en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

杨元亮(1967—),男,山西浑源人,教授级高级工程师,博士,从事稠油及低渗透油气藏渗流机理及开发研究。E-mail:xinchun-yyl@163.com。

中图分类号:TE312

文献标识码:A

文章编号:1009-9603(2020)06-0106-08

DOI:10.13673/j.cnki.cn37-1359/te.2020.06.013

参考文献 1
余涛,卢双舫,李俊乾,等.东营凹陷页岩油游离资源有利区预测[J].断块油气田,2018,25(1):16-21.YU Tao,LU Shuangfang,LI Junqian,et al.Prediction for favorable area of shale oil free resources in Dongying Sag[J].Fault-Block Oil and Gas Field,2018,25(1):16-21.
参考文献 2
白国平,邱海华,邓舟舟,等.美国页岩油资源分布特征与主控因素研究[J].石油实验地质,2020,42(4):524-532.BAI Guoping,QIU Haihua,DENG Zhouzhou,et al.Distribution and main controls for shale oil resources in USA[J].Petroleum Geology & Experiment,2020,42(4):524-532.
参考文献 3
杜学斌,陆永潮,刘惠民,等.细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J].石油实验地质,2018,40(2):244-252.DU Xuebin,LU Yongchao,LIU Huimin,et al.Division of highfrequency sequences of different orders in fine-grained deposits and its geologic significance:A case study of mud shale from the lower section of the third member to the upper section of the fourth member of Shahejie Formation in Dongying Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2018,40(2):244-252.
参考文献 4
张春池,彭文泉,胡小辉,等.沾化凹陷沙河街组页岩气成藏条件研究[J].特种油气藏,2019,26(3):12-17.ZHANG Chunchi,PENG Wenquan,HU Xiaohui,et al.Shale gas accumulation conditions of Shahejie Formation in Zhanhua De⁃ pression[J].Special Oil & Gas Reservoirs,2019,26(3):12-17.
参考文献 5
苏海波,于金彪,张同伍,等.低渗透储层水驱油渗流阻力特征 [J].油气地质与采收率,2018,25(1):117-121.SU Haibo,YU Jinbiao,ZHANG Tongwu,et al.Features of seepage resistance during water flooding in low permeability reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(1):117-121.
参考文献 6
苏海波.反映动态启动压力梯度的低渗透油藏渗流模型[J].西南石油大学学报:自然科学版,2015,37(6):105-111.SU Haibo.A flow model reflecting dynamic kick-off pressure gra⁃ dient for low permeability reservoirs[J].Journal of Southwest Pe⁃ troleum University:Science & Technology Edition,2015,37(6):105-111.
参考文献 7
曲冠政,周德胜,彭娇,等.基于 Lattice Boltzmann 方法的页岩张性裂缝渗流特征研究[J].特种油气藏,2018,25(1):134-139.QU Guanzheng,ZHOU Desheng,PENG Jiao,et al.Seepage char⁃ acteristics of tension fractures in shale based on Lattice Boltzmann method[J].Special Oil & Gas Reservoirs,2018,25(1):134-139.
参考文献 8
朱维耀,马东旭.层理缝对页岩渗透率的影响及表征[J].特种油气藏,2018,25(2):130-133.ZHU Weiyao,MA Dongxu.Effect of bedding seam on shale perme⁃ ability and its characterization[J].Special Oil & Gas Reservoirs,2018,25(2):130-133.
参考文献 9
肖佃师,卢双舫,房大志,等.海相高成熟页岩气储层孔隙连通关系——以彭水地区龙马溪组为例[J].油气藏评价与开发,2019,9(5):45-53.XIAO Dianshi,LU Shuangfang,FANG Dazhi,et al.Pore connec⁃ tivity of marine high-maturity shale gas reservoirs:A case study in Longmaxi formation,Pengshui area[J].Reservoir Evaluation and Development,2019,9(5):45-53.
参考文献 10
何岩峰,赵虹宇,窦祥骥,等.考虑应力敏感的页岩储层纳米孔隙渗透率计算模型[J].大庆石油地质与开发,2018,37(6):151-157.HE Yanfeng,ZHAO Hongyu,DOU Xiangji,et al.Calculating mod⁃ el of the nano-pore permeability in the shale reservoir consider⁃ ing the stress sensitivity[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2018,37(6):151-157.
参考文献 11
宋付权,于玲.液体在润湿性微管中流动的边界负滑移特征 [J].水动力学研究与进展:A辑,2013,28(2):128-134.SONG Fuquan,YU Ling.The boundary negative slippage of liquid flowing in hydrophilic micro-tubes[J].Chinese Journal of Hydro⁃ dynamics,2013,28(2):128-134.
参考文献 12
JAVADPOUR F.Nanopores and apparent permeability of gas flow in mudrocks(shales and silt stone)[J].Journal of Canadian Petro⁃ leum Technology,2009,48(8):16-21.
参考文献 13
JAVADPOUR F,MORRAVEJ M,AMREIN M.Atomic force mi⁃ croscopy:A new tool for gas shale characterization[J].SPE Jour⁃ nal,2012,51(4):236-243.
参考文献 14
LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1 071-1 098.
参考文献 15
MILLIKEN K L,ESCH W L,REED R M,et al.Grain assemblages and strong diagenetic overprinting in siliceous mudrocks,Barnett shale(Mississippian),Fort Worth Basin,Texas[J].AAPG Bulle⁃ tin,2012,96(8):1 553-1 578.
参考文献 16
邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187.ZOU Caineng,ZHU Rukai,WU Songtao,et al.Types,characteris⁃ tics,genesis and prospects of conventional and unconventional hy⁃ drocarbon accumulations:taking tight oil and tight gas in China as an instance[J].Acta Petrolei Sinica,2012,33(2):173-187.
参考文献 17
MATTIA D,CALABRO F.Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions[J].Mi⁃ crofluidics & Nanofluidics,2012,13(1):125-130.
参考文献 18
AFSHARPOOR A,JAVADPOUR F.Liquid slip flow in a network of shale noncircular nanopores[J].Fuel,2016,180:580-590.
参考文献 19
WHITBY M,QUIRKE N.Fluid flow in carbon nanotubes and nanopipes[J].Nature Nanotechnology,2007,2(2):87-94.
参考文献 20
MAJUMDER M,CHOPRA N,ANDREWS R,et al.Enhanced flow in carbon nanotubes[J].Nature,2005,438(7070):930.
参考文献 21
HOLT J K,PARK H G,WANG Y M,et al.Fast mass transport through sub-2-nanometer carbon nanotubes[J].Science,2006,312(5776):1 034-1 037.
参考文献 22
WHITBY M,CAGNON L,THANOU M,et al.Enhanced fluid flow through nanoscale carbon pipes[J].Nano Letters,2008,8(9):2 632-2 637.
参考文献 23
WANG S,JAVADPOUR F,FENG Q.Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J].Fuel,2016,181:741-758.
参考文献 24
苏玉亮,鲁明晶,李萌,等.页岩油藏多重孔隙介质耦合流动数值模拟[J].石油与天然气地质,2019,40(3):645-652,660.SU Yuliang,LU Mingjing,LI Meng,et al.Numerical simulation of shale oil coupled flow in multi-pore media[J].Oil & Gas Geolo⁃gy,2019,40(3):645-652,660.
参考文献 25
刘毅,陆正元,戚明辉,等.渤海湾盆地沾化凹陷沙河街组页岩油微观储集特征[J].石油实验地质,2017,39(2):180-185,194.LIU Yi,LU Zhengyuan,QI Minghui,et al.Microscopic character⁃ istics of shale oil reservoirs in Shahejie Formation in Zhanhua Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2017,39(2):180-185,194.
参考文献 26
MANDELBROT Benoit B.The fractal geometry of nature[J].Amer⁃ ican Journal of Physics,1983,51(3):286.
参考文献 27
KATZ A J,THOMPSON A H.Fractal sandstone pores:implica⁃ tions for conductivity and pore formation[J].Physical Review Let⁃ ters,1985,54(12):1 325-1 328.
参考文献 28
KROHN C E.Fractal measurements of sandstones,shales,and car⁃ bonates[J].Journal of Geophysical Research,1988,93(B4):3 297-3 305.
参考文献 29
王濡岳,尹帅,龚大建,等.下寒武统页岩孔隙结构与分形特征 [J].断块油气田,2018,25(5):589-592.WANG Ruyue,YIN Shuai,GONG Dajian,et al.Pore structure and fractal characteristics of Lower Cambrian shales[J].FaultBlock Oil and Gas Field,2018,25(5):589-592.
参考文献 30
李玉丹,董平川,张荷,等.基于分形理论的页岩基质表观渗透率研究[J].油气地质与采收率,2017,24(1):92-99,105.LI Yudan,DONG Pingchuan,ZHANG He,et al.Analysis on ap⁃ parent permeability of shale matrix based on fractal theory[J].Pe⁃ troleum Geology and Recovery Efficiency,2017,24(1):92-99,105.
参考文献 31
苏海波,王晓宏,张世明,等.低渗透油藏油水相对渗透率模型的分形表征方法[J].东北石油大学学报,2019,43(5):88-94.SU Haibo,WANG Xiaohong,ZHANG Shiming,et al.Fractal char⁃ acterization method of oil-water relative permeability model in low permeability reservoirs[J].Journal of Northeast Petroleum University,2019,43(5):88-94.
参考文献 32
SU Haibo,ZHANG Shiming,SUN Yeheng,et al.A comprehensive model for oil-water relative permeabilities in low-permeability reservoirs by fractal theory[J].Fractals,2020,28(3):2050055.
参考文献 33
苏海波,张世明,孙业恒,等.基于分形理论的低渗透油藏油水相对渗透率模型[J].油气地质与采收率,2020,27(4):67-78.SU Haibo,ZHANG Shiming,SUN Yeheng,et al.Oil-water rela⁃ tive permeability model of low permeability reservoir based on fractal theory[J].Petroleum Geology and Recovery Efficiency,2020,27(4):67-78.
参考文献 34
苏海波.反映动态启动压力梯度的低渗透油藏渗流模型[J].西南石油大学学报:自然科学版,2015,37(6):105-111.SU Haibo.A flow model reflecting dynamic kick-off pressure gra⁃ dient for low permeability reservoirs[J].Journal of Southwest Pe⁃ troleum University:Science & Technology Edition,2015,37(6):105-111.
参考文献 35
秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2006.QIN Jishun,LI Aifen.Reservoir physics[M].Dongying:China Uni⁃ versity of Petroleum Press,2006.
参考文献 36
YU B,CHENG P.A fractal permeability model for bi-dispersed porous media[J].International Journal of Heat and Mass Transfer,2002,45(14):2 983-2 993.
参考文献 37
COMITI J,RENAUD M.A new model for determining mean struc⁃ ture parameters of fixed beds from pressure drop measurements:application to beds packed with parallelepipedal particles[J].Chemical Engineering Science,1989,44(7):1 539-1 545.
参考文献 38
FALK K,SEDLMEIER F,JOLY L,et al.Molecular origin of fast water transport in carbon nanotube membranes:Superlubricity versus curvature-dependent friction[J].Nano Letters,2010,10(10):4 067-4 073.
目录contents

    摘要

    表观液体渗透率是研究页岩油藏有效渗流能力的重要参数,明确负滑移长度对表观液体渗透率的影响对认识页岩油藏渗流能力具有重要意义。在多孔介质分形理论的基础上,建立页岩油藏表观液体渗透率模型。新建立的页岩油藏表观液体渗透率模型可综合反映储层孔隙结构、孔隙度、迂曲度和孔隙半径及负滑移长度的影响。理论分析结果表明:负滑移长度越大,流体在微纳米管中的平均渗流速度越小;孔隙半径越大,负滑移长度对渗流速度的影响越小。表观液体渗透率与达西渗透率之比随负滑移长度的增加而减小;表观液体渗透率随孔隙分形维数的增加而增大,随迂曲度的增大而减小。表观液体渗透率模型的预测结果表明,滑移效应引起的渗透率损失为 8.6%。

    Abstract

    The apparent liquid permeability is of vital importance to studying the effective percolation capacity of shale res- ervoirs,and it is essential to explore the influence of negative slip length on apparent liquid permeability. Based on the frac- tal theory of porous media,the model of apparent liquid permeability was established,which comprehensively reflects the influence of pore structure,porosity,tortuosity,pore radius,and negative liquid slip length on apparent liquid permeability. According to the theoretical analysis,greater negative slip length leads to lower average percolation velocity of the liquid in micro/nanotubes;a larger pore radius results in less influence of negative slip length on percolation velocity. The ratio of ap- parent liquid permeability to Darcy permeability falls with the rise in negative slip length. The apparent liquid permeability goes up with the increase in fractal dimension of pores and down with the growth of tortuosity. The prediction results de- pending on the apparent liquid permeability model signals an 8.6% reduction in permeability caused by the slip effect.

  • 目前,页岩油藏已成为油气开发的一个热点领域,页岩油藏的勘探、开发及油气渗流理论迅速发展[1-4]。渗透率反映流体在多孔介质中的渗流规律和基本特征,被广泛应用于油藏开发动态分析、油藏数值模拟技术和产量评估,是油田开发中一个非常重要的参数和研究热点。页岩油藏具有源储一体、微纳米级孔隙发育和储集物性差的特征,属于超低渗透致密储层。针对低渗透油藏和致密油藏的渗流机理及实验研究相对较多,建立了基于边界层理论的非线性渗流理论,从理论和实验方面分析了边界层效应对渗流规律的影响[5-6]。但是有关页岩油藏的有效渗流能力的影响因素及表征方法的研究仍处于初级阶段[7-10]

  • 负滑移长度定义为在纳米孔壁处不流动流体的厚度[11]。研究结果表明[12-15]:页岩油藏孔隙细小,半径为 1~200 nm 的微纳米孔隙发育,多数孔隙半径小于 5 nm[16],液-固界面间的分子作用力较强。流体在页岩孔隙壁面存在速度滑移现象,负滑移长度与孔隙润湿性和孔隙类型相关[17-19]。由于纳米尺度和滑移流动的复杂性,有必要建立考虑页岩油藏滑移效应的渗透率表征方法。当从宏观尺度到纳米尺度时,液体流动动力学发生变化:相对于传统的连续介质流体流动方程,在纳米尺度范围内负滑移长度随系统特征尺度的减小和摩擦力的减小而增大,使得连续无滑移流动假设不再成立,达西渗流规律不适用于页岩油藏中液体流量的测定[20-22]。 WANG 等应用分子动力学方法研究流体在无机和有机纳米孔的运移机制,建立了考虑负滑移长度和表观黏度的液烃运移机制[23];苏玉亮等结合页岩孔隙润湿特性,考虑流体吸附、速度滑移及流体物性变化作用机制,引入页岩孔隙迂曲度、孔隙度和有机孔含量等结构参数,在单毛细管模型的基础上建立页岩油藏微纳米多孔介质表观液体渗透率模型,研究了不同运移机制对页岩油藏表观液体渗透率的影响[24]。然而这些模型不能描述孔隙结构特征[25] 对表观液体渗透率的影响。研究页岩油藏的有效渗流能力,建立页岩油藏表观液体渗透率的表征方法是评价页岩油藏有效渗流能力的一种重要方法,对形成页岩油藏数值模拟技术、建立产量预测模型和研究页岩油藏开发产量变化特征具有重要的现实意义。

  • 1982年美国数学家MANDELBROT创建了分形几何理论[26],该理论被广泛用于描述具有自相似性的复杂几何空间,天然多孔介质的微孔隙结构已被证明具有分形特征[27-28]。许多学者应用分形理论研究页岩油藏的孔隙结构特征[29]、页岩气藏的表观液体渗透率[30] 和建立油水相对渗透率理论模型[31-33]。页岩油藏岩相类型复杂,孔隙类型多样,孔隙尺寸相差较大,润湿性各不相同,滑移特征不同,有效预测页岩油藏的渗透率仍然具有挑战性。为此,笔者基于多孔介质分形理论,对Hagen-Poiseuille流动方程[34] 进行滑移修正,定量描述微纳米管内考虑滑移现象的流动特征,并在此基础上建立考虑负滑移特征的页岩油藏表观液体渗透率模型,定量分析迂曲度、孔隙介质的分形维数和负滑移长度等因素对表观液体渗透率的影响。

  • 1 考虑负滑移长度的表观液体渗透率模型

  • 1.1 考虑负滑移长度的微纳米管流量模型

  • 流体在微纳米管中的流动表现为牛顿流体的流动特征。牛顿流体的应力本构方程为[34]

  • τ=μγ˙
    (1)
  • 对半径为 R 的微纳米管内流动半径 r处流体的应变,应用(1)式可描述为:

  • γ˙=dvdr=-12×1μrΔpLt
    (2)
  • 假设流体的负滑移长度为 δ,相当于有效渗流半径减小δ,对(2)式从rR-δ进行积分,得:

  • vr=-12×1μ×ΔpLtrR-δ rdr
    (3)
  • 则得到流体沿微纳米管半径方向的速度分布为:

  • vr=-14×1μ(R-δ)2-r2ΔpLt
    (4)
  • 对(4)式沿微纳米管半径方向进行积分,得到流体通过单个微纳米管的流量为:

  • q=2π×0R vrrdr=πR48μ×ΔpLt1-4×δR+2×δR2
    (5)
  • 根据(5)式,得到液体在微纳米管中流动的平均速度为:

  • v=qA=R28μ1-4×δR+2×δR2ΔpLt
    (6)
  • (5)式为考虑负滑移长度的微纳米管流量模型,(6)式为考虑负滑移长度的微纳米管流速模型。当负滑移长度为0时,(5)式即为描述流体在微纳米管中流动的 Hagen-Poiseuille 方程。因此,(5)式被定义为考虑负滑移长度的修正 Hagen-Poiseuille 方程,可用来量化研究微纳米管中负滑移长度对渗流速度的影响。

  • 1.2 表观液体渗透率模型

  • 令多孔介质的迂曲度为弯曲微纳米管的真实长度与视长度之比,即:

  • τp=LtL0
    (7)
  • 将(7)式代入(5)式,得到考虑迂曲度的单个微纳米管流量模型为:

  • q=18×πR4μτp×ΔpL01-4×δR+2×δR2
    (8)
  • 根据多孔介质的分形理论,将分形多孔介质的总流量视为通过半径为(r minr max)微纳米管的流量之和,即:

  • Qp=-rminrmax qdN
    (9)
  • 其中,dN 为平均孔隙半径在 rr + dr 范围内的总孔隙数[35],即:

  • dN=-DfrmaxDfr-Df+1dr
    (10)
  • 将(8)式和(10)式代入(9)式,得通过渗流横截面积A的总流量为:

  • Qp=18×ΔpL0×πDfrmaxDfμτp×rmax4-Df-rmin4-Df4-Df-4×δrmax3-Df-rmin3-Df3-Df+2×δ2rmax2-Df-rmin2-Df2-Df
    (11)
  • 因此,根据多孔介质的分形理论,考虑负滑移长度的流量方程为:

  • Qp=18×ΔpL0×πDfμτp×rmax44-Df-4δrmax33-Df+2δ2rmax22-Df
    (12)
  • 根据达西渗流方程,通过渗流横截面积为A,长度为L 0的真实岩心的流量为:

  • Qp=AKappμ×ΔpL0
    (13)
  • 假设该真实岩心的迂曲度与微纳米管模型的迂曲度相等,当真实岩心和分形多孔介质的渗流阻力相等时,则(12)式和(13)式描述的流量相等,即:

  • AKapp μ×ΔpL0=18×ΔpL0×πDfμτprmax44-Df-4δrmax33-Df+2δ2rmax22-Df
    (14)
  • 由(14)式得到表观液体渗透率模型为:

  • Kapp=18×πDfAτp×rmax44-Df-4δrmax33-Df+2δ2rmax22-Df
    (15)
  • 根据多孔介质的分形理论,岩心的渗流横截面积可表示为[36]

  • A=1-ϕϕ×πDf2-Dfrmax2
    (16)
  • 将(16)式代入(15)式中,得到考虑负滑移长度的页岩油藏的表观液体渗透率为:

  • Kapp=18×rmax2τp×ϕ1-ϕ×2-Df4-Df×1-4×4-Df3-Df×δrmax+2×4-Df2-Dfδrmax2
    (17)
  • 当负滑移长度与最大孔隙半径之比可以忽略时,即δrmax0,则(17)式表示多孔介质的达西渗透率,即:

  • K0=18×2-Df4-Df×ϕ1-ϕ×rmax2τp
    (18)
  • 其中,多孔介质迂曲度的计算式为[37]

  • τp=1+0.41×ln1ϕ
    (19)
  • 根据(17)和(18)式,得表观液体渗透率与达西渗透率之比为:

  • Kapp K0=1-4×4-Df3-Df×δrmax+2×4-Df2-Dfδrmax2
    (20)
  • (17)式即为基于多孔介质分形理论建立的页岩油藏表观液体渗透率模型。从该式中可以看出,页岩油藏表观液体渗透率受页岩油藏的孔隙分形维数、孔隙度、迂曲度和最大孔隙半径的影响,更重要的是(17)式体现了负滑移长度对页岩油藏表观液体渗透率的影响。

  • 2 参数敏感性分析

  • 为研究各种参数对页岩中液体流动的影响进行敏感性分析,各参数值见表1。

  • 表1 岩心及流体的基本参数

  • Table1 Basic parameters of core and liquid

  • 2.1 微纳米管半径对平均流体渗流速度的影响

  • 在微纳米管半径为 20~400 nm,负滑移长度为10 nm的条件下,应用(6)式计算单位长度微纳米管内平均流体流动速度。结果(图1)表明,在微纳米管两端驱动压差和流体性质相同的条件下,当微纳米管半径与负滑移长度接近时,微纳米管内流体的平均渗流速度几乎为 0;在相同负滑移长度的条件下,不同半径微纳米管内平均流体渗流速度差异较大,平均流体渗流速度随着微纳米管半径的增加而增加。

  • 图1 不同微纳米管半径下平均流体渗流速度

  • Fig.1 Average percolation velocity at different radii of micro/nanotubes

  • 2.2 负滑移长度对平均流体渗流速度的影响

  • 页岩油藏孔隙半径小,负滑移长度对流体渗流速度和表观液体渗透率的影响不可忽略,由于负滑移长度的存在,流体的有效渗流半径减小。应用 (6)式计算不同负滑移长度(10,20和30 nm)对平均流体渗流速度的影响,由结果(图2)可知,负滑移长度越大,微纳米管内流体的平均渗流速度越小。

  • 图2 负滑移长度对平均流体渗流速度的影响

  • Fig.2 Influence of negative slip length on average percolation velocity

  • 2.3 驱替压差对平均流体渗流速度的影响

  • 由驱替压差对平均流体渗流速度的影响(图3) 可见,在负滑移长度为10 nm的条件下,平均流体渗流速度随驱替压差的增大而增大;当微纳米管半径较小时,负滑移长度相对于微纳米管半径不可忽略,驱替压差对平均流体渗流速度影响较小。

  • 图3 驱替压差对平均流体渗流速度的影响

  • Fig.3 Influence of displacement pressure difference on average percolation velocity

  • 2.4 负滑移长度对流体渗流速度分布的影响

  • 所选用的微纳米管半径分别为 40,100 和 400 nm,负滑移长度分别为 10,20,30 nm。微纳米管内流体渗流速度的分布(图4)表明:在同一个微纳米管内,沿微纳米管半径方向流体的渗流速度呈现对称分布,在靠近微纳米管壁的位置处流体渗流速度为0,在微纳米管中心流体渗流速度最大;且负滑移长度越大,流体的有效渗流半径越小,流体渗流速度分布越窄;负滑移长度越大,微纳米管中心的流体渗流速度越小。对比不同半径微纳米管内平均流体渗流速度,微纳米管半径越大负滑移长度对平均流体渗流速度分布的影响越小,且微纳米管中心位置处的平均流体渗流速度随微纳米管半径的增大而增大。

  • 2.5 多孔介质最大孔隙半径对表观液体渗透率的影响

  • 在不同的多孔介质最大孔隙半径下,负滑移长度对表观液体渗透率与达西渗透率之比的影响(图5)表明:在某一最大孔隙半径下,表观液体渗透率与达西渗透率之比随负滑移长度的增加而减小;在相同负滑移长度条件下,最大孔隙半径越大,负滑移长度对表观液体渗透率与达西渗透率之比的影响越小,即随着平均孔隙半径的增大,表观液体渗透率和达西渗透率之间的差异逐渐缩小。根据 (20)式可知,当负滑移长度与多孔介质最大孔隙半径之比可以忽略不计时,负滑移长度对表观液体渗透率与达西渗透率之比的影响也可以忽略。反之,当负滑移长度与多孔介质的最大孔隙半径之比不可以忽略时,负滑移长度在一定程度上将影响表观液体渗透率与达西渗透率之比。

  • 图4 微纳米管内流体渗流速度的分布

  • Fig.4 Distribution of average percolation velocity in micro/nanotubes

  • 图5 不同多孔介质最大孔隙半径下负滑移长度对表观液体渗透率与达西渗透率之比的影响

  • Fig.5 Influence of negative slip length on ratio of apparent liquid permeability to Darcy permeability at different maximum pore radii of porous media

  • 当迂曲度为 1.5,孔隙度为 0.05,分形维数为 1.5 时,对比研究了最大孔隙半径分别为 200,300 和 400 nm 时负滑移长度对表观液体渗透率的影响。由结果(图6)可见,在不同的最大孔隙半径条件下负滑移长度对表观液体渗透率的影响体现出相同的趋势,随着负滑移长度的增加,表观液体渗透率减小。对比不同孔隙半径的负滑移长度对表观液体渗透率的影响可知,相同负滑移长度时,平均孔隙半径越大,负滑移长度对表观液体渗透率的影响越小。

  • 2.6 迂曲度对表观液体渗透率的影响

  • 迂曲度是影响多孔介质渗透率的重要参数,表征多孔介质中不同尺寸孔隙的弯曲程度。当最大孔隙半径为300 nm,负滑移长度为10 nm,孔隙度为0.05,分形维数为 1.5 时,由迂曲度对表观液体渗透率的影响(图7)可见,随着迂曲度的增加表观液体渗透率降低。孔隙空间流动的弯曲程度增加,孔隙结构越复杂,导致液体流动阻力增加,表观液体渗透率降低。

  • 图6 不同多孔介质最大孔隙半径下负滑移长度对表观液体渗透率的影响

  • Fig.6 Influence of negative slip length on apparent liquid permeability at different maximum pore radii of porous media

  • 图7 迂曲度对表观液体渗透率的影响

  • Fig.7 Influence of tortuosity on apparent liquid permeability

  • 2.7 孔隙分形维数对表观液体渗透率的影响

  • 孔隙分形维数是反映多孔介质中不同尺寸孔隙的分布和非均质性对渗透率影响的重要参数,孔隙分形维数越大,孔隙尺寸分布越均匀,非均质性越弱。当最大孔隙半径为300 nm,负滑移长度为10 nm,迂曲度为1.5时,由孔隙分形维数对页岩油藏表观液体渗透率的影响(图8)可知,表观液体渗透率随孔隙分形维数的增加而增大。对于给定的多孔介质,当孔隙介质的最大孔隙半径与最小孔隙半径给定时,根据多孔介质的分形理论[17],随着孔隙分形维数的增大,单位面积内的孔隙数量增多,液体渗流通道增多,渗流阻力减小,表观液体渗透率增大。

  • 图8 孔隙分形维数对表观液体渗透率的影响

  • Fig.8 Influence of fractal dimensions on apparent liquid permeability

  • 3 模型应用

  • 为预测页岩油藏的表观液体渗透率,选用胜利油区某页岩油藏的岩心开展高压压汞实验,并用所建表观液体渗透率模型(17)式与实验测试结果进行对比。岩心样品取自该区块的沙三段,深度为 3 296~3 314 m,纹层状泥质灰岩相。实验测试孔隙度为 3.22%,空气渗透率为 0.325 mD。在实验设备及条件下,测得最小孔隙半径为 0.003 μm,最大孔隙半径为 0.75 μm。由(19)式计算得到岩心迂曲度为2.4,应用(18)式计算该页岩储层的达西渗透率为 0.231 mD,仅为气测渗透率的 71.2%。该区块地层原油黏度为1.5 mPa·s,根据文献[38]提供的方法计算得地层条件下原油的负滑移长度为 10 nm,应用(17)式计算得考虑负滑移长度的页岩储层表观液体渗透率为 0.211 mD,由滑移效应引起的渗透率损失为8.6%。

  • 4 结论

  • 针对页岩油藏微纳米孔隙中的滑移现象,建立考虑负滑移长度的修正 Hagen-Poiseuille 方程和平均速度方程。在多孔介质分形理论的基础上,建立考虑负滑移长度的页岩油藏的表观液体渗透率模型。页岩油藏表观液体渗透率不仅受孔隙结构、孔隙度、迂曲度和孔隙半径的影响,也与液体负滑移长度相关。

  • 页岩油藏孔隙半径小,负滑移长度对表观液体渗透率的影响不可忽略。负滑移长度越大,流体在微纳米管中的平均渗流速度越小;表观液体渗透率与达西渗透率之比随负滑移长度的增加而减小;孔隙半径越小,负滑移长度对表观液体渗透率的影响越大。因此,寻找负滑移长度的描述方法和建立负滑移长度的测量方法对确定页岩油藏表观液体渗透率和评价页岩油藏的可动性至关重要。

  • 符号解释

  • A ——分形多孔介质岩心的渗流横截面积,μm2

  • D f ——孔隙分形维数,在二维平面上 0 < D f < 2,三维空间上0 < D f < 3;

  • K app——表观液体渗透率,D;

  • K 0——达西渗透率,D;

  • L 0——多孔介质的视长度,μm;

  • L t ——弯曲微纳米管的真实长度,μm;

  • N ——微纳米孔隙半径分布在(r minr max)范围内的微纳米总数;

  • Δp ——驱替压力,Pa;

  • q ——流体通过单个微纳米管的流量,μm3 /s;

  • Q p——分形多孔介质的总流量,μm3 /s;

  • r ——微纳米管内流体流动半径,μm;

  • r min——多孔介质的最小孔隙半径,μm;

  • r max——多孔介质的最大孔隙半径,μm;

  • R ——微纳米管半径,μm;

  • v ——液体在微纳米管中流动的平均速度,μm/s;

  • vr ——微纳米管内流动半径r处流体流动速度,μm/s;

  • γ˙——流体的应变,s-1

  • δ——负滑移长度,μm;

  • μ——流体黏度,Pa·s;

  • τ——流体所受的切应力,Pa;

  • τp——多孔介质的迂曲度;

  • ϕ——多孔介质的孔隙度。

  • 参考文献

    • [1] 余涛,卢双舫,李俊乾,等.东营凹陷页岩油游离资源有利区预测[J].断块油气田,2018,25(1):16-21.YU Tao,LU Shuangfang,LI Junqian,et al.Prediction for favorable area of shale oil free resources in Dongying Sag[J].Fault-Block Oil and Gas Field,2018,25(1):16-21.

    • [2] 白国平,邱海华,邓舟舟,等.美国页岩油资源分布特征与主控因素研究[J].石油实验地质,2020,42(4):524-532.BAI Guoping,QIU Haihua,DENG Zhouzhou,et al.Distribution and main controls for shale oil resources in USA[J].Petroleum Geology & Experiment,2020,42(4):524-532.

    • [3] 杜学斌,陆永潮,刘惠民,等.细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J].石油实验地质,2018,40(2):244-252.DU Xuebin,LU Yongchao,LIU Huimin,et al.Division of highfrequency sequences of different orders in fine-grained deposits and its geologic significance:A case study of mud shale from the lower section of the third member to the upper section of the fourth member of Shahejie Formation in Dongying Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2018,40(2):244-252.

    • [4] 张春池,彭文泉,胡小辉,等.沾化凹陷沙河街组页岩气成藏条件研究[J].特种油气藏,2019,26(3):12-17.ZHANG Chunchi,PENG Wenquan,HU Xiaohui,et al.Shale gas accumulation conditions of Shahejie Formation in Zhanhua De⁃ pression[J].Special Oil & Gas Reservoirs,2019,26(3):12-17.

    • [5] 苏海波,于金彪,张同伍,等.低渗透储层水驱油渗流阻力特征 [J].油气地质与采收率,2018,25(1):117-121.SU Haibo,YU Jinbiao,ZHANG Tongwu,et al.Features of seepage resistance during water flooding in low permeability reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(1):117-121.

    • [6] 苏海波.反映动态启动压力梯度的低渗透油藏渗流模型[J].西南石油大学学报:自然科学版,2015,37(6):105-111.SU Haibo.A flow model reflecting dynamic kick-off pressure gra⁃ dient for low permeability reservoirs[J].Journal of Southwest Pe⁃ troleum University:Science & Technology Edition,2015,37(6):105-111.

    • [7] 曲冠政,周德胜,彭娇,等.基于 Lattice Boltzmann 方法的页岩张性裂缝渗流特征研究[J].特种油气藏,2018,25(1):134-139.QU Guanzheng,ZHOU Desheng,PENG Jiao,et al.Seepage char⁃ acteristics of tension fractures in shale based on Lattice Boltzmann method[J].Special Oil & Gas Reservoirs,2018,25(1):134-139.

    • [8] 朱维耀,马东旭.层理缝对页岩渗透率的影响及表征[J].特种油气藏,2018,25(2):130-133.ZHU Weiyao,MA Dongxu.Effect of bedding seam on shale perme⁃ ability and its characterization[J].Special Oil & Gas Reservoirs,2018,25(2):130-133.

    • [9] 肖佃师,卢双舫,房大志,等.海相高成熟页岩气储层孔隙连通关系——以彭水地区龙马溪组为例[J].油气藏评价与开发,2019,9(5):45-53.XIAO Dianshi,LU Shuangfang,FANG Dazhi,et al.Pore connec⁃ tivity of marine high-maturity shale gas reservoirs:A case study in Longmaxi formation,Pengshui area[J].Reservoir Evaluation and Development,2019,9(5):45-53.

    • [10] 何岩峰,赵虹宇,窦祥骥,等.考虑应力敏感的页岩储层纳米孔隙渗透率计算模型[J].大庆石油地质与开发,2018,37(6):151-157.HE Yanfeng,ZHAO Hongyu,DOU Xiangji,et al.Calculating mod⁃ el of the nano-pore permeability in the shale reservoir consider⁃ ing the stress sensitivity[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2018,37(6):151-157.

    • [11] 宋付权,于玲.液体在润湿性微管中流动的边界负滑移特征 [J].水动力学研究与进展:A辑,2013,28(2):128-134.SONG Fuquan,YU Ling.The boundary negative slippage of liquid flowing in hydrophilic micro-tubes[J].Chinese Journal of Hydro⁃ dynamics,2013,28(2):128-134.

    • [12] JAVADPOUR F.Nanopores and apparent permeability of gas flow in mudrocks(shales and silt stone)[J].Journal of Canadian Petro⁃ leum Technology,2009,48(8):16-21.

    • [13] JAVADPOUR F,MORRAVEJ M,AMREIN M.Atomic force mi⁃ croscopy:A new tool for gas shale characterization[J].SPE Jour⁃ nal,2012,51(4):236-243.

    • [14] LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1 071-1 098.

    • [15] MILLIKEN K L,ESCH W L,REED R M,et al.Grain assemblages and strong diagenetic overprinting in siliceous mudrocks,Barnett shale(Mississippian),Fort Worth Basin,Texas[J].AAPG Bulle⁃ tin,2012,96(8):1 553-1 578.

    • [16] 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187.ZOU Caineng,ZHU Rukai,WU Songtao,et al.Types,characteris⁃ tics,genesis and prospects of conventional and unconventional hy⁃ drocarbon accumulations:taking tight oil and tight gas in China as an instance[J].Acta Petrolei Sinica,2012,33(2):173-187.

    • [17] MATTIA D,CALABRO F.Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions[J].Mi⁃ crofluidics & Nanofluidics,2012,13(1):125-130.

    • [18] AFSHARPOOR A,JAVADPOUR F.Liquid slip flow in a network of shale noncircular nanopores[J].Fuel,2016,180:580-590.

    • [19] WHITBY M,QUIRKE N.Fluid flow in carbon nanotubes and nanopipes[J].Nature Nanotechnology,2007,2(2):87-94.

    • [20] MAJUMDER M,CHOPRA N,ANDREWS R,et al.Enhanced flow in carbon nanotubes[J].Nature,2005,438(7070):930.

    • [21] HOLT J K,PARK H G,WANG Y M,et al.Fast mass transport through sub-2-nanometer carbon nanotubes[J].Science,2006,312(5776):1 034-1 037.

    • [22] WHITBY M,CAGNON L,THANOU M,et al.Enhanced fluid flow through nanoscale carbon pipes[J].Nano Letters,2008,8(9):2 632-2 637.

    • [23] WANG S,JAVADPOUR F,FENG Q.Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J].Fuel,2016,181:741-758.

    • [24] 苏玉亮,鲁明晶,李萌,等.页岩油藏多重孔隙介质耦合流动数值模拟[J].石油与天然气地质,2019,40(3):645-652,660.SU Yuliang,LU Mingjing,LI Meng,et al.Numerical simulation of shale oil coupled flow in multi-pore media[J].Oil & Gas Geolo⁃gy,2019,40(3):645-652,660.

    • [25] 刘毅,陆正元,戚明辉,等.渤海湾盆地沾化凹陷沙河街组页岩油微观储集特征[J].石油实验地质,2017,39(2):180-185,194.LIU Yi,LU Zhengyuan,QI Minghui,et al.Microscopic character⁃ istics of shale oil reservoirs in Shahejie Formation in Zhanhua Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2017,39(2):180-185,194.

    • [26] MANDELBROT Benoit B.The fractal geometry of nature[J].Amer⁃ ican Journal of Physics,1983,51(3):286.

    • [27] KATZ A J,THOMPSON A H.Fractal sandstone pores:implica⁃ tions for conductivity and pore formation[J].Physical Review Let⁃ ters,1985,54(12):1 325-1 328.

    • [28] KROHN C E.Fractal measurements of sandstones,shales,and car⁃ bonates[J].Journal of Geophysical Research,1988,93(B4):3 297-3 305.

    • [29] 王濡岳,尹帅,龚大建,等.下寒武统页岩孔隙结构与分形特征 [J].断块油气田,2018,25(5):589-592.WANG Ruyue,YIN Shuai,GONG Dajian,et al.Pore structure and fractal characteristics of Lower Cambrian shales[J].FaultBlock Oil and Gas Field,2018,25(5):589-592.

    • [30] 李玉丹,董平川,张荷,等.基于分形理论的页岩基质表观渗透率研究[J].油气地质与采收率,2017,24(1):92-99,105.LI Yudan,DONG Pingchuan,ZHANG He,et al.Analysis on ap⁃ parent permeability of shale matrix based on fractal theory[J].Pe⁃ troleum Geology and Recovery Efficiency,2017,24(1):92-99,105.

    • [31] 苏海波,王晓宏,张世明,等.低渗透油藏油水相对渗透率模型的分形表征方法[J].东北石油大学学报,2019,43(5):88-94.SU Haibo,WANG Xiaohong,ZHANG Shiming,et al.Fractal char⁃ acterization method of oil-water relative permeability model in low permeability reservoirs[J].Journal of Northeast Petroleum University,2019,43(5):88-94.

    • [32] SU Haibo,ZHANG Shiming,SUN Yeheng,et al.A comprehensive model for oil-water relative permeabilities in low-permeability reservoirs by fractal theory[J].Fractals,2020,28(3):2050055.

    • [33] 苏海波,张世明,孙业恒,等.基于分形理论的低渗透油藏油水相对渗透率模型[J].油气地质与采收率,2020,27(4):67-78.SU Haibo,ZHANG Shiming,SUN Yeheng,et al.Oil-water rela⁃ tive permeability model of low permeability reservoir based on fractal theory[J].Petroleum Geology and Recovery Efficiency,2020,27(4):67-78.

    • [34] 苏海波.反映动态启动压力梯度的低渗透油藏渗流模型[J].西南石油大学学报:自然科学版,2015,37(6):105-111.SU Haibo.A flow model reflecting dynamic kick-off pressure gra⁃ dient for low permeability reservoirs[J].Journal of Southwest Pe⁃ troleum University:Science & Technology Edition,2015,37(6):105-111.

    • [35] 秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2006.QIN Jishun,LI Aifen.Reservoir physics[M].Dongying:China Uni⁃ versity of Petroleum Press,2006.

    • [36] YU B,CHENG P.A fractal permeability model for bi-dispersed porous media[J].International Journal of Heat and Mass Transfer,2002,45(14):2 983-2 993.

    • [37] COMITI J,RENAUD M.A new model for determining mean struc⁃ ture parameters of fixed beds from pressure drop measurements:application to beds packed with parallelepipedal particles[J].Chemical Engineering Science,1989,44(7):1 539-1 545.

    • [38] FALK K,SEDLMEIER F,JOLY L,et al.Molecular origin of fast water transport in carbon nanotube membranes:Superlubricity versus curvature-dependent friction[J].Nano Letters,2010,10(10):4 067-4 073.

  • 参考文献

    • [1] 余涛,卢双舫,李俊乾,等.东营凹陷页岩油游离资源有利区预测[J].断块油气田,2018,25(1):16-21.YU Tao,LU Shuangfang,LI Junqian,et al.Prediction for favorable area of shale oil free resources in Dongying Sag[J].Fault-Block Oil and Gas Field,2018,25(1):16-21.

    • [2] 白国平,邱海华,邓舟舟,等.美国页岩油资源分布特征与主控因素研究[J].石油实验地质,2020,42(4):524-532.BAI Guoping,QIU Haihua,DENG Zhouzhou,et al.Distribution and main controls for shale oil resources in USA[J].Petroleum Geology & Experiment,2020,42(4):524-532.

    • [3] 杜学斌,陆永潮,刘惠民,等.细粒沉积物中不同级次高频层序划分及其地质意义——以东营凹陷沙三下—沙四上亚段泥页岩为例[J].石油实验地质,2018,40(2):244-252.DU Xuebin,LU Yongchao,LIU Huimin,et al.Division of highfrequency sequences of different orders in fine-grained deposits and its geologic significance:A case study of mud shale from the lower section of the third member to the upper section of the fourth member of Shahejie Formation in Dongying Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2018,40(2):244-252.

    • [4] 张春池,彭文泉,胡小辉,等.沾化凹陷沙河街组页岩气成藏条件研究[J].特种油气藏,2019,26(3):12-17.ZHANG Chunchi,PENG Wenquan,HU Xiaohui,et al.Shale gas accumulation conditions of Shahejie Formation in Zhanhua De⁃ pression[J].Special Oil & Gas Reservoirs,2019,26(3):12-17.

    • [5] 苏海波,于金彪,张同伍,等.低渗透储层水驱油渗流阻力特征 [J].油气地质与采收率,2018,25(1):117-121.SU Haibo,YU Jinbiao,ZHANG Tongwu,et al.Features of seepage resistance during water flooding in low permeability reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(1):117-121.

    • [6] 苏海波.反映动态启动压力梯度的低渗透油藏渗流模型[J].西南石油大学学报:自然科学版,2015,37(6):105-111.SU Haibo.A flow model reflecting dynamic kick-off pressure gra⁃ dient for low permeability reservoirs[J].Journal of Southwest Pe⁃ troleum University:Science & Technology Edition,2015,37(6):105-111.

    • [7] 曲冠政,周德胜,彭娇,等.基于 Lattice Boltzmann 方法的页岩张性裂缝渗流特征研究[J].特种油气藏,2018,25(1):134-139.QU Guanzheng,ZHOU Desheng,PENG Jiao,et al.Seepage char⁃ acteristics of tension fractures in shale based on Lattice Boltzmann method[J].Special Oil & Gas Reservoirs,2018,25(1):134-139.

    • [8] 朱维耀,马东旭.层理缝对页岩渗透率的影响及表征[J].特种油气藏,2018,25(2):130-133.ZHU Weiyao,MA Dongxu.Effect of bedding seam on shale perme⁃ ability and its characterization[J].Special Oil & Gas Reservoirs,2018,25(2):130-133.

    • [9] 肖佃师,卢双舫,房大志,等.海相高成熟页岩气储层孔隙连通关系——以彭水地区龙马溪组为例[J].油气藏评价与开发,2019,9(5):45-53.XIAO Dianshi,LU Shuangfang,FANG Dazhi,et al.Pore connec⁃ tivity of marine high-maturity shale gas reservoirs:A case study in Longmaxi formation,Pengshui area[J].Reservoir Evaluation and Development,2019,9(5):45-53.

    • [10] 何岩峰,赵虹宇,窦祥骥,等.考虑应力敏感的页岩储层纳米孔隙渗透率计算模型[J].大庆石油地质与开发,2018,37(6):151-157.HE Yanfeng,ZHAO Hongyu,DOU Xiangji,et al.Calculating mod⁃ el of the nano-pore permeability in the shale reservoir consider⁃ ing the stress sensitivity[J].Petroleum Geology & Oilfield Devel⁃ opment in Daqing,2018,37(6):151-157.

    • [11] 宋付权,于玲.液体在润湿性微管中流动的边界负滑移特征 [J].水动力学研究与进展:A辑,2013,28(2):128-134.SONG Fuquan,YU Ling.The boundary negative slippage of liquid flowing in hydrophilic micro-tubes[J].Chinese Journal of Hydro⁃ dynamics,2013,28(2):128-134.

    • [12] JAVADPOUR F.Nanopores and apparent permeability of gas flow in mudrocks(shales and silt stone)[J].Journal of Canadian Petro⁃ leum Technology,2009,48(8):16-21.

    • [13] JAVADPOUR F,MORRAVEJ M,AMREIN M.Atomic force mi⁃ croscopy:A new tool for gas shale characterization[J].SPE Jour⁃ nal,2012,51(4):236-243.

    • [14] LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPG Bulletin,2012,96(6):1 071-1 098.

    • [15] MILLIKEN K L,ESCH W L,REED R M,et al.Grain assemblages and strong diagenetic overprinting in siliceous mudrocks,Barnett shale(Mississippian),Fort Worth Basin,Texas[J].AAPG Bulle⁃ tin,2012,96(8):1 553-1 578.

    • [16] 邹才能,朱如凯,吴松涛,等.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J].石油学报,2012,33(2):173-187.ZOU Caineng,ZHU Rukai,WU Songtao,et al.Types,characteris⁃ tics,genesis and prospects of conventional and unconventional hy⁃ drocarbon accumulations:taking tight oil and tight gas in China as an instance[J].Acta Petrolei Sinica,2012,33(2):173-187.

    • [17] MATTIA D,CALABRO F.Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions[J].Mi⁃ crofluidics & Nanofluidics,2012,13(1):125-130.

    • [18] AFSHARPOOR A,JAVADPOUR F.Liquid slip flow in a network of shale noncircular nanopores[J].Fuel,2016,180:580-590.

    • [19] WHITBY M,QUIRKE N.Fluid flow in carbon nanotubes and nanopipes[J].Nature Nanotechnology,2007,2(2):87-94.

    • [20] MAJUMDER M,CHOPRA N,ANDREWS R,et al.Enhanced flow in carbon nanotubes[J].Nature,2005,438(7070):930.

    • [21] HOLT J K,PARK H G,WANG Y M,et al.Fast mass transport through sub-2-nanometer carbon nanotubes[J].Science,2006,312(5776):1 034-1 037.

    • [22] WHITBY M,CAGNON L,THANOU M,et al.Enhanced fluid flow through nanoscale carbon pipes[J].Nano Letters,2008,8(9):2 632-2 637.

    • [23] WANG S,JAVADPOUR F,FENG Q.Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J].Fuel,2016,181:741-758.

    • [24] 苏玉亮,鲁明晶,李萌,等.页岩油藏多重孔隙介质耦合流动数值模拟[J].石油与天然气地质,2019,40(3):645-652,660.SU Yuliang,LU Mingjing,LI Meng,et al.Numerical simulation of shale oil coupled flow in multi-pore media[J].Oil & Gas Geolo⁃gy,2019,40(3):645-652,660.

    • [25] 刘毅,陆正元,戚明辉,等.渤海湾盆地沾化凹陷沙河街组页岩油微观储集特征[J].石油实验地质,2017,39(2):180-185,194.LIU Yi,LU Zhengyuan,QI Minghui,et al.Microscopic character⁃ istics of shale oil reservoirs in Shahejie Formation in Zhanhua Sag,Bohai Bay Basin[J].Petroleum Geology & Experiment,2017,39(2):180-185,194.

    • [26] MANDELBROT Benoit B.The fractal geometry of nature[J].Amer⁃ ican Journal of Physics,1983,51(3):286.

    • [27] KATZ A J,THOMPSON A H.Fractal sandstone pores:implica⁃ tions for conductivity and pore formation[J].Physical Review Let⁃ ters,1985,54(12):1 325-1 328.

    • [28] KROHN C E.Fractal measurements of sandstones,shales,and car⁃ bonates[J].Journal of Geophysical Research,1988,93(B4):3 297-3 305.

    • [29] 王濡岳,尹帅,龚大建,等.下寒武统页岩孔隙结构与分形特征 [J].断块油气田,2018,25(5):589-592.WANG Ruyue,YIN Shuai,GONG Dajian,et al.Pore structure and fractal characteristics of Lower Cambrian shales[J].FaultBlock Oil and Gas Field,2018,25(5):589-592.

    • [30] 李玉丹,董平川,张荷,等.基于分形理论的页岩基质表观渗透率研究[J].油气地质与采收率,2017,24(1):92-99,105.LI Yudan,DONG Pingchuan,ZHANG He,et al.Analysis on ap⁃ parent permeability of shale matrix based on fractal theory[J].Pe⁃ troleum Geology and Recovery Efficiency,2017,24(1):92-99,105.

    • [31] 苏海波,王晓宏,张世明,等.低渗透油藏油水相对渗透率模型的分形表征方法[J].东北石油大学学报,2019,43(5):88-94.SU Haibo,WANG Xiaohong,ZHANG Shiming,et al.Fractal char⁃ acterization method of oil-water relative permeability model in low permeability reservoirs[J].Journal of Northeast Petroleum University,2019,43(5):88-94.

    • [32] SU Haibo,ZHANG Shiming,SUN Yeheng,et al.A comprehensive model for oil-water relative permeabilities in low-permeability reservoirs by fractal theory[J].Fractals,2020,28(3):2050055.

    • [33] 苏海波,张世明,孙业恒,等.基于分形理论的低渗透油藏油水相对渗透率模型[J].油气地质与采收率,2020,27(4):67-78.SU Haibo,ZHANG Shiming,SUN Yeheng,et al.Oil-water rela⁃ tive permeability model of low permeability reservoir based on fractal theory[J].Petroleum Geology and Recovery Efficiency,2020,27(4):67-78.

    • [34] 苏海波.反映动态启动压力梯度的低渗透油藏渗流模型[J].西南石油大学学报:自然科学版,2015,37(6):105-111.SU Haibo.A flow model reflecting dynamic kick-off pressure gra⁃ dient for low permeability reservoirs[J].Journal of Southwest Pe⁃ troleum University:Science & Technology Edition,2015,37(6):105-111.

    • [35] 秦积舜,李爱芬.油层物理学[M].东营:中国石油大学出版社,2006.QIN Jishun,LI Aifen.Reservoir physics[M].Dongying:China Uni⁃ versity of Petroleum Press,2006.

    • [36] YU B,CHENG P.A fractal permeability model for bi-dispersed porous media[J].International Journal of Heat and Mass Transfer,2002,45(14):2 983-2 993.

    • [37] COMITI J,RENAUD M.A new model for determining mean struc⁃ ture parameters of fixed beds from pressure drop measurements:application to beds packed with parallelepipedal particles[J].Chemical Engineering Science,1989,44(7):1 539-1 545.

    • [38] FALK K,SEDLMEIER F,JOLY L,et al.Molecular origin of fast water transport in carbon nanotube membranes:Superlubricity versus curvature-dependent friction[J].Nano Letters,2010,10(10):4 067-4 073.