-
埋深超过 4 500 m 的深层油气资源丰富,是石油工业最重要的发展领域之一。目前,全球已开发了 1 000 多个目的层埋深为 4 500~8 103 m 的油气田,可采资源量大[1-2]。中国塔里木盆地和四川盆地均在深层、超深层超致密砂岩储层发现了巨大的油气资源,勘探前景十分广阔[3-4]。致密砂岩储层基块致密、天然裂缝发育、孔喉细小、黏土矿物丰富、局部超低含水饱和度现象突出,液相圈闭损害是致密油气藏重要的储层损害类型。液相圈闭损害是指钻完井及开采过程中,水基或油基工作液(润湿相) 侵入存在超低含水饱和度的致密储层中,并在储层内形成暂时或永久液相滞留,进而导致产出相相对渗透率降低的现象[5-8]。大量的实验和分析结果表明,孔隙类型、尺寸、形状、分形维数和迂曲度都将改变岩石毛管压力,从而影响润湿相的侵入及返排过程[9-10]。此外,岩石矿物类型和产状、黏土矿物特征、微裂缝发育程度、初始含水饱和度、相渗曲线、侵入相流体特性、侵入深度、储层温度和压力以及储层所能达到的最大排采压差等也都是液相圈闭损害的影响因素[11-15]。超致密砂岩气藏储层通常具有纳微米孔喉发育、岩石中间润湿、天然裂缝发育、所用工作液类型复杂的特点[16]。塔里木盆地超致密砂岩气藏储层埋深为 6 000~8 000 m,基块超致密,天然裂缝发育,钻完井过程中所用工作液类型复杂,常用的工作液包括油基钻开液、有机盐钻开液和有机盐完井液等[17]。由于气藏处于开发初期,气井投产前通常需要进行中途测试及完井测试,工程作业流程复杂[18-19]。多种工作液类型和施工作业流程以及特殊的储层孔隙结构特征,导致该类储层液相圈闭作用可能与常规致密砂岩气藏存在差异。为此,以塔里木盆地超致密砂岩气藏为研究对象,分别针对基块和裂缝开展油基钻开液滤液—有机盐完井液和有机盐钻开液滤液—有机盐完井液顺序接触综合液相圈闭损害实验评价,探讨超致密砂岩气藏液相圈闭作用的损益双重效应,揭示其作用机理,以期为超致密砂岩气藏工作液优选提供依据和借鉴。
-
1 实验样品及方法
-
1.1 实验样品及流体
-
实验样品取自塔里木盆地某超致密砂岩气藏。研究区气藏储层岩石以岩屑长石砂岩为主,储层温度为 140~160℃,室内测试储层平均孔隙度为 3.11%,平均渗透率为 0.014 mD,测井显示初始含水饱和度仅约为 20%,超低含水饱和度现象突出。所用基块及裂缝样品均为井下岩样,其中裂缝样品为基块样品基于巴西劈裂原理人工造缝制得,岩样物性基本参数见表1。
-
实验用油基钻开液、有机盐钻开液及有机盐完井液均取自研究区储层段现场用钻井液,其中油基钻开液基油为0#柴油,有机盐钻开液基液为高密度复合有机盐溶液。有机盐完井液为矿场用甲酸盐溶液,成份包括甲酸钠、甲酸钾和甲酸铯。油基钻开液、有机盐钻开液基本性能见表2。油基钻开液和有机盐钻开液滤液通过API失水仪获得。实验用地层水根据现场获得的地层水样品元素分析结果配制,由质量浓度为 563.24 mg/L 的 NaHCO3,649.22 mg/L 的 Na2SO4,185 905.74 mg/L 的 NaCl,12 441.50 mg/L的 KCl,3 524.50 mg/L的 MgCl2和 6 153.32 mg/L 的CaCl2配制而成。
-
1.2 实验方法
-
基于研究区超致密砂岩气藏气井实际钻完井过程,通过开展钻开液滤液自发渗吸实验—气驱返排实验—完井液自发渗吸实验—气驱返排实验模拟研究区超致密砂岩气藏钻井—中途测试—压井作业—完井测试等 4 个阶段实际作业环节,建立考虑工作液顺序接触诱发超致密砂岩气藏综合液相圈闭损害实验评价方法。实验步骤包括:①岩样干燥并确定样品在 3 MPa 下的气测孔隙度和渗透率,密封冷却后采用自吸法建立初始含水饱和度。② 将建立好初始含水饱和度的岩样密闭后置于阴凉处保存 24 h,确保所建立初始含水饱和度在岩心内分布均匀,将处理后的岩样装入夹持器中测定基准渗透率。③钻开液滤液自发渗吸实验。首先准备油基钻开液和有机盐钻开液滤液,固定好自吸实验装置,再将岩样悬挂于天平下,记录岩样自吸前质量,调节底座盘高度,向盘中加入钻开液滤液使岩样浸泡于滤液中,同时采集岩样质量变化数据。渗吸约 16 h后结束实验,处理实验数据。④第一次气驱返排实验。将岩样置于气驱返排装置(图1)中,在围压为 7 MPa、压力梯度为 0.3 MPa/cm 和回压为 1 MPa的条件下,采用高纯氮气开展气驱返排实验,记录返排时间分别为 0,10,20,30,60,80,100 min 及 2,3,4,5,6 和 7 h 对应的岩样渗透率及质量。⑤有机盐完井液自发渗吸实验。实验步骤与步骤③ 基本一致,只需将钻开液滤液更换为完井液。⑥第二次气驱返排实验。实验步骤与步骤④一致,记录好不同驱替时间下的岩样渗透率及质量。⑦整理实验仪器,处理废液,处理实验数据。
-
图1 综合液相圈闭损害渗透率评价气驱返排装置
-
Fig.1 Gas flooding flowback device for permeability evaluation of comprehensive liquid trapping damage
-
综合液相圈闭损害评价法获得的液相圈闭损害程度通过岩样的液相圈闭渗透率损害率[20] 进行评价,其值范围为[0,5%],(5%,30%],(30%, 50%],(50%,70%],(70%,100%],损害程度分别为无、弱、中偏弱、中偏强和强。综合液相圈闭损害评价法充分考虑了钻开液与完井液等工作液协同作用对超致密砂岩气藏综合液相圈闭损害的影响,能够更真实模拟实际钻完井开发过程,有利于深入探究不同体系钻开液对后续水基完井液等工作液诱发超致密砂岩气藏液相圈闭损害的影响,有助于深刻揭示钻完井过程超致密砂岩气藏储层损害机理。
-
2 实验结果与分析
-
2.1 油基钻开液滤液损益双重效应
-
由表3 可知,超致密砂岩气藏基块岩样油基钻开液滤液液相圈闭渗透率损害率为62.92%,损害程度中偏强,后续有机盐完井液诱发的综合液相圈闭渗透率损害率为 86.00%,损害程度为强;有机盐钻开液滤液诱发的液相圈闭渗透率损害率为75.84%,损害程度为强,后续有机盐完井液诱发的综合液相圈闭渗透率损害率为98.37%,损害程度为强。超致密砂岩气藏裂缝岩样油基钻开液滤液液相圈闭渗透率损害率为 99.02%,损害程度为强,后续有机盐完井液诱发的综合液相圈闭渗透率损害率为 99.95%,损害程度为强;有机盐钻开液滤液诱发的液相圈闭渗透率损害率为50.61%,损害程度为中偏强,后续有机盐完井液诱发的综合液相圈闭渗透率损害率为63.45%,损害程度为中偏强。油基钻开液和有机盐钻开液滤液对超致密砂岩气藏基块和裂缝造成的综合液相圈闭损害程度表现出相反的两种情况:水基钻开液和油基钻开液滤液与后续水基工作液顺序接触均将加剧液相圈闭损害程度,但油基钻开液滤液能够起到抑制工作液顺序接触诱发的综合液相圈闭损害的作用,而对裂缝岩样综合液相圈闭损害却有加剧的趋势。由此可知,钻开超致密砂岩气藏储层过程中,油基钻开液滤液对储层造成明显的损益双重效应:有益于基块的液相圈闭损害保护效果,但有损于裂缝的液相圈闭损害保护效果。
-
为了进一步分析油基钻开液滤液对超致密砂岩气藏的损益双重效应,分析了基块和裂缝岩样工作液顺序接触液相圈闭损害实验的自吸及气驱返排曲线。由图2可知,基块岩样UTS3-4油基钻开液滤液进液过程缓慢,但呈持续进液的趋势。自吸结束时液相饱和度为47.35%,气驱返排后液相饱和度降低为44.64%;后续有机盐完井液自吸进液主要发生在自吸实验的前 2 h 内,自吸完成后液相饱和度升高至 59.29%,气驱返排后液相饱和度降低为 58.85%。基块岩样 UTS3-8有机盐钻开液滤液自吸过程中前 2 h内进液量大,后续时间进液量较少,自吸完成后液相饱和度为72.78%,气驱返排后液相饱和度降低为68.78%;后续有机盐完井液自吸进液主要发生在自吸实验的前 4 h 内,自吸完成后液相饱和度上升为92.88%,气驱返排后液相饱和度降低为 88.78%。综上可知,超致密砂岩气藏基块岩样第一次自吸过程中油基钻开液滤液比有机盐钻开液滤液造成的液相饱和度低,而经历气驱返排后油基钻开液滤液—有机盐完井液造成的最终液相饱和度 (58.85%),远低于有机盐钻开液滤液—有机盐完井液诱发的超致密砂岩气藏岩样最终液相饱和度 (92.88%)。由此分析认为,影响超致密砂岩气藏基块最终液相饱和度的主要因素是油基钻开液滤液有效降低了有机盐完井液自吸过程中的自吸量,从而大幅度降低了岩样的最终液相饱和度。
-
图2 超致密砂岩气藏基块岩样工作液顺序接触液相圈闭损害实验结果
-
Fig.2 Experimental results of liquid trapping damage of ultra-tight sandstone reservoir matrix samples induced by sequential contact of working fluids
-
由图3可以看出:裂缝岩样UTS5-4-F油基钻开液滤液自吸过程中前 4 h 内进液量大,后续进液量较少,自吸完成时液相饱和度为 66.43%,气驱返排后液相饱和度降低为39.23%;后续有机盐完井液自吸过程持续进液,但进液量较小,液相饱和度最终仅为 60.82%,气驱返排后 0.5 h 内液相饱和度基本稳定,最终液相饱和度为 54.81%。UTS6-1-F 裂缝岩样有机盐钻开液滤液自吸过程中前 2 h内进液量大,后续依然持续进液,自吸完成后液相饱和度为 78.24%,气驱返排后液相饱和度降低为 40.82%;后续有机盐完井液自吸进液主要发生在自吸实验的前1 h内,自吸完成后液相饱和度上升为68.49%,气驱返排过程中液相饱和度持续降低,最终液相饱和度仅为23.50%。对比分析认为,超致密砂岩气藏裂缝岩样最终液相饱和度与油基钻开液滤液自吸量的关系不明显,仅与最后一次气驱返排过程关系密切。
-
由图4 可知,超致密砂岩气藏基块及裂缝岩样的液相圈闭渗透率损害率与岩样的最终液相饱和度呈显著正相关线性关系。因此,揭示油基钻开液滤液对超致密砂岩气藏基块及裂缝的损益双重效应需要从油基钻开液滤液影响基块和裂缝岩样的最终液相饱和度进行分析,即需要从油基钻开液滤液液滴(油滴)抑制基块后续水基工作液侵入机理和油滴抑制裂缝有机盐完井液气驱返排机理两个方面进行讨论。
-
图3 超致密砂岩气藏裂缝岩样工作液顺序接触液相圈闭损害实验结果
-
Fig.3 Experimental results of liquid trapping damage of ultra-tight sandstone reservoir fractured samples induced by sequential contact of working fluids
-
图4 超致密砂岩气藏基块和裂缝岩样最终液相饱和度与液相圈闭渗透率损害率的关系
-
Fig.4 Final liquid saturation-PDR diagram of ultra-tight sandstone reservoir matrix and fractured samples
-
2.2 油滴抑制基块后续水基工作液侵入机理
-
根据油基钻开液滤液抑制工作液顺序接触液相圈闭损害模式分析可知,滞留在超致密砂岩中的油滴对后续水基工作液侵入过程的抑制作用是实现油基钻开液滤液抑制工作液顺序接触液相圈闭损害的最关键因素。实现油滴抑制后续水基工作液的侵入,油滴必须能够保证侵入储层深度较浅,同时能够阻碍后续水基工作液的侵入。为此,基于研究区超致密砂岩气藏储层地质特征,对储层黏土矿物类型与产状、喉道尺寸和水膜厚度等多种因素进行分析。
-
2.2.1 黏土矿物类型与产状
-
由 X 射线衍射分析结果可知,研究区超致密砂岩中高岭石、伊/蒙混层、伊利石和绿泥石等矿物丰富,平均含量依次为 6.13%,58.24%,10.99% 和 24.64%。绿泥石为亲油性矿物,将岩石表面局部润湿性由水湿改变为油湿[21]。扫描电镜结果显示,网状的伊/蒙混层以及伊利石在渗流通道的关键位置发育,将储层渗流通道进一步切割,形成大量黏土矿物晶间孔(图5)[22]。油基钻开液滤液侵入过程中,储层岩石的局部油湿以及网状的水湿性伊利石和伊/蒙混层形成的黏土矿物晶间孔,阻碍了油基钻开液滤液侵入储层深部。气驱返排过程中,储层岩石的局部油湿以及黏土矿物晶间孔将增大油滴的捕获概率,从而导致部分油滴滞留于储层内。后续水基工作液渗吸进入储层过程中,被捕获的油滴起到了抑制水基工作液侵入储层的效果。
-
图5 超致密砂岩黏土矿物及其晶间孔
-
Fig.5 Intercrystalline pores of clay mineral in ultra-tight sandstone sample
-
2.2.2 储层喉道尺寸和水膜厚度
-
高压压汞实验结果显示,研究区超致密砂岩对渗透率贡献最大的喉道平均半径为 0.21 μm,为典型的纳微米喉道。结合铸体薄片分析结果认为,孔隙之间主要通过片状喉道相互连通。侵入岩石的油基钻开液滤液在气驱返排过程中,部分油滴滞留于孔隙中,因此油滴直径应该大于喉道直径而略小于孔隙直径。后续水基工作液侵入过程中,滞留的油滴在表面张力作用下滞留于孔隙和喉道的连通处,增大后续水基工作液侵入储层的阻力,从而控制水基工作液的侵入深度,其液阻作用机理如图6 所示。
-
当油滴欲通过喉道时,其界面发生形变,液相阻力增加,液相阻力计算式为:
-
根据地层实际情况,设定模型中 γ为 28 mN/m,喉道半径为 0.21 μm,油滴长度为喉道半径的 100 倍,即为 21 μm。油滴欲通过喉道处的毛管压力梯度计算式[23] 为:
-
由(2)式计算可得,油滴在超致密砂岩气藏喉道处的毛管压力梯度为1.27×104 MPa/m。超致密砂岩气藏喉道表面通常附有水膜,水膜厚度为12~200 nm[22]。当水膜厚度为50 μm时,油滴在喉道处毛管压力梯度为 7.35×104 MPa/m。因此,考虑水膜作用的油滴对后续水基工作液侵入储层的抑制作用更强。在正常作业过程中,工作液正压差造成的储层内流体压力梯度远小于计算得到的油滴毛管压力梯度,从而导致后续水基工作液无法为油滴提供足够的动力促使其发生形变通过喉道。因此认为,油滴能够抑制后续水基工作液的侵入,且储层喉道直径越小、水膜厚度越大,则油滴的抑制作用越明显。
-
研究区超致密砂岩气藏储层在高构造应力和强压实作用下,喉道直径较常规致密储层更小。考虑原地应力条件下超致密砂岩气藏渗透率仅为实验室测得渗透率的 1/15,根据 Carman-Kozeny 方程可知,地层原始温度和压力下超致密砂岩气藏储层喉道半径平均约为 0.085 μm。同时,水膜厚度随所处温度的升高而增大,超致密砂岩气藏储层较高的地层温度将导致水膜厚度增大,从而进一步强化油滴抑制后续水基工作液侵入储层的效果。此外,当水基工作液在正压差作用下侵入储层从而迫使油滴发生形变时,油滴诱发的液相阻力将会迅速增大,从而抑制水基工作液侵入储层。综上认为,超致密砂岩气藏储层的纳微米喉道和高温导致的厚水膜是助力油基钻开液滤液抑制后续水基工作液侵入的重要因素。
-
2.3 油滴抑制裂缝有机盐完井液气驱返排机理
-
油基钻开液滤液残留在裂缝中的油滴对有机盐完井液自吸后的气驱返排过程具有一定的抑制作用,其抑制机理主要包括两点:①油基钻开液滤液处理后的裂缝岩样在油基钻开液滤液自吸—气驱返排后裂缝内存在残余的油滴。由于裂缝面的渗流空间相对较大,有机盐完井液自吸速率较慢,残余的油滴对有机盐完井液的自吸过程影响较小。但在有机盐完井液的气驱返排过程中,油气水三相在高速气体渗流作用下,油滴将占据裂缝内较窄的渗流通道,从而阻碍侵入有机盐完井液的气驱返排过程,起到抑制有机盐完井液气驱返排的作用。② 由于有机盐完井液气驱返排过程中气体的流速较快,在油滴的阻碍作用下,相同驱替压差条件下油基钻开液滤液处理过的岩样裂缝内气体流速更慢,从而显著降低残留有机盐完井液的蒸发作用,这也是气驱返排开始后裂缝岩样液相饱和度迅速维持基本稳定的原因。最终,导致油基钻开液滤液处理后的裂缝岩样气驱返排后最终的液相饱和度偏高。
-
图6 超致密砂岩气藏后续水基工作液侵入的液阻效应作用机理
-
Fig.6 Action mechanism diagram of hydraulic resistance of subsequent water-based working fluid invading into ultra-tight sandstone reservoir
-
2.4 矿场应用意义
-
钻开超致密砂岩气藏储层过程中,油基钻开液滤液对储层造成明显的损益双重效应:有益于基块的液相圈闭损害保护效果,但有损于储层裂缝的液相圈闭损害保护效果。因此,超致密砂岩气藏如果使用油基钻开液,若无漏失发生,油基钻开液有良好的液相圈闭损害保护效果;若有漏失发生,油基钻开液有助于降低基块液相圈闭损害风险,但可能加剧裂缝的液相圈闭损害程度。结合目前的开采实际,超致密砂岩气藏投产前基本均需进行水力压裂施工作业[24]。水力压裂作业后将形成大量渗流能力远高于天然裂缝的人工裂缝,基块的液相圈闭损害程度成为阻碍气井稳产的关键。考虑油基钻开液在抑制超致密砂岩气藏基块综合液相圈闭损害有显著优势,认为超致密砂岩气藏钻开液优选时油基钻开液是较为理想的钻开液体系类型。
-
3 结论
-
为了模拟塔里木盆地超致密砂岩气藏钻井— 中途测试—压井作业—完井测试 4 个阶段,通过综合钻开液滤液自发渗吸实验—气驱返排实验—完井液自发渗吸实验—气驱返排实验等 4 种实验,构建了超致密砂岩气藏钻开液滤液—有机盐完井液顺序接触诱发超致密砂岩气藏综合液相圈闭损害实验方法。
-
综合液相圈闭损害实验评价结果显示:基块岩样油基钻开液滤液和有机盐钻开液滤液分别与有机盐完井液顺序接触后综合液相圈闭渗透率损害率分别为 86.00% 和 98.37%;裂缝岩样顺序接触后综合液相圈闭渗透率损害率分别为 99.95% 和 63.45%。油基钻开液滤液对储层造成明显的损益双重效应:即有益于基块的液相圈闭损害保护效果,但有损于裂缝的液相圈闭损害保护效果。
-
超致密砂岩气藏特殊的黏土矿物类型、产状以及狭小喉道尺寸导致油基钻开液滤液能够抑制基块后续水基工作液的侵入;裂缝内残留的油基钻开液滤液油滴在有机盐完井液自吸后气驱返排过程中阻碍有机盐完井液的返排及蒸发是油基钻开液滤液对超致密砂岩气藏基块及裂缝综合液相圈闭损害损益双重效应的机理。
-
符号解释
-
L ——油滴长度,μm;
-
p ——液相阻力,MPa;
-
p 1——前弯液面附加压力,MPa;
-
p 2——后弯液面附加压力,MPa;
-
p c——毛管压力,MPa;
-
R 1——前弯液面曲率半径,μm;
-
R 2——后弯液面曲率半径,μm;
-
γ——油水界面张力,N/m。
-
参考文献
-
[1] 顾忆,万旸璐,黄继文,等“.大埋深、高压力”条件下塔里木盆地超深层油气勘探前景[J].石油实验地质,2019,41(2):157-164.GU Yi,WAN Yanglu,HUANG Jiwen,et al.Prospects for ultradeep oil and gas in the“deep burial and high pressure”Tarim Ba⁃ sin[J].Petroleum Geology & Experiment,2019,41(2):157-164.
-
[2] 王金铎,曾治平,宫亚军,等.深部超压储层发育机制及控制因素——以准噶尔盆地永进油田为例[J].油气地质与采收率,2020,27(3):13-19.WANG Jinduo,ZENG Zhiping,GONG Yajun,et al.Development mechanism and controlling factors of deep overpressured reser⁃ voir:A case study of Yongjin Oilfield in Junggar Basin[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(3):13-19.
-
[3] 王珂,杨海军,张惠良,等.超深层致密砂岩储层构造裂缝特征与有效性——以塔里木盆地库车坳陷克深8气藏为例[J].石油与天然气地质,2018,39(4):719-729.WANG Ke,YANG Haijun,ZHANG Huiliang,et al.Characteris⁃ tics and effectiveness of structural fractures in ultra-deep tight sandstone reservoir:A case study of Keshen-8 gas pool in Kuqa Depression,Tarim Basin[J].Oil & Gas Geology,2018,39(4):719-729.
-
[4] 王振彪,孙雄伟,肖香姣.超深超高压裂缝性致密砂岩气藏高效开发技术——以塔里木盆地克拉苏气田为例[J].天然气工业,2018,38(4):87-95.WANG Zhenbiao,SUN Xiongwei,XIAO Xiangjiao.Efficient de⁃ velopment technologies for ultradeep,overpressured and fractured sandstone gas reservoirs:A cased study of the Kelasu Gas Field in the Tarim Basin[J].Natural Gas Industry,2018,38(4):87-95.
-
[5] BENNION D B,BIETZ R F,THOMAS F B,et al.Reductions in the productivity of oil and low permeability gas reservoirs due to aqueous phase trapping[J].Journal of Canadian Petroleum Tech⁃ nology,1994,33(9):45-54.
-
[6] YOU Lijun,KANG Yili.Integrated evaluation of water phase trap⁃ ping damage potential in tight gas reservoirs[C].SPE 122034-MS.
-
[7] 杨洋.低孔低渗气藏高温高压储层损害因素分析[J].断块油气田,2019,26(5):622-625.YANG Yang.Damage factors of high temperature and high pres⁃ sure reservoirs in low porosity and low permeability formation[J].Fault-Block Oil and Gas Field,2019,26(5):622-625.
-
[8] 吕佳蕾,吴因业.鄂尔多斯盆地中部地区致密砂岩储层敏感性及损害机理[J].大庆石油地质与开发,2019,38(3):167-174.LÜ Jialei,WU Yinye.Sensitivities and damage mechanisms of the tight sandstone reservoir in Central Ordos Basin[J].Petroleum Ge⁃ ology & Oilfield Development in Daqing,2019,38(3):167-174.
-
[9] 王俊杰,胡勇,刘义成,等.致密砂岩气层毛细管自吸水锁损害及控制因素[J].断块油气田,2019,26(5):626-631.WANG Junjie,HU Yong,LIU Yicheng,et al.Damage of water blocking by spontaneous imbibition in tight sandstone gas reser⁃ voir and its controlling factors[J].Fault-Block Oil and Gas Field,2019,26(5):626-631.
-
[10] CAI J C,PERFECT E,CHENG C L,et al.Generalized modeling of spontaneous imbibition based on Hagen-Poiseuille flow in tortu⁃ ous capillaries with variably shaped apertures[J].Langmuir,2014,30(18):5 142-5 151.
-
[11] YANG Liu,GE Hongkui,SHI Xian,et al.The effect of microstruc⁃ ture and rock mineralogy on water imbibition characteristics in tight reservoirs[J].Journal of Natural Gas Science and Engineer⁃ ing,2016,34:1 461-1 471.
-
[12] 秦军,张宗斌,崔志松,等.温度对昌吉油田吉7井区稠油油藏油水相对渗透率的影响[J].中国石油勘探,2018,23(6):107-112.QIN Jun,ZHANG Zongbin,CUI Zhisong,et al.Effect of tempera⁃ ture on oil/water relative permeability of heavy oil reservoirs in Well J7,Changji oilfield[J].China Petroleum Exploration,2018,23(6):107-112.
-
[13] BENNION D B,THOMAS F B,RIETZ R F,et al.Remediation of water and hydrocarbon phase trapping problems in low permeabili⁃ ty gas reservoirs[J].Journal of Canadian Petroleum Technology,1999,38(8):1-10.
-
[14] Al-YASERI A,Al-MUKAINAH H,LEBEDEV M,et al.Impact of fines and rock wettability on reservoir formation damage[J].Geo⁃ physical Prospecting,2016,64(4):860-874.
-
[15] JOOYBAI H S,POURAFSHARY P.Potential severity of phase trapping in petroleum reservoirs:An analytical approach to predic⁃ tion[J].SPEJ,2017,22(3):863-874.
-
[16] 朱金智,游利军,李家学,等.油基钻井液对超深裂缝性致密砂岩气藏的保护能力评价[J].天然气工业,2017,37(2):62-68.ZHU Jinzhi,YOU Lijun,LI Jiaxue,et al.Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs[J].Natural Gas Industry,2017,37(2):62-68.
-
[17] 王珂,张惠良,张荣虎,等.超深层致密砂岩储层构造裂缝特征及影响因素——以塔里木盆地克深2气田为例[J].石油学报,2016,37(6):715-727,742.WANG Ke,ZHANG Huiliang,ZHANG Ronghu,et al.Characteris⁃ tics and influencing factors of ultra-deep tight sandstone reservoir structual fracture:a case study of keshen-2 gas field,Tarim Basin [J].Acta Petrolei Sinica,2016,37(6):715-727,742.
-
[18] 江同文,滕学清,杨向同.塔里木盆地克深8超深超高压裂缝性致密砂岩气藏快速、高效建产配套技术[J].天然气工业,2016,36(10):1-9.JIANG Tongwen,TENG Xueqing,YANG Xiangtong.Integrated techniques for rapid and highly-efficient development and pro⁃ duction of ultra-deep tight sand gas reservoirs of Keshen8 Block in the Tarim Basin[J].Natural Gas Industry,2016,36(10):1-9.
-
[19] 康毅力,张晓怡,游利军,等.页岩气藏自然返排缓解水相圈闭损害实验研究[J].天然气地球科学,2017,28(6):819-827.KANG Yili,ZHANG Xiaoyi,YOU Lijun,et al.The experimental research on spontaneous flowbacl relieving aqueous phase trap⁃ ping damage in shale gas reservoirs[J].Natural Gas Geoscience,2017,28(6):819-827.
-
[20] ZHANG Dujie,KANG Yili,SELVADURAI A P S,et al.The role of phase trapping on permeability reduction in an ultra-deep tight sandstone gas reservoirs[J].Journal of Petroleum Science and En⁃ gineeirng,2019,178:311-323.
-
[21] XI Kelai,CAO Yingchang,LIU Keyu,et al.Authigenic minerals related to wettability and their impacts on oil accumulation in tight sandstone reservoirs:An example from the Lower Cretaceous Quantou Formation in the southern Songliao Basin,China[J].Jour⁃ nal of Asian Earth Sciences,2018,178:173-192.
-
[22] 康毅力,张杜杰,游利军,等.塔里木盆地超深致密砂岩气藏储层流体敏感性评价[J].石油与天然气地质,2018,39(4):738-748.KANG Yili,ZHANG Dujie,YOU Lijun,et al.Fluid sensitivity evaluation of ultra-deep tight sandstone gas reservoirs,Tarim Ba⁃ sin[J].Oil & Gas Geology,2018,39(4):738-748.
-
[23] 王瑞飞,陈军斌,孙卫.特低渗透砂岩油田开发贾敏效应探讨——以鄂尔多斯盆地中生界延长组为例[J].地质科技情报,2008,27(5):82-86.WANG Ruifei,CHEN Junbin,SUN Wei.Jamin effect in the ultralow permeability sandstone oil field development:an example from Yanchang formation of Mesozoic strata[J].Geological Sci⁃ ence and Technology Information,2008,27(5):82-86.
-
[24] 江同文,孙雄伟.库车前陆盆地克深气田超深超高压气藏开发认识与技术对策[J].天然气工业,2018,38(6):1-9.JIANG Tongwei,SUN Xiongwei.Development of Keshen ultradeep and ultra-high pressure gas reservoirs in the Kuqa foreland basin,Tarim Basin:Understanding points and technical counter⁃ measures[J].Natural Gas Industry,2018,38(6):1-9.
-
摘要
液相圈闭损害一直被认为是致密砂岩气藏储层损害的重要机理。由于储层物性特征及工作液类型不同,超致密砂岩气藏的液相圈闭损害程度和损害机理存在差异。为此,以塔里木盆地超致密砂岩气藏为例,建立模拟钻井—中途测试—压井作业—完井测试等 4个阶段实际作业环节的油基/有机盐钻开液滤液—有机盐完井液顺序接触诱发超致密砂岩气藏综合液相圈闭损害的评价方法,并选取典型超致密砂岩气藏基块及裂缝样品开展实验评价。结果表明:基块油基/有机盐钻开液滤液—有机盐完井液顺序接触后的综合液相圈闭渗透率损害率分别为 86.00%和98.37%;裂缝油基/有机盐钻开液滤液—有机盐完井液顺序接触后的综合液相圈闭渗透率损害率分别为 99.95% 和 63.45%。分析发现:超致密砂岩气藏特殊的黏土矿物类型和产状以及狭小喉道导致油基钻开液滤液抑制基块后续水基工作液侵入;裂缝内残留的油基钻开液滤液(油滴)在后续气驱返排过程中阻碍有机盐完井液的返排及蒸发是油基钻开液缓解基块综合液相圈闭损害、加剧裂缝综合液相圈闭损害的主要机理。
Abstract
Liquid trapping damage has always been considered as an important reservoir damage mechanism of tight sand- stone gas reservoirs. The degree and mechanism of the liquid trapping damage of ultra-tight sandstone gas reservoirs vary with different physical characteristics and working fluid types of reservoirs. In this paper,we studied the ultra-tight sand- stone gas reservoirs in the Tarim Basin. The evaluation method simulating the four stages of drilling-drill stem test-killing operations-completion testing was proposed to test the comprehensive liquid trapping damage induced by the sequential contact of oil-based/organic salt drill-in fluid filtrates-organic salt completion fluids. The typical matrix and fractured sam- ples were selected. The results showed that the permeability damage rates(PDRs)of comprehensive liquid trapping of the matrix sample treated by the sequential contact of oil-based/organic salt drill-in fluid filtrates-organic salt completion flu- id were 86.00% and 98.37%,respectively. The corresponding two parameters of fractured samples were 99.95% and 63.45%,respectively. Analysis indicates that the special clay mineral types,occurrence,and narrow throats of ultra-tight sandstone gas reservoir cause oil-based drill-in fluid filtrates to suppress the intrusion of the subsequent water-based working fluids for the matrix sample. That the remaining oil-based drill-in fluid droplets in the fractures obstructing the flowback and evaporation of the organic salt completion fluid during the subsequent flowback process is the main mecha- nism for the oil-based drill-in fluids’mitigating the comprehensive liquid trapping damage of matrix and aggravating the comprehensive phase trapping damage of fractures.