-
据统计,全球碳酸盐岩油藏中有 30%以上为缝洞型油藏,其中在中国西部碳酸盐岩油藏油气资源中缝洞型油藏约占三分之二,是中国石油产量增储上产的重要阵地[1-5]。塔河油田奥陶系碳酸盐岩油藏经历多期岩溶作用叠加改造,在古地貌、古水系和深大断裂的综合作用下,形成了以构造控制的表层风化壳岩溶、断控岩溶和古暗河岩溶系统为主的 3种储集体类型。其油藏埋深大于 5 400 m,储集空间类型多(以溶洞和大型裂缝为主,溶洞规模较大且连通形式多样),储层非均质性极强,以溶洞为主要储集空间,岩溶孔道和裂缝为主要流动通道,油水关系复杂[6-10]。上述特征造成塔河油田注水开发表现出见效快、失效也快的特点。截至 2019 年底,塔河油田累积注水量为4.922×104 m3,累积增油量为 735×104 t,平均吨油耗水比为 10.6。随着多轮次注水开发后,油田老区注水井组整体进入低效、失效阶段,水驱控制程度高(达到58.5%),而动用程度相对较低(仅为25.9%)。矿场实践和理论研究结果表明,缝洞型油藏的储集体规模、井间岩溶孔道、井储关系与注采参数是影响该类油藏水驱低效乃至失效的主要因素。精准识别注采井间岩溶孔道对于制定合理、有效的综合调控措施成为缝洞型油藏生产亟需解决的关键难题[11-14]。
-
目前存在许多方法对溶洞或裂隙地层的水动力特性进行表征,包括示踪剂测试、段塞测试和地球物理研究等[15-20]。使用抽水测试来分析透射率和透光率对地层刺激的水力响应,以此来完成对地层水动力特性的表征也是一种主流方法,该方法具有操作简单、成本低、零污染和准确度高的特点[21-23]。但在实际情况下,许多外部干扰是无法控制的,泵送所产生的信号可能被干扰,例如含水层补给、河流-含水层相互作用或附近注水井处的注入[24]。为了解决这一难题,谐波抽水试验是表征水力特性的一种有效方法,即使在较小的信号幅度和外部干扰下也可通过水力信号进行分析[25]。应用滤波技术与已知频率的谐波响应进行对比,可以更容易地从受环境干扰的信号中提取出由已知频率的谐波引起的液压响应[26]。谐波抽水试验通过控制周期性激发的压力特征来避免地下水流动的干扰,这种激发的信号可以通过泵送-再注入系统产生[23],甚至也可以通过移动质量块产生[24]。
-
用示踪剂或者地球物理研究等方法来识别缝洞型油藏岩溶孔道的工作流程较为繁琐、工作量大、成本高且对地层会造成一定的污染,不能较好地满足现场的需求。针对以上缝洞型油藏岩溶孔道识别方法存在的难题,笔者提出一种基于频域分析法的缝洞型油藏岩溶孔道的识别方法,可以更简单易行地识别出油藏的岩溶孔道,以便实施更合适的油气田开发方案,在低成本的基础上大幅度提高缝洞型油藏的采收率。
-
1 数学模型建立
-
针对缝洞型油藏的地质特征,建立描述该类型油藏的数学模型。利用时域和频域模拟器,结合初始条件和边界条件对控制方程进行数值模拟计算。
-
通过模拟谐波抽水试验,产生周期性流量:
-
其中:
-
为了描述二维封闭地层对谐波信号的压降响应,采用离散-连续耦合模型来表征地层[27-28]。依据达西方程和连续性方程,得到表征基质和岩溶孔道的控制方程:
-
(3)式和(4)式的初始条件和边界条件分别为:
-
通过以上控制方程和初始与边界条件,可在时域中对正弦信号引起的谐波响应进行数值模拟计算。为了减少模型边界对基质和岩溶孔道中流动的影响,在模型外围建立足够大的等效多孔介质缓冲域模型。
-
水头表达式可以表示为以下2种形式:
-
频域中的初始条件和边界条件可分别改写为:
-
依据不同位置的复数变量值,可以计算出该位置对谐波抽水信号响应的振幅和相位偏移度,其表达式分别为:
-
带有周期性特征的水头可通过频域的计算参数重新构建:
-
频域计算可通过(15)式重现随时间变化的周期性响应,避免使用时域求解器进行计算。基于实例应用结果,对频域模拟器和时域模拟器的模拟效果进行分析。
-
2 实例应用结果
-
2.1 地质模型建立
-
在谐波抽水试验中,对谐波数据进行分析和解释通常是通过实例分析实现的[31-33]。为了解释真正的缝洞型油藏的基质和岩溶孔道对谐波抽水试验的响应,笔者从真实的缝洞型油藏中取一部分区域进行模拟。图1为塔北西克尔露头区岩溶系统发育模式示意,其地质描述结果表明,该露头区古暗河、表层岩溶、断溶体叠置发育,与塔河油田奥陶系缝洞型油藏主要储集体类型基本相同,可以作为缝洞型油藏岩溶孔道识别研究的地质模型。选取图1中红色框线部分进行简化处理得到实例地质模型(图2),该地质模型的尺寸为800 m×800 m,岩溶大孔道和小孔道的水力传导率分别为 1 和 0.1 m/s,储水系数均为1 × 10-8 m-1;基质水力传导率为1 × 10-6 m/s,储水系数为1 × 10-4 m-1。
-
在模型中共设有 11口钻井,分别位于 4个不同类型的区域(图2)。其中 P2,P7 和 P11 井位于 1 类区域,即岩溶大孔道处;P3,P4,P8 和 P9 井位于 2 类区域,即岩溶小孔道处;P5,P6 和 P10 井位于 3 类区域,即靠近岩溶孔道的基质中;P1井位于 4类区域,即远离岩溶孔道的基质中。
-
2.2 结果分析
-
笔者在求解包含初始条件和边界条件的控制方程时,使用 COMSOL Multiphysics5.4软件,在建立的自由三角形网格上使用有限元方法进行计算。实例地质模型被封装在 1 500 m×1 500 m 的缓冲区内,缓冲区的水力传导率为1 × 10-3 m/s,储水系数为 1 × 10-4 m-1,边界条件为定压边界。缓冲区的存在降低了模型边界对模型中心区域压力传播的影响。
-
2.2.1 时域模拟器压力响应计算
-
在时域模拟器中,以P7井为压力注入点进行抽水测试,以周期为10 min、注入振幅为0.04 m3 /s的周期性流量信号进行计算。结果(图3a)表明,注水后 P7井以及其他 10口井的水头信号呈现出周期性的变化特征,但与 P7井相比,其他 10口井水头的振幅出现了一定程度的削减,相位也出现了不同程度的偏移。
-
2.2.2 频域模拟器压力响应计算
-
在频域模拟器中,同样以P7井为压力注入点进行抽水测试,以周期为10 min、注入振幅为0.04 m3 /s 的周期性流量信号进行计算。如图3b所示,在频域内计算各井的水头响应随时间的变化与时域内计算的结果相同,由此验证频域内计算结果的准确性。在时域内模拟计算的时间为131 s,而频域内模拟计算的时间仅为12 s,节省了约92%的时间成本,因此可在较大程度上提高现场开发效率。
-
图1 塔北西克尔露头区岩溶系统发育模式
-
Fig.1 Development pattern of karst system in Xiker outcrop area in north part of Tarim Basin
-
图2 缝洞型油藏岩溶孔道地质模型
-
Fig.2 Geological models of karst channels in fracture-cavity reservoirs
-
图3 11口井的水头响应随时间的变化特征
-
Fig.3 Changes of head responses of eleven wells with time
-
图4a 为整个基质区域和岩溶孔道区域对于 P7 井谐波信号的振幅响应。为了更直观地观察振幅削减度,将模拟结果的水头显示范围设置为 0~0.2 m,如图4b 所示。对比可知,存在周期性响应的区域主要集中在岩溶孔道区域,而基质区域对于谐波信号的响应几乎为0。由此认为谐波信号主要沿着岩溶孔道传播。
-
图4 基质区域和岩溶孔道区域对于P7井谐波信号的振幅响应
-
Fig.4 Amplitude responses of matrices and karst channels to harmonic signal of Well P7
-
分析整个基质和岩溶孔道区域内相对于 P7 井谐波信号的相位偏移度(图5)可知,沿着岩溶孔道区域内传播的信号几乎不存在相位偏移,或者相位偏移度很小,普遍小于 70°;而从岩溶孔道到基质方向上传播的信号发生较大程度的相位偏移,表现为沿着岩溶孔道的法向方向变化。据此认为谐波信号相位偏移度小(小于 70°)的区域为岩溶孔道区域,谐波信号相位偏移度大(普遍大于 100°)的区域为基质区域。
-
图5 基质和岩溶孔道区域内相对于P7井谐波信号的相位偏移度
-
Fig.5 Phase shifts of matrices and karst channels to harmonic signal of Well P7
-
由图4 和图5 可以得到,信号是否位于岩溶孔道区域内仅根据振幅削减度或者相位偏移度均可大致判断,但也存在一定的误差。例如 P1,P5,P6, P9和 P10井的振幅削减度均小于等于 10%,可以大致判断其均位于基质区域内,但实际上P9井位于岩溶孔道区域内,因此不能仅依据振幅削减度来判断其是否位于岩溶孔道区域内。且从表1中可以观察到,P1,P2,P3,P4,P7,P8,P9和P11井的相位偏移度较小,均小于 70°,实际上 P1 井位于基质区域内,而并非都位于岩溶孔道区域内,因此仅依据相位偏移度判断所属区域也存在一定的问题。为了解决这一难题,笔者综合分析振幅削减度和相位偏移度,进而识别缝洞型油藏内的岩溶孔道。
-
为了更加直观地研究振幅削减度和相位偏移度所反映的区域属性,将各井位对于P7井谐波信号的振幅削减度和相位偏移度分别标注在井位分布图上,通过比较相对于谐波信号的空间振荡响应可以分为 5 种情况。由图6 可以看出,P2,P4,P7 和 P11 井位于大岩溶孔道或较近的小岩溶孔道中,表现为振幅削减度均大于 50%、相位偏移度小;P3 和 P8井位于距离注水点较远的小岩溶孔道中,表现为振幅削减度均小于 30%、相位偏移度较小;P9 井位于远离注水点的小岩溶孔道中,表现为振幅削减度小于 10%、相位偏移度小;P5,P6和 P10井位于基质中,但在岩溶孔道附近,表现为振幅削减度均小于或等于 10%、相位偏移度大;P1 井位于基质中且远离岩溶孔道,表现为振幅消失。
-
图6 各测试井对P7井谐波信号响应的振幅削减度以及相位偏移度
-
Fig.6 Amplitude reduction and phase shift of response of each measuring well to harmonic signal of Well P7
-
通过比较以上 5 种情况的振幅和相位偏移特征,可进一步分为三大类别:①幅度几乎为0的响应 (几乎没有信号)(图6中的P1井响应),其测试点和注水点之间的流动路径主要位于基质中。②相位偏移度较低的幅度响应(图6 中的 P2,P3,P4,P7, P8,P9 和 P11 井响应),其注水点在岩溶孔道中,测试点与注水点之间的流动路径位于岩溶孔道中。
-
3 结论
-
笔者采用谐波压力响应分析的方法识别缝洞型油藏岩溶孔道,该方法具有抗干扰、成本低和准确度高的特点。在实例分析中,分别应用时域模拟器和频域模拟器进行谐波响应计算,压力求解结果显示频域模拟器与时域模拟器得到了同样的结果,并且频域模拟器求解速度快,相比于时域模拟器更有优势。
-
缝洞型油藏内的压力主要通过岩溶孔道传输,不同位置水头响应的振幅和相位存在不同程度的削减和偏移。通过分析各位置的水头响应对于谐波信号的振幅削减度和相位偏移度,提出了一种识别缝洞型油藏岩溶孔道和基质的方法。该方法的实例应用结果主要分为 3 种情况:幅度几乎为 0 的响应,其测试点位于基质中;相位偏移度较低的幅度响应,其测试点位于岩溶孔道中;相位偏移度较高的幅度响应,其测试点位于靠近岩溶孔道的基质中。通过以上方法可以简易地识别出油藏的岩溶孔道,便于实施更合适的油气田开发方案,在低成本的基础上大幅度提高缝洞型油藏的采收率。
-
符号解释
-
h——水头,表示基质或岩溶孔道区域内的水力压降,m;
-
hT——带有周期性特征的水头,m;
-
i——虚数单位;
-
Im——复数虚部计算符;
-
Kkar ——岩溶孔道的水力传导率,m/s;
-
Kmat ——基质的水力传导率,m/s;
-
M——对谐波抽水信号响应的振幅,m;
-
Q——流量,m3 /s;
-
Qm——流量的振幅,m3 /s;
-
Re——复数实部计算符;
-
Skar ——岩溶孔道的储水系数,m-1;
-
Smat ——基质的储水系数,m-1;
-
t——时间,s;
-
T——流量的周期,s;
-
x——横向坐标,m;
-
xp——位于基质或岩溶孔道中的抽水井的横坐标位置;
-
y——纵向坐标,m;
-
γω——复数域内给定频率下的波相量;
-
δ(x-xp)——狄利克雷分布函数;
-
ϕ——相位偏移度,(°);
-
ω——角速度,s -1;
-
Ω——整个基质和岩溶孔道区域;
-
Ωboundary——域边界;
-
∇T——岩溶孔道中的切线梯度算子。
-
参考文献
-
[1] YANG Haijun,ZHANG Hui,YIN Guoqing,et al.Geomechanics-based geology-engineering integration boosting high-efficiency exploration of fractured-vuggy carbonate reservoirs-a case study on West Yueman block,northern Tarim Basin[J].China Petroleum Exploration,2018,23(2):27-36.
-
[2] ZHENG Jianfeng,PAN Wenqing,SHEN Anjiang,et al.Reservoir geological modeling and significance of Cambrian Xiaoerblak Formation in Keping outcrop area,Tarim Basin,NW China[J].Petroleum Exploration and Development,2020,47(3):536-547.
-
[3] YUE Ping,XIE Zhiwei,LIU Haohan,et al.Application of water injection curves for the dynamic analysis of fractured-vuggy carbonate reservoirs[J].Journal of Petroleum Science and Engineering,2018,169:220-229.
-
[4] LI Yang,HOU Jiagen,LI Yongqiang.Features and classified hierarchical modeling of carbonate fracture-cavity reservoirs[J].Petroleum Exploration and Development,2016,43(4):655-662.
-
[5] 余智超,王志章,魏荷花,等.塔河油田缝洞型油藏不同成因岩溶储集体表征[J].油气地质与采收率,2019,26(6):53-61.YU Zhichao,WANG Zhizhang,WEI Hehua,et al.Characterization of fracture-cave karst reservoirs with different genesis in Tahe Oilfield[J].Petroleum Geology and Recovery Efficiency,2019,26(6):53-61.
-
[6] 雷川,陈红汉,苏奥,等.塔河地区奥陶系深埋岩溶洞穴特征及保存机制初探[J].岩性油气藏,2014,26(2):27-31.LEI Chuan,CHEN Honghan,SU Ao,et al.Characteristics and preservation mechanism of the Ordovician deep burial karst caves in Tahe area[J].Lithologic Reservoirs,2014,26(2):27-31.
-
[7] 黄太柱,蒋华山,马庆佑.塔里木盆地下古生界碳酸盐岩油气成藏特征[J].石油与天然气地质,2014,35(6):780-787.HUANG Taizhu,JIANG Huashan,MA Qingyou.Hydrocarbon accumulation characteristics in Lower Paleozoic Carbonate reservoirs of Tarim Basin[J].Oil & Gas Geology,2014,35(6):780-787.
-
[8] 吕海涛,丁勇,耿锋.塔里木盆地奥陶系油气成藏规律与勘探方向[J].石油与天然气地质,2014,35(6):798-805.LÜ Haitao,DING Yong,GENG Feng.Hydrocarbon accumulation patterns and favorable exploration areas of the Ordovician in Tarim Basin[J].Oil & Gas Geology,2014,35(6):798-805.
-
[9] 李阳,范智慧.塔河奥陶系碳酸盐岩油藏缝洞系统发育模式与分布规律[J].石油学报,2011,32(1):101-106.LI Yang,FAN Zhihui.Developmental pattern and distribution rule of the fracture-cavity system of Ordovician carbonate reservoirs in the Tahe Oilfield[J].Acta Petrolei Sinica,2011,32(1):101-106.
-
[10] 杨景斌,侯吉瑞.缝洞型碳酸盐岩油藏岩溶储集体注氮气提高采收率实验[J].油气地质与采收率,2019,26(6):107-114.YANG Jingbin,HOU Jirui.Experimental study on enhanced oil recovery by nitrogen injection in fracture-cave carbonate reservoir [J].Petroleum Geology and Recovery Efficiency,2019,26(6):107-114.
-
[11] LU X,WANG Y,TIAN F,et al.New insights into the carbonate karstic fault system and reservoir formation in the Southern Tahe area of the Tarim Basin[J].Marine and Petroleum Geology,2017,86:587-605.
-
[12] 杨鹏飞,张丽娟,郑多明,等.塔里木盆地奥陶系碳酸盐岩大型缝洞集合体定量描述[J].岩性油气藏,2013,25(6):89-94.YANG Pengfei,ZHANG Lijuan,ZHENG Duoming,et al.Quantitative characterization of Ordovician carbonate fracture-cavity aggregate in Tarim Basin[J].Lithologic Reservoirs,2013,25(6):89-94.
-
[13] 常少英,邓兴梁,常中英,等.岩溶洞穴型储层发育期次识别技术及应用[J].中国石油勘探,2018,23(3):109-114.CHANG Shaoying,DENG Xingliang,CHANG Zhongying,et al.The identification technology for developmental periods of karst cave reservoirs and its application[J].China Petroleum Exploration,2018,23(3):109-114.
-
[14] 刘遥,荣元帅,杨敏.碳酸盐岩缝洞型油藏缝洞单元储量精细分类评价[J].石油实验地质,2018,40(3):431-438.LIU Yao,RONG Yuanshuai,YANG Min.Detailed classification and evaluation of reserves in fracture-cavity units for carbonate fracture-cavity reservoirs[J].Petroleum Geology & Experiment,2018,40(3):431-438.
-
[15] 李牧.缝洞型油藏注气示踪剂解释方法研究[D].成都:西南石油大学,2017:1-84.LI Mu.Study on gas tracer interpretation method of gas flooding in fractured vuggy reservoir[D].Chengdu:Southwest Petroleum University,2017:1-84.
-
[16] 巫波,刘遥,荣元帅,等.碳酸盐岩油藏缝洞差异连通及水淹特征研究[J].特种油气藏,2015,22(1):131-133.WU Bo,LIU Yao,RONG Yuanshuai,et al.Fracture-cavern different connections and water-out in carbonate reservoir[J].Special Oil & Gas Reservoirs,2015,22(1):131-133.
-
[17] 杨再广.碳酸盐岩油藏缝洞连通关系及堵水研究[D].成都:西南石油大学,2014:1-86.YANG Zaiguang.Study on the connection between fractures and caves and water plugging in carbonate reservoirs[D].Chengdu:Southwest Petroleum University,2014:1-86.
-
[18] 王楠.示踪剂监测技术在油田调整中的应用[J].化工管理,2017,(5):25.WANG Nan.Application of tracer monitoring technology in oilfield adjustment[J].Chemical Enterprise Management,2017,(5):25.
-
[19] 苏柳榕.井间示踪剂测试解释方法研究[D].成都:西南石油大学,2011:1-78.SU Liurong.Research on the interpretation method of cross-well tracer test[D].Chengdu:Southwest Petroleum University,2011:1-78.
-
[20] 肖阳,何文,罗慎超,等.缝洞单元类型快速识别方法[J].油气地质与采收率,2018,25(6):120-126.XIAO Yang,HE Wen,LUO Shenchao,et al.A fast recognition method of fractured-vuggy unit type[J].Petroleum Geology and Recovery Efficiency,2018,25(6):120-126.
-
[21] BUTLER J J.Hydrogeological methods for estimation of spatial variations in hydraulic conductivity[M]//RUBIN Yorum,HUBBARD S S,eds.Hydrogeophysics.Berlin:Springer,2005:23-58.
-
[22] 方刚,刘柏根.基于巴拉素井田多孔抽水试验的含水层特征及水力联系研究[J].水文,2019,39(3):36-40,67.FANG Gang,LIU Baigen.Research on aquifers characteristics and hydraulic connection based on multiple drilling pumping tests in Balasu well field[J].Journal of China Hydrology,2019,39(3):36-40,67.
-
[23] 张国伟.基于抽水试验的上海第Ⅱ承压含水层特性分析[J].勘察科学技术,2019,37(1):47-52.ZHANG Guowei.Characteristics analysis of theⅡconfined aquifer in Shanghai based on pumping test[J].Site Investigation Science and Technology,2019,37(1):47-52.
-
[24] CARDIFF M,BARRASH W,KITANIDIS P K,et al.A potential-based inversion of unconfined steady-state hydraulic tomography [J].Ground Water,2009,47(2):259-270.
-
[25] CARDIFF M,BARRASH W.Analytical and semi-analytical tools for the design of oscillatory pumping tests[J].Ground Water,2015,53(6):896-907.
-
[26] BAKHOS T,CARDIFF M,BARRASH W,et al.Data processing for oscillatory pumping tests[J].Journal of Hydrology,2014,511:310-319.
-
[27] TEUTSCH G.An extended double-porosity concept as a practical modelling approach for a karstified terrain[C]//GUNAY G,JOHNSON A I,BACK W.Hydrogeological processes in Karst Terranes.Wallingford:IAHS Press,1993:281-292.
-
[28] LIEDL R,SAUTER M,HÜCKINGHAUS D,et al.Simulation of the development of karst aquifers using a coupled continuum pipe flow model[J].Water Resources Research,2003,39(3):10-57.
-
[29] BLACK J H,KIPP K L.Determination of hydrogeological parameters using sinusoidal pressure tests:A theoretical appraisal[J].Water Resources Research,1981,17(3):686-692.
-
[30] CARDIFF M,BAKHOS T,KITANIDIS P K,et al.Aquifer heterogeneity characterization with oscillatory pumping:Sensitivity analysis and imaging potential[J].Water Resources Research,2013,49(9):5 395-5 410.
-
[31] RENNER J,MESSAR M.Periodic pumping tests[J].Geophysical Journal International,2006,167(1):479-493.
-
[32] DAGAN G,RABINOVICH A.Oscillatory pumping wells in phreatic,compressible,and homogeneous aquifers[J].Water Resources Research,2014,50(8):7 058-7 066.
-
[33] RABINOVICH A,BARRASH W,CARDIFF M,et al.Frequency dependent hydraulic properties estimated from oscillatory pumping tests in an unconfined aquifer[J].Journal of Hydrology,2015,531:2-16.
-
摘要
精准识别注采井间岩溶孔道是缝洞型油藏治理水窜通道、扩大注水波及,进而实现该类强非均质性油藏均衡驱替的关键问题。以古暗河岩溶缝洞型油藏为研究对象,提出针对该类油藏岩溶孔道的识别方法。通过对比时域模拟器与频域模拟器的模拟结果,验证了频域模拟器的准确性和高效性,得到了岩溶孔道区域内参数变化所反映的地层特征。研究结果表明,应用谐波压力响应分析的方法识别岩溶孔道具有抗干扰、成本低和准确度高的优点。缝洞型油藏内压力传输主要遵循岩溶孔道,不同位置水头响应的振幅和相位存在不同程度的削减和偏移,通过综合分析各位置的水头响应对于谐波信号的振幅削减度和相位偏移度,即可识别测试点所处区域。结果显示,幅度几乎为0的响应,其测试点位于基质中;相位偏移度较低的幅度响应,其测试点位于岩溶孔道中;相位偏移度较高的幅度响应,其测试点位于靠近岩溶孔道的基质中。
Abstract
Accurately identifying karst channels between injection and production wells is a key issue to the treatment of water channeling in fracture-cavity reservoirs,expansion of waterflood swept volume,and further achievement in balanced displacement of such strongly heterogeneous reservoirs. Taking karst fracture-cavity reservoirs in the palaeo-subterranean river as the research object,we propose a method for identifying karst channels in such reservoirs. Through comparison between the results obtained respectively from the time domain simulator and the frequency domain simulator,the accuracy and high efficiency of the latter are verified,and the formation characteristics reflected by the parameter changes in karst channels are obtained. Research shows that harmonic pressure response analysis can identify karst channels with resistance to interference,low cost,and high accuracy. Pressure is transmitted in fracture-cavity reservoirs mainly via karst channels. For head responses at different positions,the amplitude drops and the phase shifts to different degrees. Through comprehensive analysis of amplitude reduction and phase shift of the head response at each position to the harmonic signal,we can identify the area where the test point is located. The results show that for the response with an amplitude of almost 0,the test point is located in matrices;for the amplitude response with slight phase shift,the test point is located in karst channels;for the amplitude response with pronounced phase shift,the test point is located in the matrices close to karst channels.