆油田二类油层复合驱注入方式优化[J].石油学报,2012,33(3):459-464.CHEN Guangyu,TIAN Yanchun,ZHAO Xin,et al.Optimization of the ASP flooding injection pattern for sub-layers in Daqing oil⁃ field[J].Acta Petrolei Sinica,2012,33(3):459-464.
参考文献 12
饶良玉,韩冬,吴向红,等.中低渗油藏化学驱方案优化与矿场对比评述[J].西南石油大学学报:自然科学版,2012,34(5):107-113.RAO Liangyu,HAN Dong,WU Xianghong,et al.Research and field comparison comments on chemical flooding scenario design in mid-low permeability reservoir[J].Journal of Southwest Petro⁃ leum University:Science & Technology Edition,2012,34(5):107-113.
参考文献 13
王刚,刘斌,王欣然,等.渤海X油田聚驱后不同化学驱注入段塞优选及剩余油分布研究[J].石油地质与工程,2018,32(1):91-93.WANG Gang,LIU Bin,WANG Xinran,et al.Research on injected slug optimization and remaining oil distribution of different chemi⁃ cal floodings after polymer flooding in Bohai X Oilfield[J].Petro⁃ leum Geology and Engineering,2018,32(1):91-93.
参考文献 14
关丹,栾和鑫,阙庭丽,等.砾岩油藏聚合物驱的注入方式优化 [J].油田化学,2019,36(4):688-692.GUAN Dan,LUAN Hexin,QUE Tingli,et al.Optimization on in⁃ jection mode of polymer flooding in conglomerate reservoir[J].Oilfield Chemistry,2019,36(4):688-692.
参考文献 15
ZHANG Tianjin,ZHANG Zhisheng,LI Chunsheng,et al.A new method to determine reasonable well pattern density in low-per⁃ meability gas reservoirs[J].Journal of Petroleum Exploration and Production Technology,2019,9(3):2 165-2 174.
参考文献 16
俞启泰.计算水驱砂岩油藏合理井网密度与极限井网密度的一种方法[J].石油勘探与开发,1986,13(4):49-54.YU Qitai.A method for calculating the reasonable and extreme well pattern density in a water flooding sandstone reservoir[J].Pe⁃ troleum Exploration and Development,1986,13(4):49-54.
参考文献 17
李俊键,丁美爱,姜汉桥,等.化学驱合理井网密度的计算方法——以正方形井网为例[J].油气地质与采收率,2008,15(3):96-98.LI Junjian,DING Meiai,JIANG Hanqiao,et al.Computing meth⁃ od to determine reasonable well spacing density with chemical flooding-taking square well spacing as an example[J].Petroleum Geology and Recovery Efficiency,2008,15(3):96-98.
参考文献 18
刘义坤,毕永斌,隋新光.聚合物驱开发指标预测方法研究[J].大庆石油地质与开发,2007,26(2):105-107.LIU Yikun,BI Yongbin,SUI Xinguang.Prediction method for de⁃ velopment index of polymer flooding [J].Petroleum Geology & Oil⁃ field Development in Daqing,2007,26(2):105-107.
参考文献 19
王兴峰,葛家理,陈福明,等.三次采油指标预测及开发最优接替模型研究[J].石油学报,2001,22(5):43-47.WANG Xingfeng,GE Jiali,CHEN Fuming,et al.A mathematical model for optimal development scheduling of reservoirs in EOR [J].Acta Petrolei Sinica,2001,22(5):43-47.
参考文献 20
朱健,刘伟利,李兴,等.聚合物驱后储层物性参数的变化特征 [J].油气地质与采收率,2007,14(4):65-67,71.ZHU Jian,LIU Weili,LI Xing,et al.Variations of physical proper⁃ ty parameters of reservoirs after polymer flooding[J].Petroleum Geology and Recovery Efficiency,2007,14(4):65-67,71.
参考文献 21
王链,张亮,赖枫鹏,等.基于替代模型的油藏注采参数多目标优化设计[J].科学技术与工程,2019,19(26):178-185.WANG Lian,ZHANG Liang,LAI Fengpeng,et al.Multi-objective optimization design of reservoir injection-production parameters based on substitution model[J].Science Technology and Engi⁃ neering,2019,19(26):178-185.
参考文献 22
李昌恒,陈德春,向刚,等.基于数据挖掘的蒸汽吞吐井注采参数优化设计[J].复杂油气藏,2011,4(2):80-83.LI Changheng,CHEN Dechun,XIANG Gang,et al.Optimizing de⁃ sign of injection-production parameters for steam stimulation wells on basis of data mining[J].Complex Hydrocarbon Reser⁃ voirs,2011,4(2):80-83.
参考文献 23
范利军,杨建平,赵东亚,等.基于改进粒子群算法的 CO2驱井网优化设计[J].石油工程建设,2016,42(5):6-9.FAN Lijun,YANG Jianping,ZHAO Dongya,et al.Optimum de⁃ sign of CO2 flooding well based on improved particle swarm algo⁃ rithm[J].Petroleum Engineering Construction,2016,42(5):6-9.
参考文献 24
DARWISH Ashraf,EZZAT Dalia,HASSANIEN Aboul Ella.An optimized model based on convolutional neural networks and or⁃ thogonal learning particle swarm optimization algorithm for plant diseases diagnosis[J].Swarm and Evolutionary Computation,2019,52:100-616.
参考文献 25
DIEGO Galvan,HÁGATA Cremasco,ANA Carolina Gomes Man⁃ tovani,et al.Kinetic study of the transesterification reaction by ar⁃ tificial neural networks and parametric particle swarm optimization [J].Fuel,2020,267:117-221.
目录contents

    摘要

    降黏化学驱是稠油油藏蒸汽吞吐后的有效接替生产方式,其注入方式对开发效果影响较大。基于降黏化学驱的驱油机理,建立油藏数值模拟模型对蒸汽吞吐后降黏化学驱动态特征进行了分析,基于注采能力和开发效果对注入段塞顺序进行了优化,并基于净现值法建立了蒸汽吞吐后降黏化学驱注入参数的优化模型,将油藏数值模拟技术和粒子群算法相结合,求解获得最优注入参数。研究结果表明,蒸汽吞吐后降黏化学驱可以有效降低地层中原油的黏度,含水率在快速上升后出现明显的下降;先注降黏剂后注聚合物为最佳注入段塞顺序;通过优化,目标区块最优降黏剂质量分数为0.28%,最优聚合物的质量分数为0.32%,最优降黏剂注入量为0.40 PV,最优聚合物注入量为0.36 PV。优化结果可有效提高稠油油藏的开发效果,注入方式优化方法对指导稠油油藏蒸汽吞吐后降黏化学驱的开发实践具有重要的意义。

    Abstract

    The viscosity reduction chemical flooding is an effective alternative production method after steam stimulation in heavy oil reservoirs,and its injection method has a great influence on the development effect. Based on the oil displacement mechanism of viscosity reduction chemical flooding,a reservoir numerical simulation model was established. The numerical simulation technology was used to analyze the characteristics of the viscosity reduction chemical flooding after steam stimu- lation. The injection slug sequence was optimized based on the injection and production capacity and the development ef- fect. Based on the net present value method,an optimized model of injection parameters of the viscosity reduction chemical flooding after steam stimulation was established. The reservoir numerical simulation technology and particle swarm optimi- zation algorithm were integrated to obtain the optimal injection parameters. The research results show that the viscosity re- duction chemical flooding after steam stimulation can effectively reduce the viscosity of crude oil in the formation,and the water cut declines significantly after a rapid increase;the sequence of injecting viscosity reducer first and then polymer slug is the best;based on the optimization,the optimal mass fractions and injection volumes of the viscosity reducer and polymer in the target reservoir are 0.28%,0.32%,0.40 PV and 0.36 PV respectively. The optimization results can effectively im- prove the development effect of heavy oil reservoirs,and the method of injection optimization proposed in this paper is of great significance to guide the development practice of viscosity reduction chemical flooding after steam stimulation in heavy oil reservoir.

  • 稠油油藏蒸汽吞吐后期会出现地层能量不足、日产油量降低、油田经济效益逐渐变差等弊端[1-4]。在蒸汽吞吐后转入降黏化学驱是稠油油藏实现稳产的有效接替生产方式[3-7]。蒸汽吞吐后降黏化学驱的降黏剂浓度、注入段塞顺序、注入量等相关参数对降黏化学驱的开发效果具有重要影响[8-10]。目前中外学者对化学驱提高采收率的注入方式和注入参数优化的研究较多。陈广宇等针对二类油层非均质性超强的特点,系统地开展了二类油层复合驱注入方式优化研究,提出了高黏度聚合物段塞与低黏度三元体系交替注入方式,并对其进行优化研究[11]。饶良玉等在油藏工程、油藏精细描述及物理模拟研究的基础上,运用三次采油数值模拟技术开展化学驱方案优化设计研究,用全因素优化方法对注采参数和注入方式进行优化[12]。王刚等根据地质油藏特征和开发状况,应用三层非均质平板岩心模型,研究不同类型化学驱的驱替效果,优选聚合物驱后的合理化学驱注入方式,应用电极采集系统检测化学驱后各层剩余油饱和度,对比不同驱替方式的开发效果[13]。关丹等采用三管并联岩心驱替实验考察与现场聚合物用量相近的条件下采用单一恒黏、梯次降黏和梯次增黏的注入方式的驱油效果,在获得最佳注入方式的基础上,开展不同轮次和不同注入速率下的三管并联岩心驱替实验[14]。综合来看,目前关于降黏化学驱的注入方式和注入参数优化的研究较少。为此,笔者在分析蒸汽吞吐后降黏化学驱动态特征的基础上,从注采能力和开发效果的角度综合优化了蒸汽吞吐后降黏化学驱注入段塞顺序,基于净现值法建立了蒸汽吞吐后降黏化学驱注入参数优化数学模型,并使用粒子群算法进行模型求解得到最优注入参数。

  • 1 降黏化学驱油藏动态特征

  • 蒸汽吞吐后降黏化学驱可有效改善稠油油藏的开发效果。注入地层中的降黏剂作用于地层原油,使其黏度降低,从而改善油水流度比,提高原油在地层中的流动能力;同时,稠油油藏经过多轮次的蒸汽吞吐后,地层能量亏空严重,降黏化学驱可以为蒸汽吞吐后的地层补充能量,增加产液能力。

  • 建立蒸汽吞吐后降黏化学驱的数值模拟模型进行分析。模型的网格划分为60×60×1,x方向网格步长为 5 m,y 方向网格步长为 5 m,z 方向网格步长为 10 m;设置模型的原始地层压力为 12.5 MPa,初始地层温度为 70℃,孔隙度为 0.32,绝对渗透率为 2 500 mD,地层原油黏度为469 mPa·s。从蒸汽吞吐后的含油饱和度与原油黏度分布(图1)可以看出,通过向地层中注入热蒸汽,吞吐井周围含油饱和度与原油黏度发生了变化,蒸汽吞吐过程中注入的蒸汽仅在吞吐井周围流动,因此地层中距离吞吐井较远的区域含油饱和度和原油黏度基本无变化,说明蒸汽吞吐过程中热蒸汽的波及范围较小。

  • 图1 蒸汽吞吐后的含油饱和度与原油黏度分布

  • Fig.1 Distribution of oil saturation and viscosity after steam stimulation

  • 基于蒸汽吞吐后的模型,使用五点法井网进行降黏化学驱的数值模拟,将井组中 3,5,7 和 9 号井转为生产井;1,2,4,6和 8号井转为注化学剂井,模型中设置恒定注采压差生产,注入化学剂段塞一段时间后转为注入水。注入的化学剂包括降黏剂与聚合物,降黏剂的作用是降低原油的黏度,聚合物的作用是增加水的黏度,减缓水的突进。注入降黏剂的降黏率为 90%。从油藏数值模拟中采用的流体黏度随化学剂质量分数变化关系曲线(图2)可以看出,原油黏度随降黏剂质量分数增加而减小,水黏度随聚合物质量分数增加而增加。

  • 图2 流体黏度随化学剂质量分数的变化关系

  • Fig.2 Relationship between fluid viscosity and mass fraction of chemical agent

  • 从降黏化学驱后含油饱和度与原油黏度分布 (图3)以及蒸汽吞吐与降黏化学驱后原油黏度对比曲线(图4)可以看出,与蒸汽吞吐相比,降黏化学驱后原油黏度减小的范围扩大,降黏效果更显著,含油饱和度相比蒸汽吞吐后发生了较大的变化;降黏化学驱的注入作用为地层补充了能量,同时降黏效果显著,使原油的流动阻力大幅下降,蒸汽吞吐过程中难以流动的剩余油得到了动用,地层中的含油饱和度较低,降黏化学驱提高了稠油油藏的采收率。

  • 蒸汽吞吐后转注化学剂与转注水的日产液量和含水率对比曲线(图5)可以看出,由于注水时油水黏度相差较大,注入水突进速度较快,日产液量迅速上升,高于转注化学剂对应的日产液量,同时对应的含水率早期快速上升,后期上升速度趋缓。转注化学剂时由于注入的化学剂对水的增黏与对原油的降黏作用,对应的日产液量相对较低;含水率早期也出现快速上升,此时主要产出水是前期蒸汽吞吐时油井周围残留的水,当化学剂驱替原油流动到油井井底后,含水率出现明显的快速下降。

  • 图3 降黏化学驱后含油饱和度与原油黏度分布

  • Fig.3 Distribution of oil saturation and viscosity after viscosity reduction chemical flooding

  • 图4 蒸汽吞吐与降黏化学驱后注入井附近的原油黏度对比曲线

  • Fig.4 Comparison curves of crude oil viscosity near injection well after steam stimulation and viscosity reduction chemical flooding

  • 图5 转注化学剂与转注水的日产液量和含水率对比曲线

  • Fig.5 Curves of liquid production rate and water cut of chemical flooding and water flooding after steam stimulation

  • 2 注入段塞顺序优化

  • 2.1 定注采压差

  • 使用前置模型参数进行数值模拟,设置恒定的注采压差,在注完化学剂段塞之后转注水,注入的化学剂段塞中包括降黏剂与聚合物,研究降黏剂与聚合物同时注入、先注降黏剂后注聚合物、先注聚合物后注降黏剂 3 种注入段塞顺序下的注采能力。从蒸汽吞吐后降黏化学驱过程中3种注入段塞顺序下的日产液量对比(图6)可以看出,生产初期日产液量均较低,随着生产时间的推进:①先注降黏剂后注聚合物的日产液量快速上升,之后趋于平稳一段时间,然后再上升,这是因为开始注降黏剂时,地层中降黏剂含量较少,降黏剂的降黏范围较小,降黏效果不显著;随着降黏剂注入量的增加,降黏剂的作用效果增强,地层中渗流阻力减小,日产液量迅速上升;之后转注入聚合物,由于聚合物对水的增黏作用,同时地层中已注入的降黏剂能继续降黏,日产液量保持不变;最后注入水,渗流阻力减小,日产液量上升。②降黏剂与聚合物同时注入、先注聚合物后注降黏剂的日产液量相近,其日产液量快速上升起始时间滞后,原因是开始注入聚合物后,水的黏度增加,注入水向前推进迟缓,溶解于水中的降黏剂无法作用于地层深处的原油,因此日产液量长时间保持较低水平。

  • 图6 3种注入段塞顺序下的日产液量对比

  • Fig.6 Fluid production rates for three injection slug sequences

  • 选取一注一采2口井研究定注采压差生产条件下不同注入段塞顺序下的含油饱和度分布,从降黏化学驱过程中先注降黏剂后注聚合物与降黏剂和聚合物同时注入对应的含油饱和度分布(图7)可以看出,在先注降黏剂后注聚合物的注入段塞顺序下,由于注入的降黏剂作用时间长,可以起到较好的降黏效果,对应的日产液量较高,所以总体含油饱和度小于同时注入段塞顺序下的含油饱和度。

  • 2.2 定注采液量

  • 使用前置模型参数进行数值模拟,设置恒定注采液量生产,在注完化学剂段塞之后转注水,注入的化学剂段塞中包括降黏剂与聚合物,研究降黏剂与聚合物同时注入、先注降黏剂后注聚合物、先注聚合物后注降黏剂等 3 种注入段塞顺序的开发效果。

  • 图7 先注降黏剂与同时注入对应的含油饱和度分布

  • Fig.7 Oil saturation distribution for sequences of injecting viscosity reducer first and then polymer slug and simultaneously injecting viscosity reducer and polymer slug

  • 从蒸汽吞吐后降黏化学驱过程3种注入段塞顺序下的含水率对比(图8a)可以看出,初期 3 种注入段塞顺序下的含水率与采出程度基本相同,这是因为注入化学剂的作用效果还没有传播到生产井。随着生产时间的推进:①先注降黏剂后注聚合物的注入方式含水率先升高,稳定一段时间后含水率下降,最后含水率上升,原因是开始时只注入降黏剂,水的黏度较低,与原油一起向前推进,出现水突进现象,含水率较高,一段时间后转注聚合物,水的黏度增加,水突进现象减弱,含水率下降;最后转注水,含水率上升。②其他 2 种注入段塞顺序的含水率均是上升后直接下降,最后含水率上升,原因是开始时注入聚合物,水的黏度上升,水突进现象比较弱,采出蒸汽吞吐时油井周围残留的水后含水率下降,最后转注水,含水率上升。先注降黏剂后注聚合物的注入方式受到后续聚合物增黏水的驱替作用,降黏剂的推进范围最大,具有较好的开发潜力,后期时对应的含水率最低。

  • 图8 3种注入段塞顺序下的含水率和采出程度对比

  • Fig.8 Curves of water cuts and recoveries for three injection slug sequences

  • 从蒸汽吞吐后降黏化学驱过程中3种注入段塞顺序下的采出程度对比(图8b)可以看出,先注降黏剂后注聚合物对应的最终采出程度最高,这是因为降黏剂的推进范围大,开发潜力好,油田开发后期对应的含水率低,说明从长远看,先注降黏剂后注聚合物注入段塞顺序可以较好地改善稠油油藏的开发效果。从以上分析可以看出,3 种注入段塞顺序中,先注降黏剂后注聚合物可以最好地提高注采能力,改善开发效果,为最优的蒸汽吞吐后降黏化学驱注入段塞顺序。

  • 3 注入化学剂参数的优化

  • 化学剂注入量可根据降黏剂的浓度、聚合物的浓度、降黏剂段塞体积与聚合物段塞体积计算,增加化学剂注入量,可以提高降黏化学驱的采收率,但同时会增加降黏化学驱的成本,因此需要对化学剂注入量进行优化使降黏化学驱的净利润最大。针对传统方法中使用经验公式法预测化学驱采收率增量的不足,在油藏数值模拟预测降黏化学驱采收率增量的基础上,使用净现值法[15-20] 建立了包括降黏剂的浓度、聚合物的浓度、降黏剂段塞体积与聚合物段塞体积等注入化学剂参数的优化模型,并使用粒子群算法求解,得到蒸汽吞吐后降黏化学驱最优注入参数。

  • 3.1 模型的建立

  • 以降黏化学驱过程中降黏剂的浓度、聚合物的浓度、降黏剂段塞体积与聚合物段塞体积为设计变量,油田开发的最大净现值为目标函数,建立注入化学剂参数的优化数学模型。

  • 目标函数为:

  • fc1,c2,V1,V2=max(NPV)
    (1)
  • 其中:

  • NPV=Vin -Vout
    (2)
  • 原油销售收入的将来值为:

  • Vin =NSΔERTG(1+j)T1+α×1+α1+jT+1-1+α1+jα-j1+j
    (3)
  • 主开发期限内支出费用的将来值为:

  • Vout =nM+P1(1+j)T+nP2(1+j)T1+β×1+β1+jT+1-1+β1+jβ-j1+j
    (4)
  • 化学剂原材料的价格为:

  • P1=V1c1d1+V2c2d2
    (5)
  • 3.2 模型的求解

  • 粒子群算法具有操作简单和收敛速度快等特点[21-25],粒子群算法在迭代过程中通过对比个体极值和全局极值来更新速度和位置,逐渐收敛到最优解,粒子群算法粒子位置的更新式为:

  • yik+1=yik+rvik+1
    (6)
  • 速度的更新式为:

  • vik+1=ωvik+a1ξkpik-yik+a2ηkpgk-yik
    (7)
  • 本文使用粒子群算法进行注入化学剂参数优化,将注入化学剂的一组参数看作单个粒子,注入化学剂各参数值看作粒子的位置坐标,目标函数的自变量有降黏剂的浓度、聚合物的浓度、降黏剂段塞体积与聚合物段塞体积 4 个,每一次迭代时的步骤为:①计算每个粒子对应的目标函数值。②对于群体中的每个粒子,将粒子的目标函数值和个体最好位置 bestp 的目标函数值作比较,假如优于 bestp 的目标函数值,则将其作为个体最好位置。③将个体最好位置的目标函数值和粒子群所经历的全局最好位置 bestg 的目标函数值作比较,假如优于 bestg 的目标函数值,则将其作为全局的最好位置。 ④根据(6)式和(7)式更新粒子的位置和速度。

  • 3.3 应用实例

  • 基于蒸汽吞吐后降黏化学驱的数值模拟模型,采用上述优化模型和求解方法对注采参数进行优化,数值模拟模型中,蒸汽吞吐后的采收率为 12.1%,注入降黏剂的降黏率为 90%,注采井井底压差为 20 MPa,原油价格为 1 500 元/t,原油商品率为 97%,操作费用为 20×104 元,注化学剂设备费用为 160×104 元,化学剂价格为 2.1×104 元/t,模型地质储量为19.123×104 t,含油面积为9×104 m2,平均有效厚度为10 m,投资年限为6.5 a。

  • 经过计算并多次反复运行油藏数值模拟模型,得到最优降黏剂的质量分数为 0.28%,最优聚合物的质量分数为 0.32%,最优降黏剂注入量为 0.40 PV,最优聚合物注入量为 0.36 PV,计算得到的降黏化学驱采收率增加值为 16.8%,原油销售收入的将来值为 5 214.4 × 104 元,开发投资的将来值为 3 048.3×104 元,利润为 2 166.1×104 元。从使用优化参数进行数值模拟得到的含油饱和度分布(图9)、未使用优化参数进行数值模拟得到的含油饱和度分布(图3a)、使用优化参数与未使用优化参数对应的含油饱和度分布统计对比(图10)可以看出,使用优化参数对应的含油饱和度较低,低区间含油饱和度的网格数较多,原油得到了更有效的动用。经过计算,使用优化参数对应的平均含油饱和度为 0.497,未使用优化参数的平均含油饱度为 0.586,优化后的采收率显著提高,说明使用本文所提出的方法指导生产可以取得较好的开发效果。

  • 图9 降黏化学驱后含油饱和度分布

  • Fig.9 Distribution of oil saturation after viscosity reduction chemical flooding

  • 图10 含油饱和度分布统计对比

  • Fig.10 Statistics of oil saturation distribution

  • 从使用梯度下降算法与粒子群算法进行注入化学剂参数优化模型求解的结果对比(表1)可以看出,使用粒子群算法第 7 次迭代时计算出的结果就稳定了,而使用梯度下降算法计算时需要迭代 9 次才能收敛,通过梯度下降算法计算得到的利润小于粒子群算法的计算结果,说明梯度下降算法陷入局部最优解。相比于梯度下降算法,粒子群算法的收敛速度较快,得到的结果较优,对于本文所提出的注入化学剂参数优化模型的求解具有良好的寻优能力和收敛性。

  • 表1 梯度下降算法与粒子群算法求解结果对比

  • Table1 Results of gradient descent algorithm and particle swarm optimization

  • 从蒸汽吞吐后转注水、粒子群算法优化参数、梯度下降算法优化参数对应的采出程度曲线对比 (图11)可以看出,蒸汽吞吐后转注水未能降低地层原油的黏度,开发效果差,对应的采出程度最低;蒸汽吞吐后降黏化学驱通过注入化学剂改变地层流体黏度,降低水油流度比,可有效改善稠油油藏的开发效果;粒子群算法具有较好的寻优能力,对应的最终采出程度要高于梯度下降算法的,说明本文所提出的方法具有较好的优化效果。

  • 图11 采出程度对比

  • Fig.11 Comparison of recoveries

  • 4 结论

  • 使用油藏数值模拟软件对蒸汽吞吐后降黏化学驱的动态特征进行了分析。降黏化学驱降黏效果显著,补充了蒸汽吞吐后地层的能量;从注采能力和开发效果的角度综合优化了蒸汽吞吐后降黏化学驱注入段塞顺序,先注降黏剂后注聚合物为最佳注入段塞顺序。

  • 在数值模拟预测降黏化学驱采收率增量的基础上,使用净现值法建立了蒸汽吞吐后降黏化学驱注入参数优化数学模型,并使用粒子群算法求解得到最优注入参数,得到的最优降黏剂质量分数为 0.28%,最优聚合物的质量分数为 0.32%,最优降黏剂注入量为0.40 PV,最优聚合物注入量为0.36 PV。

  • 符号解释

  • a 1a 2——加速常数;

  • c 1——注入降黏剂的质量浓度,t/m3

  • c 2——注入聚合物的质量浓度,t/m3

  • d 1——注入降黏剂干粉的单价,104 元/t;

  • d 2——注入聚合物干粉的单价,104 元/t;

  • ΔER ——蒸汽吞吐后降黏化学驱所增加的采收率,%;

  • f ——目标函数,104 元;

  • G ——原油价格,元/t;

  • i ——粒子序号;

  • j ——贴现率,%;

  • k ——迭代时间步;

  • M ——注化学剂设备的费用,104 元;

  • n ——注入井数,口;

  • N ——地质储量,104 t;

  • NPV ——净现值,104 元;

  • P 1——化学剂原材料的价格,104 元;

  • P 2——单井操作费用,104 元;

  • pik——粒子i经过的最优位置;

  • pgk——全局最优位置对应的目标函数值;

  • r ——约束因子;

  • S ——原油的商品率,%;

  • T ——投资年限,a;

  • vik+1——粒子ik + 1步迭代时的飞行速度;

  • V 1——注入降黏剂的体积,m3

  • V 2——注入聚合物的体积,m3

  • V in——原油销售收入的将来值,104 元;

  • V out ——支出费用的将来值,104 元;

  • yik——粒子ik步迭代时的位置;

  • yik+1 ——粒子ik + 1步迭代时的位置;

  • α——原油价格上涨率,%;

  • β——年操作费用上涨率,%;

  • ξkηk ——随机数,ξkηk ∈[0,1];

  • ω——惯性权重。

  • 参考文献

    • [1] 李耿,刘强,彭通曙,等.稠油油藏提高采收率技术对策探讨 [J].西部探矿工程,2012,24(4):93-95.LI Geng,LIU Qiang,PENG Tongshu,et al.Discussion on techni⁃ cal countermeasures of enhanced oil recovery in heavy oil reser⁃ voirs[J].West-China Exploration Engineering,2012,24(4):93-95.

    • [2] 刘广友.孤东油田九区稠油油藏化学蒸汽驱提高采收率技术 [J].油气地质与采收率,2012,19(3):78-80,83.LIU Guangyou.Study on chemical steam flood to enhance recov⁃ ery ratio of ninth block of Gudong oilfield[J].Petroleum Geology and Recovery Efficiency,2012,19(3):78-80,83.

    • [3] 王学忠.多轮次蒸汽吞吐井开发接替技术研究[J].当代石油石化,2019,27(6):30-34.WANG Xuezhong.Research on development replacement technol⁃ ogy of multi-cycle steam huff and puff wells[J].Petroleum & Pet⁃ rochemical Today,2019,27(6):30-34.

    • [4] 刘宁.浅薄层稠油油藏高轮次蒸汽吞吐后剩余油分布及潜力评价[J].石化技术,2019,26(4):115-116.LIU Ning.Residual oil distribution and potential evaluation of shallow and thin heavy oil reservoirs after high round steam huff and puff[J].Petrochemical Industry Technology,2019,26(4):115-116.

    • [5] 胡德鹏,费永涛,刘宁,等.井楼油田中区稠油油藏蒸汽吞吐后期开发潜力分析[J].石油地质与工程,2015,29(1):110-112.HU Depeng,FEI Yongtao,LIU Ning,et al.Analysis of late-stage development potential of steam huff and puff in heavy oil reser⁃ voirs in central area of Jinglou oilfield[J].Petroleum Geology and Engineering,2015,29(1):110-112.

    • [6] 陈兆芳.乐安油田南区蒸汽吞吐后期开采方式研究[J].江汉石油学院学报,2003,25(2):85-86.CHEN Zhaofang.Late production mode of steam stimulation in south region of Le’an oilfield[J].Journal of Jianghan Petroleum Institute,2003,25(2):85-86.

    • [7] 董甜甜.辽河油田稠油蒸汽吞吐开发后接替技术的研究[J].化工管理,2014,(32):113.DONG Tiantian.Study on the succession technology of heavy oil steam huff and puff development in Liaohe oilfield[J].Chemical Enterprise Management,2014,(32):113.

    • [8] 夏晞冉.陈家庄油田陈25北降粘复合驱方案优化[J].内江科技,2019,40(3):21-22.XIA Xiran.Optimization of composite flooding scheme for viscosi⁃ ty reducing in Chen25 north of Chenjiazhuang Oilfield[J].Neiji⁃ ang Technology,2019,40(3):21-22.

    • [9] 杨勇.胜利油田特低渗透油藏CO2驱技术研究与实践[J].油气地质与采收率,2020,27(1):11-19.YANG Yong.Research and application of CO2 flooding technology in extra-low permeability reservoirs of Shengli Oilfield[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(1):11-19.

    • [10] 夏晞冉.聚合物-降粘剂复合驱注入速度界限确定方法[J].油气地质与采收率,2018,25(6):89-95.XIA Xiran.A method of calculating injection rate limit for poly⁃ mer/viscosity reducer combination flooding[J].Petroleum Geology and Recovery Efficiency,2018,25(6):89-95.

    • [11] 陈广宇,田燕春,赵新,等.大庆油田二类油层复合驱注入方式优化[J].石油学报,2012,33(3):459-464.CHEN Guangyu,TIAN Yanchun,ZHAO Xin,et al.Optimization of the ASP flooding injection pattern for sub-layers in Daqing oil⁃ field[J].Acta Petrolei Sinica,2012,33(3):459-464.

    • [12] 饶良玉,韩冬,吴向红,等.中低渗油藏化学驱方案优化与矿场对比评述[J].西南石油大学学报:自然科学版,2012,34(5):107-113.RAO Liangyu,HAN Dong,WU Xianghong,et al.Research and field comparison comments on chemical flooding scenario design in mid-low permeability reservoir[J].Journal of Southwest Petro⁃ leum University:Science & Technology Edition,2012,34(5):107-113.

    • [13] 王刚,刘斌,王欣然,等.渤海X油田聚驱后不同化学驱注入段塞优选及剩余油分布研究[J].石油地质与工程,2018,32(1):91-93.WANG Gang,LIU Bin,WANG Xinran,et al.Research on injected slug optimization and remaining oil distribution of different chemi⁃ cal floodings after polymer flooding in Bohai X Oilfield[J].Petro⁃ leum Geology and Engineering,2018,32(1):91-93.

    • [14] 关丹,栾和鑫,阙庭丽,等.砾岩油藏聚合物驱的注入方式优化 [J].油田化学,2019,36(4):688-692.GUAN Dan,LUAN Hexin,QUE Tingli,et al.Optimization on in⁃ jection mode of polymer flooding in conglomerate reservoir[J].Oilfield Chemistry,2019,36(4):688-692.

    • [15] ZHANG Tianjin,ZHANG Zhisheng,LI Chunsheng,et al.A new method to determine reasonable well pattern density in low-per⁃ meability gas reservoirs[J].Journal of Petroleum Exploration and Production Technology,2019,9(3):2 165-2 174.

    • [16] 俞启泰.计算水驱砂岩油藏合理井网密度与极限井网密度的一种方法[J].石油勘探与开发,1986,13(4):49-54.YU Qitai.A method for calculating the reasonable and extreme well pattern density in a water flooding sandstone reservoir[J].Pe⁃ troleum Exploration and Development,1986,13(4):49-54.

    • [17] 李俊键,丁美爱,姜汉桥,等.化学驱合理井网密度的计算方法——以正方形井网为例[J].油气地质与采收率,2008,15(3):96-98.LI Junjian,DING Meiai,JIANG Hanqiao,et al.Computing meth⁃ od to determine reasonable well spacing density with chemical flooding-taking square well spacing as an example[J].Petroleum Geology and Recovery Efficiency,2008,15(3):96-98.

    • [18] 刘义坤,毕永斌,隋新光.聚合物驱开发指标预测方法研究[J].大庆石油地质与开发,2007,26(2):105-107.LIU Yikun,BI Yongbin,SUI Xinguang.Prediction method for de⁃ velopment index of polymer flooding [J].Petroleum Geology & Oil⁃ field Development in Daqing,2007,26(2):105-107.

    • [19] 王兴峰,葛家理,陈福明,等.三次采油指标预测及开发最优接替模型研究[J].石油学报,2001,22(5):43-47.WANG Xingfeng,GE Jiali,CHEN Fuming,et al.A mathematical model for optimal development scheduling of reservoirs in EOR [J].Acta Petrolei Sinica,2001,22(5):43-47.

    • [20] 朱健,刘伟利,李兴,等.聚合物驱后储层物性参数的变化特征 [J].油气地质与采收率,2007,14(4):65-67,71.ZHU Jian,LIU Weili,LI Xing,et al.Variations of physical proper⁃ ty parameters of reservoirs after polymer flooding[J].Petroleum Geology and Recovery Efficiency,2007,14(4):65-67,71.

    • [21] 王链,张亮,赖枫鹏,等.基于替代模型的油藏注采参数多目标优化设计[J].科学技术与工程,2019,19(26):178-185.WANG Lian,ZHANG Liang,LAI Fengpeng,et al.Multi-objective optimization design of reservoir injection-production parameters based on substitution model[J].Science Technology and Engi⁃ neering,2019,19(26):178-185.

    • [22] 李昌恒,陈德春,向刚,等.基于数据挖掘的蒸汽吞吐井注采参数优化设计[J].复杂油气藏,2011,4(2):80-83.LI Changheng,CHEN Dechun,XIANG Gang,et al.Optimizing de⁃ sign of injection-production parameters for steam stimulation wells on basis of data mining[J].Complex Hydrocarbon Reser⁃ voirs,2011,4(2):80-83.

    • [23] 范利军,杨建平,赵东亚,等.基于改进粒子群算法的 CO2驱井网优化设计[J].石油工程建设,2016,42(5):6-9.FAN Lijun,YANG Jianping,ZHAO Dongya,et al.Optimum de⁃ sign of CO2 flooding well based on improved particle swarm algo⁃ rithm[J].Petroleum Engineering Construction,2016,42(5):6-9.

    • [24] DARWISH Ashraf,EZZAT Dalia,HASSANIEN Aboul Ella.An optimized model based on convolutional neural networks and or⁃ thogonal learning particle swarm optimization algorithm for plant diseases diagnosis[J].Swarm and Evolutionary Computation,2019,52:100-616.

    • [25] DIEGO Galvan,HÁGATA Cremasco,ANA Carolina Gomes Man⁃ tovani,et al.Kinetic study of the transesterification reaction by ar⁃ tificial neural networks and parametric particle swarm optimization [J].Fuel,2020,267:117-221.

  • 参考文献

    • [1] 李耿,刘强,彭通曙,等.稠油油藏提高采收率技术对策探讨 [J].西部探矿工程,2012,24(4):93-95.LI Geng,LIU Qiang,PENG Tongshu,et al.Discussion on techni⁃ cal countermeasures of enhanced oil recovery in heavy oil reser⁃ voirs[J].West-China Exploration Engineering,2012,24(4):93-95.

    • [2] 刘广友.孤东油田九区稠油油藏化学蒸汽驱提高采收率技术 [J].油气地质与采收率,2012,19(3):78-80,83.LIU Guangyou.Study on chemical steam flood to enhance recov⁃ ery ratio of ninth block of Gudong oilfield[J].Petroleum Geology and Recovery Efficiency,2012,19(3):78-80,83.

    • [3] 王学忠.多轮次蒸汽吞吐井开发接替技术研究[J].当代石油石化,2019,27(6):30-34.WANG Xuezhong.Research on development replacement technol⁃ ogy of multi-cycle steam huff and puff wells[J].Petroleum & Pet⁃ rochemical Today,2019,27(6):30-34.

    • [4] 刘宁.浅薄层稠油油藏高轮次蒸汽吞吐后剩余油分布及潜力评价[J].石化技术,2019,26(4):115-116.LIU Ning.Residual oil distribution and potential evaluation of shallow and thin heavy oil reservoirs after high round steam huff and puff[J].Petrochemical Industry Technology,2019,26(4):115-116.

    • [5] 胡德鹏,费永涛,刘宁,等.井楼油田中区稠油油藏蒸汽吞吐后期开发潜力分析[J].石油地质与工程,2015,29(1):110-112.HU Depeng,FEI Yongtao,LIU Ning,et al.Analysis of late-stage development potential of steam huff and puff in heavy oil reser⁃ voirs in central area of Jinglou oilfield[J].Petroleum Geology and Engineering,2015,29(1):110-112.

    • [6] 陈兆芳.乐安油田南区蒸汽吞吐后期开采方式研究[J].江汉石油学院学报,2003,25(2):85-86.CHEN Zhaofang.Late production mode of steam stimulation in south region of Le’an oilfield[J].Journal of Jianghan Petroleum Institute,2003,25(2):85-86.

    • [7] 董甜甜.辽河油田稠油蒸汽吞吐开发后接替技术的研究[J].化工管理,2014,(32):113.DONG Tiantian.Study on the succession technology of heavy oil steam huff and puff development in Liaohe oilfield[J].Chemical Enterprise Management,2014,(32):113.

    • [8] 夏晞冉.陈家庄油田陈25北降粘复合驱方案优化[J].内江科技,2019,40(3):21-22.XIA Xiran.Optimization of composite flooding scheme for viscosi⁃ ty reducing in Chen25 north of Chenjiazhuang Oilfield[J].Neiji⁃ ang Technology,2019,40(3):21-22.

    • [9] 杨勇.胜利油田特低渗透油藏CO2驱技术研究与实践[J].油气地质与采收率,2020,27(1):11-19.YANG Yong.Research and application of CO2 flooding technology in extra-low permeability reservoirs of Shengli Oilfield[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(1):11-19.

    • [10] 夏晞冉.聚合物-降粘剂复合驱注入速度界限确定方法[J].油气地质与采收率,2018,25(6):89-95.XIA Xiran.A method of calculating injection rate limit for poly⁃ mer/viscosity reducer combination flooding[J].Petroleum Geology and Recovery Efficiency,2018,25(6):89-95.

    • [11] 陈广宇,田燕春,赵新,等.大庆油田二类油层复合驱注入方式优化[J].石油学报,2012,33(3):459-464.CHEN Guangyu,TIAN Yanchun,ZHAO Xin,et al.Optimization of the ASP flooding injection pattern for sub-layers in Daqing oil⁃ field[J].Acta Petrolei Sinica,2012,33(3):459-464.

    • [12] 饶良玉,韩冬,吴向红,等.中低渗油藏化学驱方案优化与矿场对比评述[J].西南石油大学学报:自然科学版,2012,34(5):107-113.RAO Liangyu,HAN Dong,WU Xianghong,et al.Research and field comparison comments on chemical flooding scenario design in mid-low permeability reservoir[J].Journal of Southwest Petro⁃ leum University:Science & Technology Edition,2012,34(5):107-113.

    • [13] 王刚,刘斌,王欣然,等.渤海X油田聚驱后不同化学驱注入段塞优选及剩余油分布研究[J].石油地质与工程,2018,32(1):91-93.WANG Gang,LIU Bin,WANG Xinran,et al.Research on injected slug optimization and remaining oil distribution of different chemi⁃ cal floodings after polymer flooding in Bohai X Oilfield[J].Petro⁃ leum Geology and Engineering,2018,32(1):91-93.

    • [14] 关丹,栾和鑫,阙庭丽,等.砾岩油藏聚合物驱的注入方式优化 [J].油田化学,2019,36(4):688-692.GUAN Dan,LUAN Hexin,QUE Tingli,et al.Optimization on in⁃ jection mode of polymer flooding in conglomerate reservoir[J].Oilfield Chemistry,2019,36(4):688-692.

    • [15] ZHANG Tianjin,ZHANG Zhisheng,LI Chunsheng,et al.A new method to determine reasonable well pattern density in low-per⁃ meability gas reservoirs[J].Journal of Petroleum Exploration and Production Technology,2019,9(3):2 165-2 174.

    • [16] 俞启泰.计算水驱砂岩油藏合理井网密度与极限井网密度的一种方法[J].石油勘探与开发,1986,13(4):49-54.YU Qitai.A method for calculating the reasonable and extreme well pattern density in a water flooding sandstone reservoir[J].Pe⁃ troleum Exploration and Development,1986,13(4):49-54.

    • [17] 李俊键,丁美爱,姜汉桥,等.化学驱合理井网密度的计算方法——以正方形井网为例[J].油气地质与采收率,2008,15(3):96-98.LI Junjian,DING Meiai,JIANG Hanqiao,et al.Computing meth⁃ od to determine reasonable well spacing density with chemical flooding-taking square well spacing as an example[J].Petroleum Geology and Recovery Efficiency,2008,15(3):96-98.

    • [18] 刘义坤,毕永斌,隋新光.聚合物驱开发指标预测方法研究[J].大庆石油地质与开发,2007,26(2):105-107.LIU Yikun,BI Yongbin,SUI Xinguang.Prediction method for de⁃ velopment index of polymer flooding [J].Petroleum Geology & Oil⁃ field Development in Daqing,2007,26(2):105-107.

    • [19] 王兴峰,葛家理,陈福明,等.三次采油指标预测及开发最优接替模型研究[J].石油学报,2001,22(5):43-47.WANG Xingfeng,GE Jiali,CHEN Fuming,et al.A mathematical model for optimal development scheduling of reservoirs in EOR [J].Acta Petrolei Sinica,2001,22(5):43-47.

    • [20] 朱健,刘伟利,李兴,等.聚合物驱后储层物性参数的变化特征 [J].油气地质与采收率,2007,14(4):65-67,71.ZHU Jian,LIU Weili,LI Xing,et al.Variations of physical proper⁃ ty parameters of reservoirs after polymer flooding[J].Petroleum Geology and Recovery Efficiency,2007,14(4):65-67,71.

    • [21] 王链,张亮,赖枫鹏,等.基于替代模型的油藏注采参数多目标优化设计[J].科学技术与工程,2019,19(26):178-185.WANG Lian,ZHANG Liang,LAI Fengpeng,et al.Multi-objective optimization design of reservoir injection-production parameters based on substitution model[J].Science Technology and Engi⁃ neering,2019,19(26):178-185.

    • [22] 李昌恒,陈德春,向刚,等.基于数据挖掘的蒸汽吞吐井注采参数优化设计[J].复杂油气藏,2011,4(2):80-83.LI Changheng,CHEN Dechun,XIANG Gang,et al.Optimizing de⁃ sign of injection-production parameters for steam stimulation wells on basis of data mining[J].Complex Hydrocarbon Reser⁃ voirs,2011,4(2):80-83.

    • [23] 范利军,杨建平,赵东亚,等.基于改进粒子群算法的 CO2驱井网优化设计[J].石油工程建设,2016,42(5):6-9.FAN Lijun,YANG Jianping,ZHAO Dongya,et al.Optimum de⁃ sign of CO2 flooding well based on improved particle swarm algo⁃ rithm[J].Petroleum Engineering Construction,2016,42(5):6-9.

    • [24] DARWISH Ashraf,EZZAT Dalia,HASSANIEN Aboul Ella.An optimized model based on convolutional neural networks and or⁃ thogonal learning particle swarm optimization algorithm for plant diseases diagnosis[J].Swarm and Evolutionary Computation,2019,52:100-616.

    • [25] DIEGO Galvan,HÁGATA Cremasco,ANA Carolina Gomes Man⁃ tovani,et al.Kinetic study of the transesterification reaction by ar⁃ tificial neural networks and parametric particle swarm optimization [J].Fuel,2020,267:117-221.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告