en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

陈杰(1980—),男,重庆江津人,高级工程师,硕士,从事海外油气藏综合地质研究工作。E-mail:chenj-sc@cnpc.com.cn。

中图分类号:TE122.1

文献标识码:A

文章编号:1009-9603(2021)01-0047-10

DOI:10.13673/j.cnki.cn37-1359/te.2021.01.006

参考文献 1
金之钧,蔡立国.中国海相层系油气地质理论的继承与创新 [J].地质学报,2007,81(8):1 017-1 024. JIN Zhijun,CAI Liguo.Inheritance and innovation of marine petroleum geological theory in China[J].Acta Geologica Sinica,2007,81(8):1 017-1 024.
参考文献 2
邹才能,陶士振.海相碳酸盐岩大中型岩性地层油气田形成的主要控制因素[J].科学通报,2007,52(增刊Ⅰ):32-39.ZOU Caineng,TAO Shizhen.Major controlling factors for the formation of large-medium lithologic oil and gas fields in marine carbonate rocks[J].Chinese Science Bulletin,2007,52(Supplement Ⅰ):32-39.
参考文献 3
金之钧.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘,2005,12(3):15-22.JIN Zhijun.Particularity of petroleum exploration on marine carbonate strata in China sedimentary basins[J].Earth Science Frontiers,2005,12(3):15-22.
参考文献 4
吕修祥,金之钧.碳酸盐岩油气田分布规律[J].石油学报,2000,21(3):8-12.LÜ Xiuxiang,JIN Zhijun.Distribution patterns of oil-gas fields in the carbonate rock[J].Acta Petrolei Sinica,2000,21(3):8-12.
参考文献 5
袁晓飞.断裂向下输导油气成藏分布的主控因素[J].大庆石油地质与开发,2020,39(2):36-41.YUAN Xiaofei.Main controlling factors of the oil-gas accumulation distribution by the downward transportation of the faults[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):36-41.
参考文献 6
杨勇,汤良杰,蒋华山,等.塔里木盆地巴楚隆起断裂分期差异活动特征及其变形机理[J].石油实验地质,2014,36(3):275-284.YANG Yong,TANG Liangjie,JIANG Huashan,et al.Characteristics and deformation mechanism of staging differential fault activities in Bachu Uplift,Tarim Basin[J].Petroleum Geology & Experiment,2014,36(3):275-284.
参考文献 7
李龙,张新涛,张震,等.渤海海域渤中西洼断裂控藏作用定量分析——以曹妃甸 12-6 油田为例[J].油气地质与采收率,2018,25(3):20-28.LI Long,ZHANG Xintao,ZHANG Zhen,et al.Quantitative analysis of control of faults on hydrocarbon accumulation in the west of Bozhong Subsag of Bohai Sea:A case study of CFD12-6 Oilfield [J].Petroleum Geology and Recovery Efficiency,2018,25(3):20-28.
参考文献 8
魏三妹.金马—鸭子河地区构造演化特征分析及与油气藏关系[J].油气藏评价与开发,2020,10(4):130-134.WEI Sanmei.Structural evolution characteristics and hydrocarbon accumulation of Jinma-Yazihe area[J].Reservoir Evaluation and Development,2020,10(4):130-134.
参考文献 9
陈亮,庞雄,韩晋阳,等.珠江口盆地白云深水区构造-岩性油气藏特征及成藏模式[J].特种油气藏,2019,26(1):30-36.CHEN Liang,PANG Xiong,HAN Jinyang,et al.Structural-lithologic hydrocarbon reservoir characterization and accumulation patterns in the Baiyun deep-water area of the Pearl River Mouth Basin[J].Special Oil & Gas Reservoirs,2019,26(1):30-36.
参考文献 10
李强,田晓平,孙风涛,等.辽中凹陷南洼构造转换带发育特征及其对油气成藏的控制作用[J].油气地质与采收率,2019,26(5):41-47.LI Qiang,TIAN Xiaoping,SUN Fengtao,et al.Development characteristics of structural transfer zone and its control on hydrocarbon accumulation in south subsag of Liaozhong Sag[J].Petroleum Geology and Recovery Efficiency,2019,26(5):41-47.
参考文献 11
何登发.不整合面的结构与油气聚集[J].石油勘探与开发,2007,34(2):142-149,201.HE Dengfa.Structure of unconformity and its control on hydrocarbon accumulation[J].Petroleum Exploration and Development,2007,34(2):142-149,201.
参考文献 12
张克银,艾华国,吴亚军.碳酸盐岩顶部不整合面结构层及控油意义[J].石油勘探与开发,1996,23(5):16-19,82.ZHANG Keyin,AI Huaguo,WU Yajun.Characteristics and oil-controlling significance of unconformity structure layer on top of carbonate rock[J].Petroleum Exploration and Development,1996,23(5):16-19,82.
参考文献 13
白国平,牛斌斌,陈君,等.阿拉伯板块被动陆缘盆地油气差异富集主控因素[J].石油实验地质,2020,42(1):103-112,155.BAI Guoping,NIU Binbin,CHEN Jun,et al.Differential hydrocarbon enrichment and controlling factors in passive margin basins of the Arabian Plate[J].Petroleum Geology & Experiment,2020,42(1):103-112,155.
参考文献 14
白国平.波斯湾盆地油气分布主控因素初探[J].中国石油大学学报:自然科学版,2007,31(3):28-32,38.BAI Guoping.A preliminary study of main control factors on oil and gas distribution in Persian Gulf Basin[J].Journal of China University of Petroleum:Edition of Natural Science,2007,31(3):28-32,38.
参考文献 15
罗贝维,张庆春,段海岗,等.中东鲁卜哈利盆地白垩纪构造演化的沉积响应及对石油勘探启示[J].中国石油勘探,2020,25(4):115-124.LUO Beiwei,ZHANG Qingchun,DUAN Haigang,et al.Sedimentary response of Cretaceous tectonic evolution in the Middle East Rub Al Khali Basin and its inspirations for oil exploration[J].China Petroleum Exploration,2020,25(4):115-124.
参考文献 16
LOOSVELD Ramon J H,BELL Andy,TERKEN Jos J M.The tectonic evolution of interior Oman[J].GeoArabia,1996,1(1):28-51.
参考文献 17
SEARLE M P,MOHAMMED Y Ali.Structural and tectonic evolution of the Jabal Sumeini-AI Ain-Buraini region,norther Oman and eastern United Arab Emirates[J].GeoArabia,2009,14(1):115-142.
参考文献 18
TERKEN J M J,FREWIN N L,INDRELID S L.Petroleum systems of Oman:charge time and risks[J].AAPG Bulletin,2001,85(10):1 817-1 845.
参考文献 19
POLLASTRO R M.Ghaba salt basin province and Fahud salt basin province,Oman-geological overview and total petroleum systems[J]U.S.Geological Survey Bulletin,2000,2167:1-41.
参考文献 20
TERKEN J M J.The Natih petroleum system of North Oman[J].GeoArabia,1999,4(2):157-180.
参考文献 21
GRANTHAM P J,LIJMBACH G W M,POSTHUMA J,et al.Origin of crude oils in Oman[J].Journal of Petroleum Geology,2007,11(1):61-80.
参考文献 22
AI BALUSHI S A K,MACQUAKER J H S,HOLLIS C,et al.Influence of oxic diagenesis on source potential and lithofacies cyclicity:insight from Cenomanian Natih-B Member intrashelf basinal carbonates,Oman[J].Petroleum Geoscience,2011,17(3):243-261.
参考文献 23
MUKHOPADHYAY A,ALSULAIMI J,AI AWADI E,et al.An overview of the Tertiary geology and hydrogeology of the northern part of the Arabian Gulf region with special reference to Kuwait [J].Earth-Science Reviews,1996,40(3/4):259-295.
参考文献 24
SALLER A,POLLITT D,DICKSON J.Diagenesis and porosity development in the First Eocene reservoir at the giant Wafra Field,Partitioned Zone,Saudi Arabia and Kuwait[J].AAPG Bulletin,2014,98(6):1 185-1 212.
参考文献 25
WANI M R,AI-KABLI S K.Sequence stratigraphy and reservoir characterization of the 2nd Eocene dolomite reservoir,Wafra Field,Divided zone,Kuwait-Saudi Arabia[R].SPE 92827,2005.
参考文献 26
ROSENTHAL E,WEINBERGER G,ALMOGI LABIN A,et al.Late cretaceous-early tertiary development of depositional basins in Samaria as a reflection of eastern mediterranean tectonic evolution[J].AAPG Bulletin,2000,84(7):997-1 014.
参考文献 27
ALSHARHAN A S,NAIRN A E M.Tertiary of the Arabian Gulf sedimentology and hydrocarbon potential[J].Palaeogeography,Palaeoclimatology,Palaeoecoloy,1995,114(2/4):369-384.
参考文献 28
SCHLÜTER M,STEUBER T,PARENTE M,et al.Evolution of a Maastrichtian-Paleocene tropical shallow water carbonate platform(Qalhat,NE Oman)[J].Facies,2008,54:513-527.
目录contents

    摘要

    阿曼盆地发育多套成藏组合,油气资源丰富。前人研究主要集中于盆地内古生界和中生界成藏组合,对新生界成藏组合研究较少。结合区域构造演化、烃源岩分布、埋藏史等资料,以原油组分、岩心、测井和地震等资料为基础,对阿曼盆地北部古近系Umm Er Radhuma组碳酸盐岩储层开展研究,分析其储层特征、生烃来源、运移途径、成藏特征,建立成藏模式,探讨其成藏主控因素。结果表明:阿曼盆地北部古近系Umm Er Radhuma组碳酸盐岩储层埋藏浅、压实作用弱、孔隙发育,上部Rus组石膏层为其盖层,储盖条件优越;烃源为白垩系Natih组富含有机质的泥灰岩,生烃中心位于工区东部法胡德盐盆内。岩心地球化学分析表明:工区内烃源并未成熟,Umm Er Radhuma组油藏原油是法胡德盐盆烃源生烃后沿断层和不整合面向上、向西运移而来;白垩系顶部不整合面、溶蚀断裂塌陷通道及局部微构造是阿曼盆地北部古近系Umm Er Radhuma组碳酸盐岩油气成藏的关键因素,具有断裂沟通、沿不整合面运移、局部微构造控藏的特征。

    Abstract

    Rich in hydrocarbon resource,Oman Basin develops multiple sets of hydrocarbon accumulation. The previous studies mainly focused on the source-reservoir assemblages in the Paleozoic and Mesozoic reservoirs,but less on those in Cenozoic reservoirs. In this paper,the Paleogene Umm Er Radhuma carbonate reservoir in the north of Oman Basin had been studied to analyze the reservoir characteristics,hydrocarbon resource,migration path,and accumulation features and establish hydrocarbon accumulation patterns to discuss the main controlling factors based on data about crude oil composition,core,logging,and seismic combined with documents on regional tectonic evolution,source rock distribution and burial history. The results show the favorable reservoir-cap conditions. On one hand,the Paleogene Umm Er Radhuma carbonate formation in the north of Oman Basin is buried shallowly and compacted weakly with developed pores. On the other hand, the Rus gypsum horizon in the upper part can be used as the high-quality caprock. Also,according to the results,the hydrocarbon source is the organic-rich marl in the Cretaceous Natih carbonate formation and the hydrocarbon generation center is located in the Fahud salt basin in the eastern work area. In accordance with the geochemical analysis of core,the hydrocarbon source in the work area is not mature;the crude oil in the Umm Er Radhuma carbonate reservoir is from the Fahud salt basin in which the generated hydrocarbon is migrating upwards and westwards along the fault and plane of unconformity. The plane of unconformity on top of the Cretaceous system,the collapse channel of dissolution fault,and local microstructure are the key factors for hydrocarbon accumulation in the Paleogene Umm Er Radhuma carbonate reservoir in the north of Oman Basin and are characterized by“fault communication,migration along the plane of unconformity,and local microstructure in control”.

  • 海相碳酸盐岩油气资源丰富,中外学者对海相碳酸盐岩储层开展了大量研究工作,认为影响海相碳酸盐岩油气富集的主要因素包括:储层发育程度与连通性、断裂系统分布、油气运移方向与通道、成藏时间及成藏期构造格局等[1-4]。断裂系统、不整合面等因素不仅影响储层质量,而且作为油气运移的有效通道,对油气聚集成藏产生较大影响,纵向上控制油气富集层位,平面上影响油气富集区带[5-12]

  • 阿曼盆地油气资源丰富,主要含气层系为古生界二叠系和寒武系—奥陶系的碎屑岩地层,主要含油层系为白垩系和侏罗系的碳酸盐岩地层,前人的研究主要集中在古生界和中生界的成藏组合。近年来中国石油公司在阿曼盆地北部工区首次发现了新生界古近系 Umm Er Radhuma 组(以下简称 UeR 组)碳酸盐岩油藏,但对其油气成藏过程、成藏特征及主控因素均不甚清楚,而实际上该区构造变化和油气运移过程复杂,严重制约了下一步勘探开发工作。笔者结合阿曼盆地构造演化、烃源岩分布、埋藏史等资料,利用工区内原油组分、岩心、测井和地震等资料对古近系 UeR 组碳酸盐岩油气成藏特征及主控因素进行分析,探讨其成藏过程,以期为下步勘探开发提供参考依据。

  • 1 区域地质特征

  • 阿曼盆地位于阿拉伯板块东南部,临近伊朗和非洲板块,绝大部分位于阿曼境内,向南延伸至也门,向北延伸至阿联酋和伊朗,面积约为 15.3×104 km2。阿曼盆地北部以阿曼山前缘推覆体为界,南部以阔若隆起为界,东部以侯格夫隆起为界,西部边界与著名的鲁卜哈利盆地接壤,具有“四隆三盆” 的特征。从北到南分别发育费胡德盐盆、哈巴盐盆和南阿曼盐盆,这些盐盆是阿曼盆地最重要的油气产区;其他构造单元包括:莱克威尔隆起、苏雷纳赫前渊、卜塔布欧—皂里耶隆起、中阿曼台地、侯格夫隆起、东翼区、胡丹—哈斯法赫隆起等,这些构造单元将盐盆分开或位于盐盆的翼部[13-16] (图1)。

  • 图1 阿曼盆地构造分区与研究区位置

  • Fig.1 Structures of Oman Basin and location of work area

  • 1.1 构造演化特征

  • 阿曼盆地经历了多期构造运动,其发育始于前寒武纪的克拉通裂谷,随后于古生代演化为内陆凹陷;中生代随着冈瓦纳大陆的解体而发展成为被动大陆边缘盆地;晚白垩世—新近纪,由于阿曼山的逆冲推覆作用,在盆地东北部形成前陆盆地。前后共经历了 6 个主要阶段[16-19]:①前寒武纪—寒武纪早期同裂谷演化阶段(距今 930∼654 Ma)。在阿拉伯板块内北西—南东走向的纳吉得断裂带左旋应力场和扎格罗斯构造带右旋应力场的共同作用下,阿曼境内发育多个盐盆,盐盆内广泛分布富含有机质的烃源岩沉积物和盐岩,盐岩的后期运动和部分溶解在很大程度上控制了盐盆内的构造形态。② 寒武纪—志留纪克拉通内拗陷阶段(距今 654∼550 Ma)。随着裂谷活动的停止,阿曼盆地经历了一次大的断裂构造活动,盆地再次伸展拗陷,形成了由海进和海退沉积序列组成的 6 个沉积旋回,发育一套陆相碎屑岩。③泥盆纪—石炭纪前陆盆地演化阶段(距今 550∼404 Ma)。冈瓦纳大陆北部被动大陆边缘变为活动大陆边缘,特提斯板块俯冲其下或是仰冲至冈瓦纳大陆,造成了阿拉伯板块大范围 (包括阿曼盆地)的隆升和剥蚀,早志留世—晚石炭世地层严重剥蚀。④晚石炭世—早三叠世克拉通内拗陷阶段(距今 404∼310 Ma)。挤压和热穹隆作用随着海西事件的结束而停止,阿曼盆地又回到了拉张和轻微沉降的构造背景下,沉积作用重新开始。受板块运动影响,阿拉伯半岛南部漂移至中纬度地区,直到早二叠世末,区域性微沉降与低纬度地区之间的板块运动相互作用,在阿曼盆地形成了广泛的浅海相灰岩、白云岩和页岩沉积。⑤三叠纪—晚白垩世被动大陆边缘演化阶段(距今310∼230 Ma)。这一时期,整个阿拉伯板块北缘形成和发育了宽广稳定的碳酸盐岩台地,广泛沉积了均一性良好的碳酸盐岩、页岩和蒸发岩,发育了完整的多套生储盖组合,形成了阿拉伯板块最重要的含油气单元。⑥ 晚白垩世—新近纪前陆盆地演化阶段(距今230 Ma 至今)。在晚白垩世,逆冲推覆体与蛇绿岩复合体向西南方向被挤压到阿曼被动大陆边缘北东翼上,阿曼山开始隆起,持续的俯冲和区域性挤压导致前陆盆地发育。在坎帕阶—早麦斯里西特阶,欧亚板块向南持续插入引起地壳下降、物质快速沉积,造成北阿曼盐盆的扩张;在晚麦斯里希特阶,阿曼盆地变形终止。古新世—始新世阿曼盆地相对稳定,直到早渐新世由于欧亚板块和阿拉伯板块碰撞造成的第 2 次阿尔卑斯运动开始,盆地的沉积作用才得以终止。

  • 1.2 沉积充填特征

  • 阿曼盆地不同时期的沉积与构造活动密切相关,总的来看,古生界盆地以海相、海陆过渡相的碎屑岩沉积为主,中生界到新生界中期以海相碳酸盐岩沉积为主,新生界中晚期为陆相碎屑岩沉积。前寒武纪—寒武纪早期,阿曼盆地内发育的盐盆沉积了浅海碳酸盐岩、碎屑岩和蒸发岩,最早的碎屑岩沉积为冰川碎屑岩。晚奥陶世—早志留世和晚石炭世—早二叠世,盆地内又沉积了两期冰川沉积物。泥盆纪—石炭纪,阿拉伯板块向北移动导致阿曼盆地发生轻微挤压,淡水被冰体阻塞造成盐的溶解。晚二叠世—古新世,新特提斯洋张开,阿曼盆地所在的阿拉伯板块北缘发育成为被动大陆边缘,形成了广泛的碳酸盐岩台地沉积,发育稳定的碳酸盐岩和泥岩。晚白垩世,随着阿曼山隆起,阿曼盆地北缘形成快速沉降的前陆盆地,发育一套稳定分布的碳酸盐岩、白云岩和膏岩。晚中新世,阿拉伯板块与欧亚板块的碰撞达到顶点,阿曼盆地发生隆升,海相沉积环境被陆相沉积环境所替代[18-19] (图2)。

  • 1.3 含油气系统分布特征

  • 阿曼盆地具有良好的生储盖条件,盆地内主要发育 4套烃源岩、7套盖层和 12套储层,组成了 5套较大的含油气系统[17-21] (图3):①寒武系—奥陶系 Huqf 含油气系统。烃源岩为前寒武系—寒武系 Huqf 群页岩和沥青质白云岩,储层为寒武系 Huqf 群、奥陶系 Haima群碎屑岩,盖层为寒武系 Ara组膏岩层。Huqf群烃源岩是阿曼盆地最重要的烃源岩,在盆地内广泛分布,埋藏深,目前已进入生气窗口。该套含油气系统是阿曼盆地主要的产气层系。② 寒武系Dhahaban含油气系统。烃源岩为Ara组膏岩层中的 Dhahaban 泥页岩,所生成的原油也被称为 “Q”油。Dhahaban 烃源岩在阿曼盆地广泛分布,生成的原油具有“早期垂向运移,后期长距离横向运移”的特点,其含油气组合在阿曼盆地各盐盆中各不相同:在南阿曼盐盆,储层为二叠系Gharif组碎屑岩,其上 Khuff 组致密灰岩为盖层,以气藏为主;在中部哈巴盐盆和北部法胡德盐盆,储层为白垩系 Shuaiba 组碳酸盐岩层,上部 Nahr Umr 组泥岩为盖层,主要为油藏。③奥陶系Safiq含油气系统。烃源岩为奥陶系Safiq组海相页岩,储层为二叠系Haushi 群碎屑岩,盖层为其内部的页岩层。该套含油气系统在阿曼盆地分布范围有限,仅在盆地西部有发现。④侏罗系—白垩系 Diyab含油气系统。烃源岩为侏罗系 Diyab组沥青质灰岩。该套烃源岩在阿曼盆地没有分布,而是分布在盆地西部的鲁卜哈利盆地内(主要分布在沙特和阿联酋境内),储层为白垩系 Shuaiba 组碳酸盐岩,其上 Nahr Umr 组泥岩为盖层。阿曼盆地西部莱克威尔隆起带大部分油田白垩系 Shuaiba 组油藏即属于此套含油气系统。⑤白垩系Natih含油气系统。白垩系Natih组从上至下分为A—G共7段,其中Natih—B富含有机质的泥灰岩地层为烃源岩层;储层包括各段的生物碎屑灰岩,盖层为上部 Fiqa 组泥岩。该套含油气系统是阿曼盆地北部最重要的含油气系统之一,具有典型的自生自储特征。

  • 图2 阿曼盆地地层综合柱状图(据文献[18]修改)

  • Fig.2 Stratigraphic column of Oman Basin(Modified by Reference[18]

  • 2 油气成藏条件

  • 阿曼盆地北部已有 2 口井在 UeR 组油藏投产,原油品质好,具有低密度、低黏度、低含硫特征:地层原油密度平均约为0.764 g/cm3,为轻质原油;地层原油黏度为1.008~1.66 mPa·s,平均值为1.126 mPa· s,流动性好;原油含硫量为0.08%~0.21%,平均值为 0.17%,为低含硫原油。

  • 录井、测井和测试显示 UeR 组油藏油气显示具有明显的分区性。工区东部和西部油气显示差,显示较好的井均位于工区中部。已测试投产的2口井均位于工区南部,白垩系地层剥蚀线附近(图3)。

  • 图3 阿曼盆地北部UeR组油藏油气显示分布

  • Fig.3 Hydrocarbon shows of UeR reservoir in the north of Oman Basin

  • 2.1 储层条件

  • 晚白垩世—早始新世,整个阿拉伯板块为稳定的浅海碳酸盐岩台地—蒸发台地环境[23-28],UeR 组在阿拉伯板块广泛发育,其上为 Rus 组石膏与膏质白云岩地层,平均厚度达 80 m 以上;下伏白垩系 Fiqa 组泥岩或 Natih 组灰岩,呈不整合接触,平均埋深为788 m,厚度约为310 m,工区内地层分布稳定,自上而下分为 3 段:Upper UeR,Lower UeR 和 Shammar。储层岩性主要为白云岩、灰岩以及白云质灰岩,富含生物碎屑,主要有介形虫、货币虫、棘皮动物等浅海生物(图4)。UeR组埋藏浅、压实作用弱,物性良好,测井解释储层平均孔隙度达 25% 以上,平均渗透率为 50 mD 以上,为高孔中高渗透孔隙型碳酸盐岩储层。

  • 2.2 烃源条件

  • 阿曼盆地共有 4 套烃源岩,其中在盆地北部发育 2 套烃源岩,生成的原油充注于不同的油藏中。 Huqf群烃源岩生成的原油先通过断层垂向运移、再长距离横向运移充注进入白垩系Shuaiba组油藏,其烃源中心位于南阿曼盐盆中心;白垩系Natih组烃源岩生成的原油充注于Natih组生物碎屑灰岩储层中,形成自生自储型油藏,其生烃中心位于法胡德盐盆坳陷,排烃时期在白垩纪末期[19-21]。通过对比 UeR 组油藏原油地球化学特征,结合区域烃源岩分布,综合判断 UeR 组油藏原油来自于白垩系 Natih 组烃源岩(表1):①UeR 组原油重度为 27 API,与工区内白垩系 Natih 组原油(27.8 API)基本一致,与工区内白垩系Shuaiba组原油明显不同(38.2 API)。②UeR 组原油碳同位素值为-27.7‰,与 Natih 组原油接近 (-28.6‰),与 Shuaiba 组原油(-34.0‰)明显不同。 ③UeR组原油植烷与姥鲛烷比值为0.98,与Naith组原油一致。

  • 图4 阿曼盆地北部古近系UeR组岩屑薄片

  • Fig.4 Thin slices of Paleogene UeR Formation debris in the north of Oman Basin

  • 表1 阿曼盆地北部UeR组油藏原油与不同烃源原油地化指标对比

  • Table1 Comparison between geochemical indexes of oil samples from UeR reservoir and different hydrocarbon sources in the north of Oman Basin

  • 白垩系 Natih 组烃源岩是阿曼盆地重要的烃源之一,岩性为黑色富含有机质灰岩,平均厚度达 50 m,有机碳含量(TOC)最高达 15%,平均可达 5%,生烃潜力优异,为Ⅰ-Ⅱ型干酪根。工区内共有4口井在 Natih—B 段取心,并开展了相关地球化学分析。结果表明:工区内 Natih—B 段 TOC 值为 0.2%~7.14%,平均值为 2.45%;生烃潜量(S1+S2)为 1.25~77.35 mg/g,平均值达 23.8 mg/g,为优质烃源岩。最高热解峰温(Tmax)为 415~431℃,平均值为 424℃,处于未成熟阶段(图5)。

  • 图5 阿曼盆地北部Natih—B段烃源地球化学分析

  • Fig.5 Geochemical analysis of hydrocarbon source of Natih-B bed in the north of Oman Basin

  • 2.3 构造条件

  • 工区内古近系 UeR 组顶构造形态为一北低南高的单斜构造,没有明显的完整构造圈闭发育,最低构造线海拔为-780 m,最高为-600 m,构造倾角为 0.73o,地形平缓(图3)。UeR 组地层构造形态与阿曼盆地晚白垩纪以来的构造演化密切相关,特别是 2 期阿尔卑斯构造运动,对盆地内中—新生界构造形态产生很大的影响[18]:①白垩纪末期阿曼盆地进入挤压和前陆阶段,发育第Ⅰ期阿尔卑斯构造运动,造成盆地北部白垩系向西抬升,在莱克威尔地区达到最高,并出露地表遭受剥蚀,地层西高东低,地层剥蚀线由东向西逐渐剥蚀(图6)。②古近纪— 新近纪,阿曼盆地处于浅海碳酸岩台地—蒸发台地环境,沉积发育稳定的Hudramaut群碳酸盐岩地层,包括 UeR 和 Simgiua 组灰岩、白云岩,后期沉积一套潟湖相Rus组膏岩层,整体构造形态平稳(图6)。③ 新近纪末期,第Ⅱ期阿尔卑斯构造运动开始,受扎格罗斯构造运动的影响,阿拉伯板块向北俯冲至欧亚大陆下方,盆地北部阿曼山隆起,造成地层由北向南逐渐抬升,在盆地北部越靠近阿曼山,构造变形越强烈,距离阿曼山较远的区域,构造抬升较为平缓(图6)。

  • 图6 阿曼盆地北部白垩纪后构造演化(据文献[18]修改)

  • Fig.6 Post-Cretaceous tectonic evolution in the north of Oman Basin(Modified by Reference[18]

  • 阿曼盆地是一个多期叠合盆地,构造运动强烈,各期次断裂非常发育。这些断裂发育在新生代之前,具有很强继承性,沟通深部烃源,对中生界油气成藏过程的油气运移、特别是纵向运移起着重要作用[16-18]。阿曼盆地自白垩纪以来,进入挤压和前陆盆地阶段,2 期阿尔卑斯构造运动使得早期古生代、中生代产生的断裂继承性发展,白垩纪断裂系统异常发育,显示出以下几方面特征(图7):①白垩纪断裂系统异常发育。工区内白垩纪断裂是古生代断裂系统的继承,受 2 期阿尔卑斯构造运动的影响,均为正断层,断距为20~100 m,主要发育北北西和北北东 2 组走向;断裂纵向延伸大,多为深大断裂,可贯通整个中生界,部分甚至深达古生界。② 古近纪不同区域断裂发育程度不尽相同。晚白垩世第Ⅰ期阿尔卑斯构造运动后,阿曼盆地北部地层向西抬升隆起,东部沉积了厚达数百米的 Fiqa组泥岩层,阻挡了断层向上发育,而在西部泥岩沉积薄、甚至没有沉积缺失,断层可以向上发育沟通古近系。③部分断裂显示出“溶蚀塌陷”特征:一是地震剖面显示这类断裂具有一定宽度,断裂内地震波形显示明显的同相轴下拉的杂乱状地震反射特征;在平面地震相干属性上,显示明显的椭圆形高密度特征。二是地震剖面显示这类断裂向上发育沟通整个古近系。分析认为晚白垩世第Ⅰ期阿尔卑斯构造运动后,白垩系抬升隆起,出露地表,受大气淡水淋滤作用的影响,淡水沿断裂侵蚀,可形成“溶蚀塌陷”带。

  • 3 油气成藏模式与主控因素

  • 阿曼盆地北部古近系 UeR 组碳酸盐岩地层埋藏浅、物性好,上覆 Rus 组膏岩层作为其盖层,具有优质的储盖组合。油气来源于白垩系 Natih 组烃源岩,生烃潜力大,烃源条件好,但工区内烃源现今并未成熟,原油是从东部法胡德盐盆生烃洼陷中沿断裂和不整合面运移而来,是“下生上储”型油藏(图8)。

  • 图7 阿曼盆地北部东西向地震剖面与相干分析(剖面线见图3)

  • Fig.7 West-east seismic section and coherence analysis in the north of Oman Basin(See Fig.3 for section line)

  • 晚白垩世中期,受第Ⅰ期阿尔卑斯构造运动的影响,阿曼北部地层向西抬升,呈现西高东低的形态,并在莱克威尔地区达到最高点,白垩系上部地层由西向东逐渐遭受剥蚀。白垩纪末期,第Ⅰ期阿尔卑斯构造运动结束,工区东部沉积了逐渐增厚的Fiqa 组泥岩层。古近纪到新近纪早期,阿拉伯半岛处于一个较为稳定的状态,整个半岛处于宽浅的浅海碳酸盐岩台地—蒸发台地环境中,稳定发育了 UeR 组碳酸盐岩地层,上覆 Rus 组石膏层。新近纪末期,由于第Ⅱ期阿尔卑斯构造运动的影响,阿拉伯板块向北俯冲至欧亚大陆下方,使得阿曼北部阿曼山隆起,地层向南抬升。与此同时,工区东侧法胡德盐盆中白垩系Natih组烃源岩开始成熟排烃,受白垩纪断层发育影响,原油先垂向运移至Natih组顶部;受上覆 Fiqa 组泥岩的阻挡,原油沿不整合面向西向构造高部位运移。当原油运移至 Fiqa 组泥岩层沉积较薄或剥蚀殆尽区域附近,断裂系统沟通白垩系和古近系,原油开始垂向运移,进入古近系UeR 组中,并在局部隆起的圈闭中聚集成藏。

  • 图8 阿曼盆地北部古近系UeR组油气成藏模式(剖面线见图3)

  • Fig.8 Hydrocarbon accumulation pattern of Paleogene UeR reservoir in the north of Oman Basin(See Fig.3 for section line)

  • 阿曼盆地北部 UeR 组油藏构造形态简单,但其成藏过程与下部的白垩系不整合面、断裂系统等发育密不可分:①白垩系与古近系不整合面是原油横向运移的重要通道。工区东部法胡德盐盆 Natih 组烃源排烃后,原油沿断裂垂向运移至上部 Natih 组中,受到上覆 Fiqa组泥岩遮挡作为盖层,若 Natih 组发育有效圈闭则可聚集成藏;若无有效圈闭则继续沿不整合面向西向高部位运移。当原油运移至白垩系顶部泥岩层剥蚀殆尽区域,即工区中部,如果存在断裂系统,则原油继续向上运移。②“断裂系统”是白垩系原油垂向运移至古近系的关键通道。阿曼盆地是一个多期叠合盆地,经历多期构造运动,特别是白垩纪晚期到新近纪的 2 期阿尔卑斯构造运动使得工区内断裂系统异常发育,这些断裂系统是原油垂向运移的通道。研究表明:古近系 UeR 组断裂系统并不是简单的断层,是先期断裂,后期溶蚀,再塌陷形成的断裂溶蚀塌陷带,地震剖面显示为一定宽度的破碎带,在相干平面上表现为圆环状相干异常体(图7)。强烈的挤压和扭转构造运动形成断层后,白垩系顶面暴露溶蚀,地表淡水沿断裂不断溶蚀,而造成一定范围岩层破碎,越靠近断裂溶蚀塌陷的区域,原油越容易向上运移。③局部构造圈闭发育控制了油藏规模。内古近系 UeR 组分布稳定,为北低南高的单斜构造,没有完整的构造圈闭发育;储层埋藏浅、压实作用弱,物性良好,因此岩性圈闭不发育。阿曼盆地晚期构造运动强烈,局部范围内存在一定的构造隆起,如果这些局部构造隆起与不整合面、断裂系统空间匹配较好,原油可运移聚集成藏。

  • 4 结论

  • 阿曼盆地北部古近系 UeR 组碳酸盐岩地层分布稳定,储层岩性以白云岩、灰岩和灰质白云岩为主,粒间孔发育,储层物性好,为高孔中高渗孔隙型储层;构造为北低南高的单斜,无明显构造圈闭发育。阿曼盆地北部古近系 UeR 组油藏原油来自于东部法胡德盐盆中白垩系Natih组烃源岩,古近系末期开始排烃,原油首先沿断裂系统垂向运移,再沿不整合面向西横向运移;受白垩系顶部 Fiqa组泥岩层阻挡影响,在剥蚀面附近,原油沿断裂溶蚀塌陷带垂向运移至 UeR 组聚集成藏。阿曼盆地北部古近系 UeR 组油藏储层物性好,上部 Rus 组膏岩层是有效盖层;不整合面、断裂溶蚀塌陷区域与局部微幅构造是油气成藏的主控因素,具有断裂沟通、沿不整合面运移、局部微幅构造控藏的特点。

  • 参考文献

    • [1] 金之钧,蔡立国.中国海相层系油气地质理论的继承与创新 [J].地质学报,2007,81(8):1 017-1 024. JIN Zhijun,CAI Liguo.Inheritance and innovation of marine petroleum geological theory in China[J].Acta Geologica Sinica,2007,81(8):1 017-1 024.

    • [2] 邹才能,陶士振.海相碳酸盐岩大中型岩性地层油气田形成的主要控制因素[J].科学通报,2007,52(增刊Ⅰ):32-39.ZOU Caineng,TAO Shizhen.Major controlling factors for the formation of large-medium lithologic oil and gas fields in marine carbonate rocks[J].Chinese Science Bulletin,2007,52(Supplement Ⅰ):32-39.

    • [3] 金之钧.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘,2005,12(3):15-22.JIN Zhijun.Particularity of petroleum exploration on marine carbonate strata in China sedimentary basins[J].Earth Science Frontiers,2005,12(3):15-22.

    • [4] 吕修祥,金之钧.碳酸盐岩油气田分布规律[J].石油学报,2000,21(3):8-12.LÜ Xiuxiang,JIN Zhijun.Distribution patterns of oil-gas fields in the carbonate rock[J].Acta Petrolei Sinica,2000,21(3):8-12.

    • [5] 袁晓飞.断裂向下输导油气成藏分布的主控因素[J].大庆石油地质与开发,2020,39(2):36-41.YUAN Xiaofei.Main controlling factors of the oil-gas accumulation distribution by the downward transportation of the faults[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):36-41.

    • [6] 杨勇,汤良杰,蒋华山,等.塔里木盆地巴楚隆起断裂分期差异活动特征及其变形机理[J].石油实验地质,2014,36(3):275-284.YANG Yong,TANG Liangjie,JIANG Huashan,et al.Characteristics and deformation mechanism of staging differential fault activities in Bachu Uplift,Tarim Basin[J].Petroleum Geology & Experiment,2014,36(3):275-284.

    • [7] 李龙,张新涛,张震,等.渤海海域渤中西洼断裂控藏作用定量分析——以曹妃甸 12-6 油田为例[J].油气地质与采收率,2018,25(3):20-28.LI Long,ZHANG Xintao,ZHANG Zhen,et al.Quantitative analysis of control of faults on hydrocarbon accumulation in the west of Bozhong Subsag of Bohai Sea:A case study of CFD12-6 Oilfield [J].Petroleum Geology and Recovery Efficiency,2018,25(3):20-28.

    • [8] 魏三妹.金马—鸭子河地区构造演化特征分析及与油气藏关系[J].油气藏评价与开发,2020,10(4):130-134.WEI Sanmei.Structural evolution characteristics and hydrocarbon accumulation of Jinma-Yazihe area[J].Reservoir Evaluation and Development,2020,10(4):130-134.

    • [9] 陈亮,庞雄,韩晋阳,等.珠江口盆地白云深水区构造-岩性油气藏特征及成藏模式[J].特种油气藏,2019,26(1):30-36.CHEN Liang,PANG Xiong,HAN Jinyang,et al.Structural-lithologic hydrocarbon reservoir characterization and accumulation patterns in the Baiyun deep-water area of the Pearl River Mouth Basin[J].Special Oil & Gas Reservoirs,2019,26(1):30-36.

    • [10] 李强,田晓平,孙风涛,等.辽中凹陷南洼构造转换带发育特征及其对油气成藏的控制作用[J].油气地质与采收率,2019,26(5):41-47.LI Qiang,TIAN Xiaoping,SUN Fengtao,et al.Development characteristics of structural transfer zone and its control on hydrocarbon accumulation in south subsag of Liaozhong Sag[J].Petroleum Geology and Recovery Efficiency,2019,26(5):41-47.

    • [11] 何登发.不整合面的结构与油气聚集[J].石油勘探与开发,2007,34(2):142-149,201.HE Dengfa.Structure of unconformity and its control on hydrocarbon accumulation[J].Petroleum Exploration and Development,2007,34(2):142-149,201.

    • [12] 张克银,艾华国,吴亚军.碳酸盐岩顶部不整合面结构层及控油意义[J].石油勘探与开发,1996,23(5):16-19,82.ZHANG Keyin,AI Huaguo,WU Yajun.Characteristics and oil-controlling significance of unconformity structure layer on top of carbonate rock[J].Petroleum Exploration and Development,1996,23(5):16-19,82.

    • [13] 白国平,牛斌斌,陈君,等.阿拉伯板块被动陆缘盆地油气差异富集主控因素[J].石油实验地质,2020,42(1):103-112,155.BAI Guoping,NIU Binbin,CHEN Jun,et al.Differential hydrocarbon enrichment and controlling factors in passive margin basins of the Arabian Plate[J].Petroleum Geology & Experiment,2020,42(1):103-112,155.

    • [14] 白国平.波斯湾盆地油气分布主控因素初探[J].中国石油大学学报:自然科学版,2007,31(3):28-32,38.BAI Guoping.A preliminary study of main control factors on oil and gas distribution in Persian Gulf Basin[J].Journal of China University of Petroleum:Edition of Natural Science,2007,31(3):28-32,38.

    • [15] 罗贝维,张庆春,段海岗,等.中东鲁卜哈利盆地白垩纪构造演化的沉积响应及对石油勘探启示[J].中国石油勘探,2020,25(4):115-124.LUO Beiwei,ZHANG Qingchun,DUAN Haigang,et al.Sedimentary response of Cretaceous tectonic evolution in the Middle East Rub Al Khali Basin and its inspirations for oil exploration[J].China Petroleum Exploration,2020,25(4):115-124.

    • [16] LOOSVELD Ramon J H,BELL Andy,TERKEN Jos J M.The tectonic evolution of interior Oman[J].GeoArabia,1996,1(1):28-51.

    • [17] SEARLE M P,MOHAMMED Y Ali.Structural and tectonic evolution of the Jabal Sumeini-AI Ain-Buraini region,norther Oman and eastern United Arab Emirates[J].GeoArabia,2009,14(1):115-142.

    • [18] TERKEN J M J,FREWIN N L,INDRELID S L.Petroleum systems of Oman:charge time and risks[J].AAPG Bulletin,2001,85(10):1 817-1 845.

    • [19] POLLASTRO R M.Ghaba salt basin province and Fahud salt basin province,Oman-geological overview and total petroleum systems[J]U.S.Geological Survey Bulletin,2000,2167:1-41.

    • [20] TERKEN J M J.The Natih petroleum system of North Oman[J].GeoArabia,1999,4(2):157-180.

    • [21] GRANTHAM P J,LIJMBACH G W M,POSTHUMA J,et al.Origin of crude oils in Oman[J].Journal of Petroleum Geology,2007,11(1):61-80.

    • [22] AI BALUSHI S A K,MACQUAKER J H S,HOLLIS C,et al.Influence of oxic diagenesis on source potential and lithofacies cyclicity:insight from Cenomanian Natih-B Member intrashelf basinal carbonates,Oman[J].Petroleum Geoscience,2011,17(3):243-261.

    • [23] MUKHOPADHYAY A,ALSULAIMI J,AI AWADI E,et al.An overview of the Tertiary geology and hydrogeology of the northern part of the Arabian Gulf region with special reference to Kuwait [J].Earth-Science Reviews,1996,40(3/4):259-295.

    • [24] SALLER A,POLLITT D,DICKSON J.Diagenesis and porosity development in the First Eocene reservoir at the giant Wafra Field,Partitioned Zone,Saudi Arabia and Kuwait[J].AAPG Bulletin,2014,98(6):1 185-1 212.

    • [25] WANI M R,AI-KABLI S K.Sequence stratigraphy and reservoir characterization of the 2nd Eocene dolomite reservoir,Wafra Field,Divided zone,Kuwait-Saudi Arabia[R].SPE 92827,2005.

    • [26] ROSENTHAL E,WEINBERGER G,ALMOGI LABIN A,et al.Late cretaceous-early tertiary development of depositional basins in Samaria as a reflection of eastern mediterranean tectonic evolution[J].AAPG Bulletin,2000,84(7):997-1 014.

    • [27] ALSHARHAN A S,NAIRN A E M.Tertiary of the Arabian Gulf sedimentology and hydrocarbon potential[J].Palaeogeography,Palaeoclimatology,Palaeoecoloy,1995,114(2/4):369-384.

    • [28] SCHLÜTER M,STEUBER T,PARENTE M,et al.Evolution of a Maastrichtian-Paleocene tropical shallow water carbonate platform(Qalhat,NE Oman)[J].Facies,2008,54:513-527.

  • 参考文献

    • [1] 金之钧,蔡立国.中国海相层系油气地质理论的继承与创新 [J].地质学报,2007,81(8):1 017-1 024. JIN Zhijun,CAI Liguo.Inheritance and innovation of marine petroleum geological theory in China[J].Acta Geologica Sinica,2007,81(8):1 017-1 024.

    • [2] 邹才能,陶士振.海相碳酸盐岩大中型岩性地层油气田形成的主要控制因素[J].科学通报,2007,52(增刊Ⅰ):32-39.ZOU Caineng,TAO Shizhen.Major controlling factors for the formation of large-medium lithologic oil and gas fields in marine carbonate rocks[J].Chinese Science Bulletin,2007,52(Supplement Ⅰ):32-39.

    • [3] 金之钧.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘,2005,12(3):15-22.JIN Zhijun.Particularity of petroleum exploration on marine carbonate strata in China sedimentary basins[J].Earth Science Frontiers,2005,12(3):15-22.

    • [4] 吕修祥,金之钧.碳酸盐岩油气田分布规律[J].石油学报,2000,21(3):8-12.LÜ Xiuxiang,JIN Zhijun.Distribution patterns of oil-gas fields in the carbonate rock[J].Acta Petrolei Sinica,2000,21(3):8-12.

    • [5] 袁晓飞.断裂向下输导油气成藏分布的主控因素[J].大庆石油地质与开发,2020,39(2):36-41.YUAN Xiaofei.Main controlling factors of the oil-gas accumulation distribution by the downward transportation of the faults[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):36-41.

    • [6] 杨勇,汤良杰,蒋华山,等.塔里木盆地巴楚隆起断裂分期差异活动特征及其变形机理[J].石油实验地质,2014,36(3):275-284.YANG Yong,TANG Liangjie,JIANG Huashan,et al.Characteristics and deformation mechanism of staging differential fault activities in Bachu Uplift,Tarim Basin[J].Petroleum Geology & Experiment,2014,36(3):275-284.

    • [7] 李龙,张新涛,张震,等.渤海海域渤中西洼断裂控藏作用定量分析——以曹妃甸 12-6 油田为例[J].油气地质与采收率,2018,25(3):20-28.LI Long,ZHANG Xintao,ZHANG Zhen,et al.Quantitative analysis of control of faults on hydrocarbon accumulation in the west of Bozhong Subsag of Bohai Sea:A case study of CFD12-6 Oilfield [J].Petroleum Geology and Recovery Efficiency,2018,25(3):20-28.

    • [8] 魏三妹.金马—鸭子河地区构造演化特征分析及与油气藏关系[J].油气藏评价与开发,2020,10(4):130-134.WEI Sanmei.Structural evolution characteristics and hydrocarbon accumulation of Jinma-Yazihe area[J].Reservoir Evaluation and Development,2020,10(4):130-134.

    • [9] 陈亮,庞雄,韩晋阳,等.珠江口盆地白云深水区构造-岩性油气藏特征及成藏模式[J].特种油气藏,2019,26(1):30-36.CHEN Liang,PANG Xiong,HAN Jinyang,et al.Structural-lithologic hydrocarbon reservoir characterization and accumulation patterns in the Baiyun deep-water area of the Pearl River Mouth Basin[J].Special Oil & Gas Reservoirs,2019,26(1):30-36.

    • [10] 李强,田晓平,孙风涛,等.辽中凹陷南洼构造转换带发育特征及其对油气成藏的控制作用[J].油气地质与采收率,2019,26(5):41-47.LI Qiang,TIAN Xiaoping,SUN Fengtao,et al.Development characteristics of structural transfer zone and its control on hydrocarbon accumulation in south subsag of Liaozhong Sag[J].Petroleum Geology and Recovery Efficiency,2019,26(5):41-47.

    • [11] 何登发.不整合面的结构与油气聚集[J].石油勘探与开发,2007,34(2):142-149,201.HE Dengfa.Structure of unconformity and its control on hydrocarbon accumulation[J].Petroleum Exploration and Development,2007,34(2):142-149,201.

    • [12] 张克银,艾华国,吴亚军.碳酸盐岩顶部不整合面结构层及控油意义[J].石油勘探与开发,1996,23(5):16-19,82.ZHANG Keyin,AI Huaguo,WU Yajun.Characteristics and oil-controlling significance of unconformity structure layer on top of carbonate rock[J].Petroleum Exploration and Development,1996,23(5):16-19,82.

    • [13] 白国平,牛斌斌,陈君,等.阿拉伯板块被动陆缘盆地油气差异富集主控因素[J].石油实验地质,2020,42(1):103-112,155.BAI Guoping,NIU Binbin,CHEN Jun,et al.Differential hydrocarbon enrichment and controlling factors in passive margin basins of the Arabian Plate[J].Petroleum Geology & Experiment,2020,42(1):103-112,155.

    • [14] 白国平.波斯湾盆地油气分布主控因素初探[J].中国石油大学学报:自然科学版,2007,31(3):28-32,38.BAI Guoping.A preliminary study of main control factors on oil and gas distribution in Persian Gulf Basin[J].Journal of China University of Petroleum:Edition of Natural Science,2007,31(3):28-32,38.

    • [15] 罗贝维,张庆春,段海岗,等.中东鲁卜哈利盆地白垩纪构造演化的沉积响应及对石油勘探启示[J].中国石油勘探,2020,25(4):115-124.LUO Beiwei,ZHANG Qingchun,DUAN Haigang,et al.Sedimentary response of Cretaceous tectonic evolution in the Middle East Rub Al Khali Basin and its inspirations for oil exploration[J].China Petroleum Exploration,2020,25(4):115-124.

    • [16] LOOSVELD Ramon J H,BELL Andy,TERKEN Jos J M.The tectonic evolution of interior Oman[J].GeoArabia,1996,1(1):28-51.

    • [17] SEARLE M P,MOHAMMED Y Ali.Structural and tectonic evolution of the Jabal Sumeini-AI Ain-Buraini region,norther Oman and eastern United Arab Emirates[J].GeoArabia,2009,14(1):115-142.

    • [18] TERKEN J M J,FREWIN N L,INDRELID S L.Petroleum systems of Oman:charge time and risks[J].AAPG Bulletin,2001,85(10):1 817-1 845.

    • [19] POLLASTRO R M.Ghaba salt basin province and Fahud salt basin province,Oman-geological overview and total petroleum systems[J]U.S.Geological Survey Bulletin,2000,2167:1-41.

    • [20] TERKEN J M J.The Natih petroleum system of North Oman[J].GeoArabia,1999,4(2):157-180.

    • [21] GRANTHAM P J,LIJMBACH G W M,POSTHUMA J,et al.Origin of crude oils in Oman[J].Journal of Petroleum Geology,2007,11(1):61-80.

    • [22] AI BALUSHI S A K,MACQUAKER J H S,HOLLIS C,et al.Influence of oxic diagenesis on source potential and lithofacies cyclicity:insight from Cenomanian Natih-B Member intrashelf basinal carbonates,Oman[J].Petroleum Geoscience,2011,17(3):243-261.

    • [23] MUKHOPADHYAY A,ALSULAIMI J,AI AWADI E,et al.An overview of the Tertiary geology and hydrogeology of the northern part of the Arabian Gulf region with special reference to Kuwait [J].Earth-Science Reviews,1996,40(3/4):259-295.

    • [24] SALLER A,POLLITT D,DICKSON J.Diagenesis and porosity development in the First Eocene reservoir at the giant Wafra Field,Partitioned Zone,Saudi Arabia and Kuwait[J].AAPG Bulletin,2014,98(6):1 185-1 212.

    • [25] WANI M R,AI-KABLI S K.Sequence stratigraphy and reservoir characterization of the 2nd Eocene dolomite reservoir,Wafra Field,Divided zone,Kuwait-Saudi Arabia[R].SPE 92827,2005.

    • [26] ROSENTHAL E,WEINBERGER G,ALMOGI LABIN A,et al.Late cretaceous-early tertiary development of depositional basins in Samaria as a reflection of eastern mediterranean tectonic evolution[J].AAPG Bulletin,2000,84(7):997-1 014.

    • [27] ALSHARHAN A S,NAIRN A E M.Tertiary of the Arabian Gulf sedimentology and hydrocarbon potential[J].Palaeogeography,Palaeoclimatology,Palaeoecoloy,1995,114(2/4):369-384.

    • [28] SCHLÜTER M,STEUBER T,PARENTE M,et al.Evolution of a Maastrichtian-Paleocene tropical shallow water carbonate platform(Qalhat,NE Oman)[J].Facies,2008,54:513-527.