en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

刘阳(1993—),男,四川遂宁人,在读硕士研究生,从事提高采收率相关理论、技术及应用方面的研究。E-mail:695724431@qq.com。

通讯作者:

吴行才(1973—),男,江苏赣榆人,高级工程师,博士。E-mail:287414196@qq.com。

中图分类号:TE344

文献标识码:A

文章编号:1009-9603(2021)01-0072-08

DOI:10.13673/j.cnki.cn37-1359/te.2021.01.009

参考文献 1
杨承志.化学驱提高石油采收率[M].北京:石油工业出版社,1990:40-56.YANG Chengzhi.Chemical flooding for enhancing oil recovery [M].Beijing:Petroleum Industry Press,1999:40-56.
参考文献 2
WANG Demin,ZHANG Jingcun,MENG Fanru,et al.Commercial test of polymer flooding in Daqing Oil Field Daqing Petroleum Administrative Bureau[R].SPE 29902,1995.
参考文献 3
石静,曹绪龙,王红艳,等.胜利油田高温高盐稠油油藏复合驱技术[J].特种油气藏,2018,25(4):129-133.SHI Jing,CAO Xulong,WANG Hongyan,et al.Combination flooding technology used in high-temperature,high-salinity heavy oil reservoirs of Shengli Oilfield[J].Special Oil & Gas Reservoirs,2018,25(4):129-133.
参考文献 4
WANG Dongmei,DONG Huanzhong,LU Changsen,et al.Review of practical experience of polymer flooding at Daqing[R].SPE 114342,2009.
参考文献 5
DHRUVA Prasad,AMITABH Pandey,SURESH Kumar M,et al.Pilot to full-field polymer application in one of the largest onshore field in India[R].SPE 169146-MS,2014.
参考文献 6
孙龙德,伍晓林,周万富,等.大庆油田化学驱提高采收率技术 [J].石油勘探与开发,2018,45(4):636-645.SUN Longde,WU Xiaolin,ZHOU Wanfu,et al.Technologies of enhancing oil recovery by chemical flooding in Daqing Oilfield,NE China[J].Petroleum Exploration and Development,2018,45(4):636-645.
参考文献 7
张云宝,卢祥国,王婷婷,等.渤海油藏优势通道多级封堵与调驱技术[J].油气地质与采收率,2018,25(3):82-88.ZHANG Yunbao,LU Xiangguo,WANG Tingting,et al.Study on technology of multi-stage plugging and profile control for advantage channels in Bohai Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(3):82-88.
参考文献 8
王凤兰,沙宗伦,罗庆,等.大庆油田特高含水期开发技术的进步与展望[J].大庆石油地质与开发,2019,38(5):51-58.WANG Fenglan,SHA Zonglun,LUO Qing,et al.Progress and prospects of the developing techniques in ultra-high water-cut period of Daqing Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):51-58.
参考文献 9
LI Baozhen,ZHANG Jian,KANG Xiaodong,et al.Review and prospect of the development and field application of China offshore chemical EOR technology[R].SPE 197181,2019.
参考文献 10
吴行才,韩大匡,卢祥国,等.微凝胶颗粒水分散液体系在多孔介质中的驱替机理[J].地球科学——中国地质大学学报,2017,42(8):1 348-1 355.WU Xingcai,HAN Dakuang,LU Xiangguo,et al.Oil displacing mechanism of soft microgel particle dispersion in porous media [J].Earth Science-Journal of China University of Geosciences,2017,42(8):1 348-1 355.
参考文献 11
WU Xingcai,SONG Shemin,GUO Zhiqiang,et al.A new polymer flooding technology for improving heavy oil reservoir recovery-from lab study to field application-Case study of high temperature heavy oil field Z70[R].SPE 1714511,2015.
参考文献 12
WU Xingcai,XIONG Chunming,HAN Dakuang,et al.A new IOR method for mature waterflooding reservoirs:sweep control technology[R].SPE 171485,2014.
参考文献 13
WANG W,GU Y,LIU Y,et al.Application of weak gel for in-depth profile modification and oil displacement[J].Journal of Canadian Petroleum Technology,2003,42(6):54-61.
参考文献 14
DAI C,YOU Q,ZHAO L,et al.Study and field application of profile control agent in high temperature and high salinity reservoir [R].SPE 132765,2010.
参考文献 15
王国锋.低渗透油层低黏度聚驱微观剩余油动用机理[J].断块油气田,2018,25(6):776-780.WANG Guofeng.Microscopic residual oil utilization mechanism of low viscosity polymer flooding in low permeability reservoir[J].Fault-Block Oil and Gas Field,2018,25(6):776-780.
参考文献 16
孙哲,吴行才,康晓东,等.连续相与分散相驱油体系驱油机理及其性能对比[J].石油勘探与开发,2019,46(1):116-124.SUN Zhe,WU Xingcai,KANG Xiaodong,et al.Comparison of oil displacement mechanisms and performances between continuous and dispersed phase flooding agents[J].Petroleum Exploration and Development,2019,46(1):116-124.
参考文献 17
杨中建,贾锁刚,张立会,等.异常高温、高盐油藏深部调驱波及控制技术[J].石油勘探与开发,2016,43(1):91-98.YANG Zhongjian,JIA Suogang,ZHANG Lihui,et al.Deep profile adjustment and oil displacement sweep control technique for abnormally high temperature and high salinity reservoirs[J].Petroleum Exploration and Development,2016,43(1):91-98.
参考文献 18
WU Xingcai,XIONG Chunming,XU Hanbing,et al.A new particle-type polymer and IOR/EOR property evaluation[R].SPE 177421,2015.
参考文献 19
WU Xingcai,MENG Qingchun,XIONG Chunming,et al.An innovative EOR theory for the target of 70% recovery factor-Synchronous diversion-flooding technology mechanism and verification by physical modeling and pilot test[R].SPE 18642,2016.
参考文献 20
WU Xingcai,CHEN Weiyu,XIONG Chunming,et al.Successful sweeping control technology test for offshore heavy oilfield-case study of QHD32 reservoir in Bohai Bay[R].SPE 27107,2016.
参考文献 21
WU Xingcai,QU Debin,XU Hanbing,et al.The economic analysis and application strategies of EOR technology in low-oil-price period-8 case study of a new polymer flooding technology[R].SPE 182145,2016.
参考文献 22
WU Xingcai,ZHANG Jiachang,LIANG Wuquan,et al.Technical and economic evaluation of EOR technology in low-oil-price period-a new polymer flooding case study from China[R].SPE 185375,2017.
参考文献 23
WU Xingcai,WU Hongbiao,BU Zhongyu,et al.An innovative EOR method for waterflooding heterogeneous oilfield-graded diversion-flooding technology and verification by field comparison tests[R].SPE 187845,2017.
参考文献 24
WU Xingcai,WANG Yongli,AL NAABI Ahmed,et al.A new polymer flooding for improving low permeability carbonate reservoir recovery-from lab study to pilot test-case study from Oman[R].SPE 197912,2019.
目录contents

    摘要

    阿布扎比 X碳酸盐岩油田因异常高温、高盐且非均质性强,导致水驱严重不均,常规的化学堵水调剖和提高采收率技术方法难以适用。采用该油田碳酸盐岩岩心、原油和模拟地层水,选择以新型颗粒型聚合物(SMG)水分散液为驱替相的水驱波及控制技术,开展SMG理化性能、驱油机理和物理模拟实验,对该技术在阿布扎布碳酸盐岩油田的可行性进行室内研究。结果表明:SMG水分散液具有低黏、易注入、易深部运移以及较好滞留能力和封堵性能的特点;其在一定程度上弥补了传统聚合物驱油机理缺陷和矿场应用受限的问题;在油田储层条件下表现出较好的耐温耐盐性能,在长达6个月的异常高温高盐老化后,表现出较好的热稳定性;老化后的SMG仍具有提高水驱波及体积和提高油藏综合采收率的性能,亚毫米级和微米级SMG提高采收率增幅分别为6.70%和5.67%。SMG水分散液波及控制技术可高效控制储层水驱波及方向、提高水驱波及效率,有望解决阿布扎比地区异常高温高盐碳酸盐岩油田水驱不均的开发问题。

    Abstract

    Nowadays,Abu Dhabi X carbonate oilfield is confronted with serious heterogenity water-flooding problems caused by abnormally high temperature and high salinity as well as severe heterogeneity. It is difficult to solve these problems with conventional water shutoff & profile control and EOR methods. In this work,a novel Soft Microgel(SMG)aqueous dispersion was selected as the displacement phase for the water-flooding sweep control technique. The natural core and crude oil from Abu Dhabi X carbonate oilfield and simulated formation water were used in the experiment to perform the analysis of SMG physical and chemical performance,research on SMG oil displacement mechanism and physical simulation experiment on oil displacement. The results indicate that the SMG aqueous dispersion has the characteristics of low viscosity,easy injection,easy deep migration,and excellent ability of retention and shutoff. To some extent,it can make up for the defect of traditional polymer flooding mechanism and overcome the limitation of oilfield application. The excellent thermal stability of SMG has been proved by six months of abnormally high temperature and high salinity aging test,demonstrating its outstanding resistance to high temperature and high salinity under reservoir conditions. Furthermore,the SMG after aging is still able to improve the water-flooding swept volume and enhance the integrated recovery of the reservoir. According to the results,the EORs of submillimeter-scale SMG and micron-scale SMG increased by 6.70% and 5.67%,respectively. To sum up,the water-flooding sweep control technique with SMG aqueous dispersion as the displacement phase can effectively control the sweep direction of water-flooding in reservoirs and improve the sweep efficiency of water flooding,for which it is expected to solve the development problem of uneven water-flooding in abnormally high temperature and high salinity reservoirs in Abu Dhabi.

  • 阿布扎比 X 油田为异常高温高盐碳酸盐岩油田,该油田是中国对外投资最大的油田之一,油藏温度为 115~139℃,地层水矿化度为 15×104~20× 104mg/L,其类型在中东地区具有典型的代表性。其开发效果的好坏对本项目投资是否成功、中国石油企业能否进一步开拓海外市场有巨大的影响力。该油田为裂缝孔隙型碳酸盐岩油藏,受储层非均质性强、储层内高渗透条带和局部发育微裂缝的影响,水驱严重不均,油井见水快,含水率上升快,油田投入注水开发区域含水率在短短 5a内即上升到 60%~80%。如何控制水驱波及体积、扩大有效波及是该油田水驱开发是否成功的关键。

  • 以聚合物(HPAM)为基础的聚合物一、二、三元驱技术,以及交联聚合物凝胶技术在世界范围内取得了显著成功[1-9]。此类传统成熟技术主要通过扩大水驱波及体积实现提高采收率,但聚合物基础材料耐温耐盐能力有限,且作为连续相高黏流体其驱油机理也存有不足[10-17]。鉴于聚合物类驱技术的现有理论缺陷和应用问题,吴行才等采用水分散体系靶向驱油的理论,建立了水驱波及控制技术方法,并研制出相应的新型颗粒型聚合物(SMG)[10-1216-17]。以 SMG 为基础的水驱波及控制技术不仅在中国多个砂岩、砾岩油田应用取得了较好的效果,而且在中东地区某碳酸盐岩油田的试验也取得了较好效果[17-24]。为此,以阿布扎比 X 油田的油藏条件为基础,利用该油田天然岩心、原油以及模拟地层水开展SMG水驱波及控制技术的实验室可行性研究,重点考察 SMG 在高温高盐条件下的长期稳定性能及其经高温高盐长期老化后的波及控制驱油性能。

  • 1 SMG理化性能评价

  • 1.1 SMG水分散液老化前后形貌对比

  • 根据阿布扎比 X 油田的油藏条件,配制矿化度为20×104mg/L的模拟地层水,其中钙镁离子质量浓度约为2×104mg/L,为典型的CaCl2水型。用模拟地层水配制质量浓度为 5×104 mg/L 的亚毫米级 SMG和10×104mg/L的微米级 SMG母液,超声分散,充分溶胀后,装入高温高压老化罐,放入130℃恒温烘箱中,分别于 1,3和 6个月后取出观察老化情况,并与老化前的SMG水分散液进行对比。

  • 实验结果(图1)表明:老化前,亚毫米级和微米级的 SMG 水分散液均为乳白色液体;老化后,两者开罐总液量均与老化前基本一致,无液量损失,上部漂浮有高温高盐下 SMG 与水中矿物固结形成的大块圆柱状固体,下部为水溶液。该固形物质地柔软,经处理后可重新分散于水中。由此表明,SMG 具有较好的耐温耐盐性能,在高温高盐下可稳定存在,并且无传统聚合物高温高盐下的水解水化现象。

  • 1.2 颗粒大小和形态特征

  • 将亚毫米级和微米级的 SMG 原液去油提取出可分离固形物,即干粉颗粒,两者颗粒的显微镜微观形貌如图2 所示。两者的平均粒径统计结果表明,水化溶胀前 SMG 颗粒为球形颗粒,平均粒径为 1~68 μm,其中亚毫米级和微米级SMG溶胀前平均粒径分别为6~68和1~23 μm,此外SMG颗粒的粒径还可以依据油藏孔喉尺寸进行设计。

  • 将老化1个月的亚毫米级和微米级SMG水分散液充分搅拌均匀,然后吸取少量老化SMG水分散液于烧杯中,加入酒精,反复抽滤洗涤,提取出可分离固形物,装入干净样品瓶,在 60℃下恒温 5 h,即可获得老化后的2种粒径级别的SMG干粉颗粒。

  • 通过显微镜观察2种粒径级别SMG老化后的颗粒大小与形态,发现经高温高盐老化后的SMG虽存在团聚现象,粒径略微变小,但仍为球形颗粒(图2,图3)。

  • 1.3 膨胀性能

  • SMG 具有遇水膨胀、在油中不发生变化的特点。用矿化度为 20×104 mg/L 的模拟地层水配制质量浓度为 3 000 mg/L 的 SMG 水分散液,并置于超声清洗仪进行超声处理,使其充分溶胀并分散于水中,溶胀15 d后测定SMG水分散液的粒径分布。结果(图4,图5)表明:亚毫米级 SMG 初始粒径中值为11.39 μm,完全溶胀后粒径为 13.75~52.03 μm,粒径中值为 29.16 μm;微米级 SMG 初始粒径中值为 3.21 μm,完全溶胀后粒径为 1.77~35.46 μm,粒径中值为10.382 μm。说明SMG在高矿化度环境下仍具有较好的水化膨胀性,膨胀倍数能达到5~11倍。将老化后的高质量浓度 SMG 母液稀释成质量浓度为 3 000 mg/L 的水分散液,抽滤去除老化生成的固体颗粒,然后测定老化 SMG 水分散液的粒径中值。结果(图6)表明,在长期高温高盐下,随时间推移, SMG发生聚并,使得所测粒径中值比实际偏小。尽管所测粒径中值偏小,但0.5 a后亚毫米级和微米级SMG 水分散液粒径中值仍能分别维持为 11.555 和 2.963 μm。

  • 图1 老化前和不同老化时间后的亚毫米级和微米级SMG水分散液形貌对比

  • Fig.1 Morphology comparison of aqueous dispersion for submillimeter-scale SMG and micron-scale SMG before and after aging

  • 图2 亚毫米级和微米级的SMG老化前形貌显微镜照片

  • Fig.2 Morphology images of submillimeter-scale SMG and micron-scale SMG before aging

  • 图3 亚毫米级和微米级的SMG老化1个月后形貌显微镜照片

  • Fig.3 Morphology images of submillimeter-scale SMG and micron-scale SMG after aging for 1 month

  • 图4 亚毫米级SMG水化溶胀前后粒径分布

  • Fig.4 Particle size distribution of submillimeter-scale SMG before and after hydration swelling

  • 图5 微米级SMG水化溶胀前后粒径分布

  • Fig.5 Particle size distribution of micron-scale SMG before and after hydration swelling

  • 1.4 流变性能

  • 利用矿化度为20×104mg/L的模拟地层水配制质量浓度为3 000 mg/L的亚毫米级和微米级SMG水分散液,测定不同温度下SMG水分散液黏度随着剪切速率的变化。结果(图7)表明:随着剪切速率和温度的增加,亚毫米级和微米级SMG水分散液黏度逐渐降低,并趋于定值,分别仅为 0.8~2.6 和 0.8~3.3 mPa·s,并且高温高剪切速率下二者黏度接近于水。同等条件下,其相比聚合物溶液具有更低的黏度,且更易于注入储层。说明SMG水分散液具有低黏、抗剪切、易注入地层的特点。

  • 图6 SMG高温高盐长期老化后的粒径中值

  • Fig.6 Median particle size of SMG after long-term aging in high-temperature and high-salinity conditions

  • 图7 亚毫米级和微米级SMG水分散液流变曲线

  • Fig.7 Rheological curve for aqueous dispersion of submillimeter-scale SMG and micron-scale SMG

  • 1.5 封堵性能

  • 适合对应储层的聚合物溶液能较好地改善储层非均质性,改善储层流体的流度比,进而提高水驱波及体积和驱油效率。老化前 SMG 水分散液封堵性能测试具体实验步骤为:①将渗透率为 2 000 和20 mD的碳酸盐岩岩心进行干燥,抽真空,饱和水后测定水测渗透率。②用矿化度为 20×104mg/L 的模拟地层水配制质量浓度为3 000 mg/L的亚毫米级和微米级 SMG 水分散液进行封堵性能测试评价。以 1 和 0.5 mL/min 的速度水驱岩心至压力稳定(水驱),然后分别以相同的速度注入配制好的 SMG 水分散液 3 PV(SMG 驱),最后以相同速度水驱 6 PV (后续水驱)。

  • 老化后 SMG 水分散液封堵性能测试具体实验步骤为:①选取SMG有效成分聚并较少的老化样品 (老化 1个月)配制成质量浓度为 3 000 mg/L的水溶液,过滤除去其中的固体,获得可用于驱替的老化 SMG 水分散液。②进行老化后的 SMG 水分散液的封堵性能测试并与未老化的实验进行对比,其实验过程和注入量完全与未老化 SMG 水分散液的封堵性能测试实验一致。

  • 封堵性能测试结果(图8,图9)显示:SMG驱时,老化前后 SMG 水分散液的注入压力均随着 SMG 注入量的增加而升高,但由于 SMG 老化后,SMG 水分散液中有效成分发生聚并同时颗粒粒径略微变小,使得SMG驱结束时压力均低于老化前,从侧面表现为其封堵能力低于老化前的SMG水分散液;后续水驱压力均呈现稳中略升的特征,压力反复波动体现了SMG 颗粒在岩心中反复暂堵和被突破的运移过程。相比传统聚合物,SMG在岩心微观孔隙结构中具有更好的滞留和运移性能,并且老化后的SMG不仅能稳定存在,而且仍然具有较好的封堵性能。

  • 图8 亚毫米级SMG封堵性能测试曲线

  • Fig.8 Shutoff performance test curve of submillimeter-scale SMG

  • 图9 微米级SMG封堵性能测试曲线

  • Fig.9 Shutoff performance test curve of micron-scale SMG

  • 2 SMG波及控制驱油机理

  • 传统水驱时,注入水快速沿高渗透通道突破,而中低渗透孔隙中还存在大量剩余油未被动用,持续水驱和传统常规手段很难充分动用这一部分剩余油(图10a)。传统聚合物类驱技术是通过聚合物的黏度来改善油藏油水流度比,从而扩大水驱波及体积,进而提高油藏水驱效率和综合采收率,但该体系耐温耐盐性能有限(矿化度≤10×104mg/L,温度≤90℃)且驱油机理上也存在一定缺陷(图10b),即它作为连续相流体无法区别储层的高低渗透层或大小孔隙,类似于“盲驱”。此外,当聚合物黏度较大时,可能会堵塞中低渗透层进而造成储层伤害,使得中低渗透层孔隙中的大量剩余油更难采出。

  • 新型颗粒型聚合物——SMG 为一种非连续型分散液体系,该体系的水分散液表观黏度低,易于进入储层深部且具有较高的耐温耐盐性能(矿化度≤20×104mg/L,温度≤130℃),其结构和驱油机理均不同于传统的聚合物类(连续相黏性聚合物溶液或交联聚合物凝胶)。其驱油机理为:驱替相为黏度接近于水的SMG水分散液,水分散液中的聚合物颗粒在微观上通过对水流通道(孔喉)暂堵—突破—再暂堵—再突破等一系列过程实现对高中渗透层或大中孔隙的逐级暂堵(图10c),进而实现对油水流度比的调整,从而实现水驱调剖转向,提高对中低渗透层或中小孔隙中剩余油的动用,提高油藏综合采收率。

  • 图10 传统聚合物类与SMG水分散液驱油机理对比

  • Fig.10 Comparison of oil displacement mechanism between traditional polymer flooding and SMG aqueous dispersion flooding

  • 3 SMG波及控制物理模拟实验

  • 将天然碳酸盐岩岩心进行干燥、称重和饱和矿化水等一系列处理后,用阿布扎比 X 油田原油进行饱和并老化 48 h 后进行驱油实验。具体实验步骤为:首先水驱岩心至含水率为 98%;然后分别转注质量浓度为3 000 mg/L的老化1个月的SMG水分散液以及同质量浓度现配制并充分溶胀7 d的SMG水分散液,高低渗透岩心分别以 1 和 0.5 mL/min 的速度驱替,SMG水分散液的注入量均为0.7 PV;最后后续水驱至含水率为98%。

  • 3.1 亚毫米级SMG老化前后驱油效果对比

  • 对于亚毫米级SMG,注入未老化的SMG水分散液的岩心综合采收率为 56.62%,采收率增幅为 10.06%;注入老化 1个月的 SMG 水分散液的岩心综合采收率为 55.08%,采收率增幅仍达 6.70%(表1,图11)。注入 SMG 后,SMG 不断进入岩心内部并发生运移,随着 SMG 注入量不断增加,进入岩心的 SMG逐渐增多,使得对岩心微裂缝及大孔道的封堵能力逐渐增强,两岩心的注入压力增大,但老化后封堵能力降低,使得SMG驱后整体压力增幅小于老化前;同时注入未老化SMG的岩心后续水驱SMG能长期滞留于岩心,不断运移到岩心深部,进而维持压力稳定,但对于老化后的 SMG,由于 SMG 高温高盐下聚并生成固体造成有效浓度降低、SMG粒径变小以及天然岩心内部存在微观高渗透条带和微裂缝使其不能长期滞留,难以实现深部运移,进而造成后续水驱压力降低。

  • 3.2 微米级SMG老化前后驱油效果对比

  • 对于微米级SMG,注入未老化的SMG水分散液的岩心综合采收率为69.67%,采收率增幅为8.04%; 注入老化1个月的SMG水分散液的岩心综合采收率为 66.96%,采收率增幅仍达 5.67%(图12)。后续水驱两岩心的注入压力均维持稳定,SMG呈现出较好的封堵能力,同时后续水驱注入压力呈现起伏波动,进一步体现了 SMG 在岩心内部暂堵运移的过程。

  • 老化的亚毫米级和微米级 SMG 水分散液天然岩心驱油实验结果表明,尽管SMG在长期高温高盐老化后存在水溶液中有效成分发生聚并、SMG粒径变小的现象,但其仍具较好的暂堵能力和深部调驱能力,进而扩大水驱波及体积,提高综合采收率。同时SMG也表现出了较好的热稳定性,通过老化后 SMG 干粉的显微镜下观察,其形态与未老化样相比,颗粒仍呈球状,整体保持得非常好。

  • 表1 亚毫米级和微米级SMG水分散液驱油效果

  • Table1 Oil displacement effect of aqueous dispersion of submillimeter-scale SMG and micron-scale SMG

  • 图11 高渗透岩心采收率、含水率和注入压力与注入量的关系

  • Fig.11 Relation curves of recovery,water cut,and injection pressure with injection volume of high-permeability cores

  • 图12 低渗透岩心采收率、含水率和注入压力曲线与注入量的关系

  • Fig.12 Relation curves of recovery,water cut,and injection pressure with injection volume of low-permeability cores

  • 4 结论

  • SMG 水分散液在阿布扎比 X 油田的异常高温高盐条件下,具有优异的长期热稳定性能。经长期高温高盐静置老化后,其粒径有一定程度缩小,但未发生水解水化,仍然具有波及控制所需的基本理化性能。

  • 采用阿布扎比X油田原油和天然岩心所做的物理模拟驱油实验均取得较好效果。长期高温高盐老化后的亚毫米级和微米级 SMG 水分散液驱油提高采收率幅度分别达到 6.70% 和 5.67%。说明这一技术可望解决阿布扎比地区异常高温高盐碳酸盐岩油田水驱不均的开发问题,应积极开展矿场试验,验证其技术经济可行性。

  • 参考文献

    • [1] 杨承志.化学驱提高石油采收率[M].北京:石油工业出版社,1990:40-56.YANG Chengzhi.Chemical flooding for enhancing oil recovery [M].Beijing:Petroleum Industry Press,1999:40-56.

    • [2] WANG Demin,ZHANG Jingcun,MENG Fanru,et al.Commercial test of polymer flooding in Daqing Oil Field Daqing Petroleum Administrative Bureau[R].SPE 29902,1995.

    • [3] 石静,曹绪龙,王红艳,等.胜利油田高温高盐稠油油藏复合驱技术[J].特种油气藏,2018,25(4):129-133.SHI Jing,CAO Xulong,WANG Hongyan,et al.Combination flooding technology used in high-temperature,high-salinity heavy oil reservoirs of Shengli Oilfield[J].Special Oil & Gas Reservoirs,2018,25(4):129-133.

    • [4] WANG Dongmei,DONG Huanzhong,LU Changsen,et al.Review of practical experience of polymer flooding at Daqing[R].SPE 114342,2009.

    • [5] DHRUVA Prasad,AMITABH Pandey,SURESH Kumar M,et al.Pilot to full-field polymer application in one of the largest onshore field in India[R].SPE 169146-MS,2014.

    • [6] 孙龙德,伍晓林,周万富,等.大庆油田化学驱提高采收率技术 [J].石油勘探与开发,2018,45(4):636-645.SUN Longde,WU Xiaolin,ZHOU Wanfu,et al.Technologies of enhancing oil recovery by chemical flooding in Daqing Oilfield,NE China[J].Petroleum Exploration and Development,2018,45(4):636-645.

    • [7] 张云宝,卢祥国,王婷婷,等.渤海油藏优势通道多级封堵与调驱技术[J].油气地质与采收率,2018,25(3):82-88.ZHANG Yunbao,LU Xiangguo,WANG Tingting,et al.Study on technology of multi-stage plugging and profile control for advantage channels in Bohai Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(3):82-88.

    • [8] 王凤兰,沙宗伦,罗庆,等.大庆油田特高含水期开发技术的进步与展望[J].大庆石油地质与开发,2019,38(5):51-58.WANG Fenglan,SHA Zonglun,LUO Qing,et al.Progress and prospects of the developing techniques in ultra-high water-cut period of Daqing Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):51-58.

    • [9] LI Baozhen,ZHANG Jian,KANG Xiaodong,et al.Review and prospect of the development and field application of China offshore chemical EOR technology[R].SPE 197181,2019.

    • [10] 吴行才,韩大匡,卢祥国,等.微凝胶颗粒水分散液体系在多孔介质中的驱替机理[J].地球科学——中国地质大学学报,2017,42(8):1 348-1 355.WU Xingcai,HAN Dakuang,LU Xiangguo,et al.Oil displacing mechanism of soft microgel particle dispersion in porous media [J].Earth Science-Journal of China University of Geosciences,2017,42(8):1 348-1 355.

    • [11] WU Xingcai,SONG Shemin,GUO Zhiqiang,et al.A new polymer flooding technology for improving heavy oil reservoir recovery-from lab study to field application-Case study of high temperature heavy oil field Z70[R].SPE 1714511,2015.

    • [12] WU Xingcai,XIONG Chunming,HAN Dakuang,et al.A new IOR method for mature waterflooding reservoirs:sweep control technology[R].SPE 171485,2014.

    • [13] WANG W,GU Y,LIU Y,et al.Application of weak gel for in-depth profile modification and oil displacement[J].Journal of Canadian Petroleum Technology,2003,42(6):54-61.

    • [14] DAI C,YOU Q,ZHAO L,et al.Study and field application of profile control agent in high temperature and high salinity reservoir [R].SPE 132765,2010.

    • [15] 王国锋.低渗透油层低黏度聚驱微观剩余油动用机理[J].断块油气田,2018,25(6):776-780.WANG Guofeng.Microscopic residual oil utilization mechanism of low viscosity polymer flooding in low permeability reservoir[J].Fault-Block Oil and Gas Field,2018,25(6):776-780.

    • [16] 孙哲,吴行才,康晓东,等.连续相与分散相驱油体系驱油机理及其性能对比[J].石油勘探与开发,2019,46(1):116-124.SUN Zhe,WU Xingcai,KANG Xiaodong,et al.Comparison of oil displacement mechanisms and performances between continuous and dispersed phase flooding agents[J].Petroleum Exploration and Development,2019,46(1):116-124.

    • [17] 杨中建,贾锁刚,张立会,等.异常高温、高盐油藏深部调驱波及控制技术[J].石油勘探与开发,2016,43(1):91-98.YANG Zhongjian,JIA Suogang,ZHANG Lihui,et al.Deep profile adjustment and oil displacement sweep control technique for abnormally high temperature and high salinity reservoirs[J].Petroleum Exploration and Development,2016,43(1):91-98.

    • [18] WU Xingcai,XIONG Chunming,XU Hanbing,et al.A new particle-type polymer and IOR/EOR property evaluation[R].SPE 177421,2015.

    • [19] WU Xingcai,MENG Qingchun,XIONG Chunming,et al.An innovative EOR theory for the target of 70% recovery factor-Synchronous diversion-flooding technology mechanism and verification by physical modeling and pilot test[R].SPE 18642,2016.

    • [20] WU Xingcai,CHEN Weiyu,XIONG Chunming,et al.Successful sweeping control technology test for offshore heavy oilfield-case study of QHD32 reservoir in Bohai Bay[R].SPE 27107,2016.

    • [21] WU Xingcai,QU Debin,XU Hanbing,et al.The economic analysis and application strategies of EOR technology in low-oil-price period-8 case study of a new polymer flooding technology[R].SPE 182145,2016.

    • [22] WU Xingcai,ZHANG Jiachang,LIANG Wuquan,et al.Technical and economic evaluation of EOR technology in low-oil-price period-a new polymer flooding case study from China[R].SPE 185375,2017.

    • [23] WU Xingcai,WU Hongbiao,BU Zhongyu,et al.An innovative EOR method for waterflooding heterogeneous oilfield-graded diversion-flooding technology and verification by field comparison tests[R].SPE 187845,2017.

    • [24] WU Xingcai,WANG Yongli,AL NAABI Ahmed,et al.A new polymer flooding for improving low permeability carbonate reservoir recovery-from lab study to pilot test-case study from Oman[R].SPE 197912,2019.

  • 参考文献

    • [1] 杨承志.化学驱提高石油采收率[M].北京:石油工业出版社,1990:40-56.YANG Chengzhi.Chemical flooding for enhancing oil recovery [M].Beijing:Petroleum Industry Press,1999:40-56.

    • [2] WANG Demin,ZHANG Jingcun,MENG Fanru,et al.Commercial test of polymer flooding in Daqing Oil Field Daqing Petroleum Administrative Bureau[R].SPE 29902,1995.

    • [3] 石静,曹绪龙,王红艳,等.胜利油田高温高盐稠油油藏复合驱技术[J].特种油气藏,2018,25(4):129-133.SHI Jing,CAO Xulong,WANG Hongyan,et al.Combination flooding technology used in high-temperature,high-salinity heavy oil reservoirs of Shengli Oilfield[J].Special Oil & Gas Reservoirs,2018,25(4):129-133.

    • [4] WANG Dongmei,DONG Huanzhong,LU Changsen,et al.Review of practical experience of polymer flooding at Daqing[R].SPE 114342,2009.

    • [5] DHRUVA Prasad,AMITABH Pandey,SURESH Kumar M,et al.Pilot to full-field polymer application in one of the largest onshore field in India[R].SPE 169146-MS,2014.

    • [6] 孙龙德,伍晓林,周万富,等.大庆油田化学驱提高采收率技术 [J].石油勘探与开发,2018,45(4):636-645.SUN Longde,WU Xiaolin,ZHOU Wanfu,et al.Technologies of enhancing oil recovery by chemical flooding in Daqing Oilfield,NE China[J].Petroleum Exploration and Development,2018,45(4):636-645.

    • [7] 张云宝,卢祥国,王婷婷,等.渤海油藏优势通道多级封堵与调驱技术[J].油气地质与采收率,2018,25(3):82-88.ZHANG Yunbao,LU Xiangguo,WANG Tingting,et al.Study on technology of multi-stage plugging and profile control for advantage channels in Bohai Oilfield[J].Petroleum Geology and Recovery Efficiency,2018,25(3):82-88.

    • [8] 王凤兰,沙宗伦,罗庆,等.大庆油田特高含水期开发技术的进步与展望[J].大庆石油地质与开发,2019,38(5):51-58.WANG Fenglan,SHA Zonglun,LUO Qing,et al.Progress and prospects of the developing techniques in ultra-high water-cut period of Daqing Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(5):51-58.

    • [9] LI Baozhen,ZHANG Jian,KANG Xiaodong,et al.Review and prospect of the development and field application of China offshore chemical EOR technology[R].SPE 197181,2019.

    • [10] 吴行才,韩大匡,卢祥国,等.微凝胶颗粒水分散液体系在多孔介质中的驱替机理[J].地球科学——中国地质大学学报,2017,42(8):1 348-1 355.WU Xingcai,HAN Dakuang,LU Xiangguo,et al.Oil displacing mechanism of soft microgel particle dispersion in porous media [J].Earth Science-Journal of China University of Geosciences,2017,42(8):1 348-1 355.

    • [11] WU Xingcai,SONG Shemin,GUO Zhiqiang,et al.A new polymer flooding technology for improving heavy oil reservoir recovery-from lab study to field application-Case study of high temperature heavy oil field Z70[R].SPE 1714511,2015.

    • [12] WU Xingcai,XIONG Chunming,HAN Dakuang,et al.A new IOR method for mature waterflooding reservoirs:sweep control technology[R].SPE 171485,2014.

    • [13] WANG W,GU Y,LIU Y,et al.Application of weak gel for in-depth profile modification and oil displacement[J].Journal of Canadian Petroleum Technology,2003,42(6):54-61.

    • [14] DAI C,YOU Q,ZHAO L,et al.Study and field application of profile control agent in high temperature and high salinity reservoir [R].SPE 132765,2010.

    • [15] 王国锋.低渗透油层低黏度聚驱微观剩余油动用机理[J].断块油气田,2018,25(6):776-780.WANG Guofeng.Microscopic residual oil utilization mechanism of low viscosity polymer flooding in low permeability reservoir[J].Fault-Block Oil and Gas Field,2018,25(6):776-780.

    • [16] 孙哲,吴行才,康晓东,等.连续相与分散相驱油体系驱油机理及其性能对比[J].石油勘探与开发,2019,46(1):116-124.SUN Zhe,WU Xingcai,KANG Xiaodong,et al.Comparison of oil displacement mechanisms and performances between continuous and dispersed phase flooding agents[J].Petroleum Exploration and Development,2019,46(1):116-124.

    • [17] 杨中建,贾锁刚,张立会,等.异常高温、高盐油藏深部调驱波及控制技术[J].石油勘探与开发,2016,43(1):91-98.YANG Zhongjian,JIA Suogang,ZHANG Lihui,et al.Deep profile adjustment and oil displacement sweep control technique for abnormally high temperature and high salinity reservoirs[J].Petroleum Exploration and Development,2016,43(1):91-98.

    • [18] WU Xingcai,XIONG Chunming,XU Hanbing,et al.A new particle-type polymer and IOR/EOR property evaluation[R].SPE 177421,2015.

    • [19] WU Xingcai,MENG Qingchun,XIONG Chunming,et al.An innovative EOR theory for the target of 70% recovery factor-Synchronous diversion-flooding technology mechanism and verification by physical modeling and pilot test[R].SPE 18642,2016.

    • [20] WU Xingcai,CHEN Weiyu,XIONG Chunming,et al.Successful sweeping control technology test for offshore heavy oilfield-case study of QHD32 reservoir in Bohai Bay[R].SPE 27107,2016.

    • [21] WU Xingcai,QU Debin,XU Hanbing,et al.The economic analysis and application strategies of EOR technology in low-oil-price period-8 case study of a new polymer flooding technology[R].SPE 182145,2016.

    • [22] WU Xingcai,ZHANG Jiachang,LIANG Wuquan,et al.Technical and economic evaluation of EOR technology in low-oil-price period-a new polymer flooding case study from China[R].SPE 185375,2017.

    • [23] WU Xingcai,WU Hongbiao,BU Zhongyu,et al.An innovative EOR method for waterflooding heterogeneous oilfield-graded diversion-flooding technology and verification by field comparison tests[R].SPE 187845,2017.

    • [24] WU Xingcai,WANG Yongli,AL NAABI Ahmed,et al.A new polymer flooding for improving low permeability carbonate reservoir recovery-from lab study to pilot test-case study from Oman[R].SPE 197912,2019.