en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李宪文(1963—),男,河北沧县人,教授级高级工程师,博士,从事油气井压裂改造及增产技术方面的研究。E-mail:lxw_cq@petrochina.com.cn。

中图分类号:TE357.2

文献标识码:A

文章编号:1009-9603(2021)01-0088-07

DOI:10.13673/j.cnki.cn37-1359/te.2021.01.011

参考文献 1
KALIA N,BALAKOTAIAH V.Modeling and analysis of wormhole formation in reactive dissolution of carbonate rocks[J].Chemical Engineering Science,2007,62(4):919-928.
参考文献 2
MAHESHWARI P,RATNAKAR R R,KALIA N,et al.3-D simu⁃ lation and analysis of reactive dissolution and wormhole formation in carbonate rocks[J].Chemical Engineering Science,2013,90:258-274.
参考文献 3
DACCORD G.Chemical dissolution of a porous medium by a reac⁃ tive fluid[J].Physical Review Letters,1987,58(5):479-482.
参考文献 4
FREDD C N,MILLER M J.Validation of carbonate matrix stimula⁃ tion models[R].SPE 58713,2000.
参考文献 5
BARRON A N,HENDRICKSON A R,WIELAND D R.The effect of flow on acid reactivity in a carbonate fracture[J].Journal of Pe⁃ troleum Technology,1962,14(4):409-415.
参考文献 6
WALSH J B.Effect of pore pressure and confining pressure on fracture permeability[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,18(5):429-435.
参考文献 7
MIRZA S B,KUNAK O A,GONG M.A systematic experimental study of acid fracture on conductivity[R].SPE 31098,1996.
参考文献 8
POURNIK M,LI L,SMITH B,et al.Effect of acid spending on etching and acid fracture conductivity[J].SPE Production & Oper⁃ations,2013,28(1):46-54.
参考文献 9
齐宁,陈国彬,李振亮,等.基于分步算法的裂缝性碳酸盐岩油藏大尺度酸化数值模拟[J].石油学报,2020,41(3):348-362,371.QI Ning,CHEN Guobin,LI Zhenliang,et al.Numerical simulation of large-scale acidification in fractured carbonate reservoirs based on a step-by-step algorithm[J].Acta Petrolei Sinica,2020,41(3):348-362,371.
参考文献 10
QI Ning,CHEN Guobin,LIANG Chong,et al.Numerical simula⁃ tion and analysis of the influence of fracture geometry on worm⁃ hole propagation in carbonate reservoirs[J].Chemical Engineering Science,2019,198:124-143.
参考文献 11
柳明,张士诚,牟建业.碳酸盐岩酸化径向蚓孔扩展形态研究 [J].油气地质与采收率,2012,19(2):106-110.LIU Ming,ZHANG Shicheng,MOU Jianye.Dissolution pattern of radial wormhole model in carbonate acidizing[J].Petroleum Geol⁃ ogy and Recovery Efficiency,2012,19(2):106-110.
参考文献 12
LIU Piyang,YAO Jun,GARY Douglas Couples,et al.Numerical modelling and analysis of reactive flow and wormhole formation in fractured carbonate rocks[J].Chemical Engineering Science,2017,172:143-157.
参考文献 13
赵春明,张建民,李祖兵.渤中 28-1油田奥陶系碳酸盐岩储层特征及主控因素[J].大庆石油地质与开发,2017,36(1):27-34.ZHAO Chunming,ZHANG Jianmin,LI Zubing.Characteristics and main controlling factors for the Ordovician carbonate reser⁃ voirs in Bozhong28-1 Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2017,36(1):27-34.
参考文献 14
刘冉,霍飞,王鑫,等.普光气田下三叠统飞仙关组碳酸盐岩储层特征及主控因素分析[J].中国石油勘探,2017,22(6):34-46.LIU Ran,HUO Fei,WANG Xin,et al.Characteristics and main controlling factors of Lower Triassic Feixianguan Formation car⁃ bonate reservoir in Puguang gas field[J].China Petroleum Explo⁃ration,2017,22(6):34-46.
参考文献 15
陈昱林,曾焱,段永明,等.川西龙门山前雷口坡组四段白云岩储层孔隙结构特征及储层分类[J].石油实验地质,2018,40(5):621-631.CHEN Yulin,ZENG Yan,DUAN Yongming,et al.Pore structure characteristics and reservoir classification of dolomite reservoirs in fourth member of Leikoupo Formation,Longmen Mountain front,western Sichuan Basin[J].Petroleum Geology & Experi⁃ ment,2018,40(5):621-631.
参考文献 16
王明星,吴亚红,孙海洋,等.酸液对酸蚀裂缝导流能力影响的研究[J].特种油气藏,2019,26(5):153-158.WANG Mingxing,WU Yahong,SUN Haiyang,et al.Influence of acid on the conductivity of acid etch fracture[J].Special Oil & Gas Reservoirs,2019,26(5):153-158.
参考文献 17
滕建彬.东营凹陷利页1井泥页岩中白云石成因及层序界面意义[J].油气地质与采收率,2018,25(2):1-7,36.TENG Jianbin.Genesis of dolomite in shale drilled by Well Liye1 in Dongying Sag and its significance on sequence boundary indi⁃ cation[J].Petroleum Geology and Recovery Efficiency,2018,25(2):1-7,36.
参考文献 18
滕建彬.东营凹陷页岩油储层中方解石的成因及证据[J].油气地质与采收率,2020,27(2):18-25.TENG Jianbin.Origin and evidence of calcite in shale oil reservoir of Dongying Sag[J].Petroleum Geology and Recovery Efficiency,2020,27(2):18-25.
参考文献 19
叶颉枭,李力,韩慧芬,等.多级交替注入酸压工艺优化研究——以磨溪龙女寺构造龙王庙组储层改造为例[J].油气藏评价与开发,2018,8(3):46-50.YE Jiexiao,LI Li,HAN Huifen,et al.Optimization research of multistage alternating acid fracturing:A case study of reservoir stimulation for Longwangmiao Formation in Moxi-Longnvsi area [J].Reservoir Evaluation and Development,2018,8(3):46-50.
目录contents

    摘要

    酸蚀裂缝导流能力是评价酸压效果的关键参数之一,目前碳酸盐岩油藏裂缝酸蚀实验研究多集中在灰岩储层,对白云岩储层的相关研究鲜有报道。灰岩与白云岩储层的酸岩反应特征差异明显,为了对白云岩储层裂缝酸蚀形态和微观反应机理进行研究,以长庆油田取心白云岩储层岩心为例,开展酸蚀裂缝导流能力实验研究,并通过 3D激光扫描对比分析灰岩与白云岩岩板酸蚀微观形态。通过短期导流能力实验,分析储层物性、酸液浓度等条件影响下酸蚀裂缝导流能力的变化规律。结果表明,白云岩相对于灰岩而言,其表面反应速度低,酸岩反应速度慢,酸岩反应速度数值相差一个数量级;白云岩酸液刻蚀程度低,溶蚀主要沿节理面进行,高酸液浓度有利于深入酸蚀节理面,从而沟通基质与裂缝;另外高浓度酸液能更为充分地刻蚀酸压裂缝壁面,提高非均匀刻蚀程度,获得更高导流能力的裂缝;通过数值模拟研究发现,酸液交替注入可以有效地提高白云岩岩板的非均匀刻蚀程度,提高酸蚀裂缝导流能力,改善酸压改造效果。

    Abstract

    The conductivity of the acid etched fractures is one of the key parameters to evaluate the acid fracturing effect. At present,the experimental research on acid etch of fractures in carbonate reservoirs focuses mainly on limestone reser- voirs,and the related research on dolomite reservoirs is rarely reported. The acid-rock reaction characteristics of limestone and dolomite reservoirs are obviously different. In order to study the acid etch morphology and microscopic reaction mecha- nism of dolomite reservoir fractures,we carried out experimental study on the acid etch conductivity of fractures with the core of dolomite reservoir in a block as the object and comparatively analyzed the micro-morphology of acid etch of lime- stone and dolomite slates by 3D laser scanning. Through the short-term conductivity experiment,the trend in conductivity of acid etched fractures under the influence of physical properties of the reservoir and acid concentration was analyzed. Compared with limestone,dolomite has a lower surface reaction rate. Moreover,its acid-rock reaction rate is an order of magnitude less than that of limestone. The acid solution of dolomite leads to less etch and its dissolution is mainly along the joint surface. High acid concentration is conducive to the solutions’deep permeation through the acid etched joint surface, so as to connect matrix and fracture. In addition,the acid solution of a high concentration can more fully etch the wall sur- faces of acid fractures to improve the non-uniform etch degree and obtain fractures of greater conductivity. Through numeri- cal simulation,it was found that alternating acid injection could effectively improve the non-uniform etch degree of dolo-mite slates,the conductivity of acid etched fractures,and the acid fracturing effect.

  • 碳酸盐岩储层油气资源储量丰富且在全球分布广泛,其储量约占全球油气探明可采储量的 50.6%。酸化压裂是碳酸盐岩油气藏增产改造的主要技术措施。地层压裂后酸液对裂缝壁面的非均匀刻蚀程度影响着裂缝闭合后的导流能力,而导流能力是评价酸压效果的重要指标。

  • 中外学者围绕提高酸蚀裂缝导流能力开展了大量的研究工作[1-4]。BARRON等考虑了缝宽、反应时间和缝高等参数对酸和天然大理石的影响情况[5]。WALSH 发现岩心非均质性和地层围压将影响酸蚀后的裂缝导流能力[6]。MIRAZ等研究认为裂缝壁面的不均匀几何形态是影响裂缝导流能力的关键因素[7]。POURNIK 等研究了残酸对裂缝刻蚀形态的影响,发现残酸、鲜酸造成的裂缝刻蚀形态具有一定的差别[8]。齐宁等实现了裂缝性碳酸盐岩油藏储层尺度的酸化数值模拟,为开展白云岩大尺度酸压数值模拟提供了可能[9-10]。目前改善酸蚀裂缝导流能力研究多是基于灰岩开展的[11-12],对于白云岩储层酸压效果差、非均匀刻蚀程度低、压裂后导流能力差等问题,尚没有开展深入研究[13-15]

  • 选取长庆油田取心白云岩开展酸蚀裂缝导流能力实验研究,通过酸蚀裂缝导流能力实验和数值模拟研究,深入揭示白云岩储层非均匀刻蚀机理,以期为白云岩储层酸压工艺设计提供理论指导。

  • 1 实验器材与方法

  • 1.1 实验器材

  • 实验仪器包括美国 Core Lab 公司生产的 AFS-870 型酸化岩心驱替仪、上海仪电科学仪器股份有限公司生产的 ZDJ-4A 型自动电位滴定仪、美国 Core Lab公司生产的FCS-842压裂支撑剂导流能力测试系统、杭州先临三维科技股份有限公司生产的 EinScan Pro2X Plus三维激光扫描仪。

  • 实验岩样包括灰岩岩板和白云岩岩板。前者取自新疆鹰山组露头(阿克苏),方解石含量为 94%,样品编号分别为Ⅰ和Ⅱ;后者取自长庆油田取心白云岩,白云石含量为 91%,样品编号分别为Ⅲ 和Ⅳ。实验试剂包括质量分数为 36.5% 的盐酸(分析纯,国药集团化学试剂有限公司)和去离子水。

  • 1.2 实验方法

  • 白云岩、灰岩旋转岩盘实验 通过旋转岩盘实验,测出不同初始酸浓度下反应之后的岩心失重情况,最终分别计算出白云岩和灰岩与盐酸的酸岩反应速度。其中,酸液质量分数为 20%,实验温度为 90℃,实验转速为500 r/min。

  • 白云岩、灰岩酸蚀裂缝导流能力实验 通过裂缝酸蚀导流能力实验,分别得到相同酸液条件下白云岩、灰岩上下岩板之间的导流能力,本文使用的导流室为 API 导流室,酸蚀后导流层导流能力计算公式为:

  • KWf=6.666μQΔp
    (1)
  • 通过裂缝酸蚀导流能力实验,分别得到相同酸液条件下白云岩、灰岩上下岩板端面的非均匀刻蚀程度和酸蚀构造,对比高、低浓度酸液交替注入方式下酸蚀构造区别。通过 3D 激光扫描对裂缝酸蚀后端面溶蚀程度进行定量分析,从微观角度解释酸蚀构造存在差别的原因以及对白云岩、灰岩的微观溶蚀机理进行分析。其中,酸液质量分数为10%和 20%,酸液流量为 60 mL/min,实验温度为 90℃,反应时间为10 min。

  • 2 实验结果与讨论

  • 2.1 白云岩、灰岩旋转岩盘实验

  • 灰岩酸岩反应速度(JCa)和白云岩酸岩反应速度(JMg)分别为 33.6×10-6 和 1.4×10-6 mol/(s·cm2),两者相差一个数量级。观察酸岩反应前后反应产物表面发现,酸蚀后灰岩表面刻蚀明显,白云岩酸岩反应速度慢,反应后端面无明显刻蚀。

  • 2.2 白云岩、灰岩酸蚀裂缝导流能力实验

  • 对比图1 和图2 发现,高浓度酸液对灰岩岩板的酸蚀程度更高,但非均匀刻蚀程度低。反应后,岩板前部酸蚀程度高。对比图3 和图4 发现,高浓度酸液对白云岩岩板的酸蚀程度更高,但并没有出现灰岩岩板前部非均匀刻蚀程度高的现象。

  • 2.3 酸蚀裂缝短期导流能力实验结果分析

  • 酸蚀裂缝表面形态由岩性、渗透率分布、酸液质量分数和注入时间等条件共同作用决定,研究酸液质量分数对于获得酸蚀裂缝高导流能力具有重要意义[16]。10% 质量分数酸液酸蚀后灰岩岩板导流能力高于 20% 质量分数酸液酸蚀后灰岩岩板导流能力(图5)。这是由于10%质量分数酸液刻蚀所得岩板的裂缝非均匀刻蚀程度更高,20% 质量分数酸液刻蚀所得岩板整体酸蚀程度高,但非均匀刻蚀程度较低。

  • 图1 灰岩岩板Ⅰ裂缝酸蚀反应前后对比 (酸液质量分数为10%)

  • Fig.1 Comparison of limestone slate I before and after acid etch reaction(acid concentration is 10%)

  • 图2 灰岩岩板Ⅱ裂缝酸蚀反应前后对比 (酸液质量分数为20%)

  • Fig.2 Comparison of limestone slate II before and after acid etch reaction(acid concentration is 20%)

  • 图3 白云岩岩板Ⅲ裂缝酸蚀反应前后对比 (酸液质量分数为10%)

  • Fig.3 Comparison of dolomite slate III before and after acid etch reaction(acid concentration is 10%)

  • 高酸液质量分数条件下白云岩更易于获得高导流能力,低酸液质量分数条件下白云岩酸压效果要差于灰岩酸压改造效果。这主要是灰岩、白云岩晶体结构差异引起的,方解石(灰岩)的晶格能远小于白云石(白云岩)的晶格能,又因白云石的晶格有序度高于方解石,破坏其晶格有序度所需要的能量要高于方解石,因此方解石较白云石更易被酸蚀。白云岩酸液刻蚀程度低,溶蚀主要沿节理面进行,高浓度酸液有利于深入酸蚀节理面,从而沟通基质与裂缝;另外高浓度酸液能更为充分地刻蚀酸压裂缝壁面,提高非均匀刻蚀程度,获得更高导流能力。

  • 图4 白云岩岩板Ⅳ裂缝酸蚀反应前后对比 (酸液质量分数为20%)

  • Fig.4 Comparison of dolomite slate IV before and after acid etch reaction(acid concentration is 20%)

  • 图5 不同酸液质量分数下白云岩和灰岩酸蚀裂缝短期导流能力对比

  • Fig.5 Short-term conductivity of dolomite and limestone fractures at different acid concentrations

  • 2.4 3D激光扫描实验结果分析

  • 为定量表征酸蚀裂缝非均匀刻蚀程度,采用3D 激光扫描实现数字化,为酸压数值模拟提供依据,图6和图7分别为不同酸液质量分数下的灰岩和白云岩岩板酸蚀裂缝3D激光扫描结果。

  • 10% 酸液质量分数下灰岩岩板形成的是沟槽状的刻蚀。由于沟槽状的溶蚀形状不规则,有一定的支撑条带,支撑面积较大,具有高的抗压强度,所以仅靠自身的非均匀刻蚀程度在受压后依旧具有一定的导流能力,因而其导流能力随着闭合压力的升高下降缓慢。20% 酸液质量分数下灰岩岩板过度溶蚀,表现出均匀刻蚀,尽管在低闭合压力下具有一定的导流能力,但随着闭合压力的升高,导流能力下降明显。

  • 图6 不同酸液质量分数下的灰岩岩板酸蚀裂缝3D激光扫描图

  • Fig.6 3D laser scanning images of acid etched fractures of limestone slates at different acid concentrations

  • 图7 不同酸液质量分数下的白云岩岩板酸蚀裂缝3D激光扫描图

  • Fig.7 3D laser scanning images of acid etched fractures of dolomite slates at different acid concentrations

  • 由图7 可以看出,10% 酸液质量分数下白云岩岩板形成的是线状刻蚀,由于白云岩酸岩反应速度远低于灰岩,因此酸液的有效作用距离较灰岩要更远。但由于白云岩酸蚀后软化程度高,随着闭合压力的升高,导流能力急剧下降。20% 酸液质量分数下白云岩岩板出现的仍然是线状刻蚀,但高酸液质量分数下刻蚀区域面积大于低质量分数刻蚀,同时刻蚀深度也更深。由于形成的刻蚀通道具有一定的深度和宽度,随着闭合压力的升高,导流能力虽有下降,但是下降幅度不大,在短期导流能力测试曲线上能够表现为存在长时间的稳定流动。

  • 2.5 白云岩酸压数值模拟结果

  • 模拟酸液自裂缝表面流入地层,酸液中H+ 在流体的对流扩散下,通过孔隙流体传质作用与白云石和方解石表面发生反应以此改变地层孔隙度。因此假设:忽略除白云石和方解石其他矿物组分;白云石和方解石在任意微元体中均匀分布且互相混合;矿物组分影响表面反应速率,不影响岩石孔隙结构[17-18]

  • 酸液在地层中的流动由达西定律方程控制,压力分布由不可压缩流体的连续性方程控制;氢离子在流体中的浓度分布由对流扩散方程控制;岩石组分变化由白云石和方解石的含量变化方程控制。

  • 设定酸压模型如图8所示。碳酸盐岩储层长度为L,宽度为W,中间由一条宽度为Wf的水力裂缝连接至井筒。酸液自井筒经裂缝垂直流入地层。裂缝的流动阻力很小,压降几乎为 0。酸液在裂缝壁面不同位置的流速为 U0,在裂缝壁面的酸液浓度随位置变化。

  • 图8 模拟酸压施工过程中酸液流动示意

  • Fig.8 Diagram of acid fracturing model

  • 通过对酸岩反应速度与控制模式的研究,发现表面反应控制模式和传质控制模式的酸岩反应速度至少相差11倍,以此作为粗略判断控制模式的标准。

  • 利用酸岩反应速度方程 J = KCm ,当反应级数 (m)为1时,纯白云岩和纯灰岩在90℃,500 r/min条件下得到酸岩反应速度常数。同等条件下,JCa为 55.8×10-3 mm/s,处于传质控制模式;JMg为 2.4×10-3 mm/s,两者相差23.25倍,可以推断出白云岩处于表面反应控制模式。因此可以初步得到,白云岩与盐酸的表面反应速度常数(ksMg)与 JMg相同,皆为 2.4× 10-3 mm/s,酸液传质速度(kc)与 JCa相同,皆为 55.8× 10-3 mm/s。

  • kc与孔隙结构、流动状态等因素有关,其表达式为:

  • kc=DmSh2rp=Dm2rpSh+0.352rpRep|y|0.5Sc13
    (2)
  • 假设初始 ksMg为 0.01 mm/s,灰岩与盐酸的表面反应速度常数(ksCa)为 2 mm/s,由(2)式计算出 kc的理论值为 0.56 mm/s,与实验测得的传质速度不一致。在采用理论值基础上,为保证酸岩反应控制模式不变,白云岩与盐酸的表面反应速度也做出相应的调整,假定ksMg为0.02 mm/s,ksCa为5 mm/s。

  • 从图9和图10可以看出,当表面反应速度较快时,酸岩反应速度很快,基本不存在酸液滤失,裂缝壁面溶蚀不均匀,形成不均匀刻蚀槽,刻蚀槽强度足以支撑地层闭合压力。当表面反应速度较快时,酸岩反应速度很慢,酸液大多滤失到储层内部,裂缝壁面和附近地层溶蚀较均匀,岩石强度有所降低,在地层压力下极易闭合,裂缝导流能力弱。

  • 数值模拟结果可以与裂缝酸蚀实验结果相互印证。由于灰岩表面反应速度高,酸岩反应速度快,因此基本没有酸液滤失,易于在表面形成不均匀刻蚀,其在受到应力变化下依然具有一定的支撑力,保留有一定的导流能力。而白云岩表面反应速度慢,酸岩反应速度慢,酸液大多沿节理面滤失到储层内部,裂缝壁面和附近地层溶蚀较均匀,岩石强度有所降低,在地层压力下极易闭合,裂缝导流能力差。这就解释了酸蚀裂缝导流实验中,白云岩岩板刻蚀深度更深、导流能力低的原因。由于酸液降低了岩石强度,使地层软化,因此承压后其极易闭合,导流能力下降快。

  • 图9 不同表面反应速度常数对应的孔隙度场

  • Fig.9 Porosity fields corresponding to different surface reaction rates

  • 图10 不同表面反应速度常数对应的酸液浓度场

  • Fig.10 Acid concentration fields corresponding to different surface reaction rates

  • 为改善白云岩酸压改造效果,进行高、低浓度酸液交替注入酸压模拟研究[19]。按照图11 段塞式注入高、低浓度的酸液,其酸岩表面反应速度常数分别为 6×10-3 和 2×10-3 mm/s,模拟酸岩反应速度不同的流体交替注入地层的情况。模拟结果(图12) 表明段塞式交替注酸可实现酸液人为不均匀分布,有利于形成高导流通道。

  • 图11 段塞式注酸示意

  • Fig.11 Diagram of slug acid injection

  • 图12 酸液交替注入酸压模拟结果

  • Fig.12 Acid fracturing simulation results of alternating acid injection

  • 3 结论

  • 白云岩比灰岩酸岩反应速度慢,酸岩反应速度相差 1 个数量级。与灰岩相比,白云岩酸液刻蚀程度低,溶蚀主要沿节理面进行,高浓度酸液有利于深入酸蚀节理面,从而沟通基质与裂缝;另外高浓度酸液能更为充分地刻蚀酸压裂缝壁面,提高非均匀刻蚀程度,获得更高导流能力。由于白云岩酸岩反应速度慢,高浓度酸液可以酸蚀更远的裂缝距离,也更易于获得高导流能力。从数值模拟结果看,段塞式交替注酸可实现酸液人为不均匀分布,有利于形成高导流通道。碳酸盐岩储层酸压需考虑高闭合应力下的岩石蠕变特性,另外孔隙型白云岩储层与裂缝型白云岩储层的酸压改造认识也有较大差异,仍需在后续开展深入研究。

  • 符号解释

  • C——酸液浓度,mol/L;

  • Dm——氢离子扩散系数,m2 /s;

  • f——裂缝;

  • J——酸岩反应速度,mol/(s·cm2);

  • JCa——灰岩酸岩反应速度,mol/(s·cm2);

  • JMg——白云岩酸岩反应速度,mol/(s·cm2);

  • kc——传质系数,mm/s;

  • ksCa——方解石表面反应速度常数,mm/s;

  • ksMg——白云石表面反应速度常数,mm/s;

  • K——酸岩反应速度常数,mm/s;

  • KWf ——酸蚀裂缝导流能力,μm2 ·cm;

  • L——地层长度,cm;

  • m——反应级数;

  • p——孔隙;

  • Q——液体流量,cm3 /min;

  • rp——岩石的孔隙半径,m;

  • Rep——孔隙尺度雷诺数;

  • Sc——施密特数;

  • Sh——舍伍德数;

  • Sh——孔隙渐进舍伍德数;

  • U0——注入速度,cm/min,取值为1;

  • W——地层宽度,cm;

  • Wf ——裂缝宽度,cm,取值为2;

  • x——缝长方向(酸液流动方向)地层长度,cm;

  • y——缝宽方向地层长度,cm;

  • | y |——酸液距裂缝壁面的距离,m;

  • Δp——压差(上游压力减去下游压力),kPa;

  • μ——实验温度条件下实验液体黏度,mPa·s;

  • ρ——酸液密度,kg/m3

  • 参考文献

    • [1] KALIA N,BALAKOTAIAH V.Modeling and analysis of wormhole formation in reactive dissolution of carbonate rocks[J].Chemical Engineering Science,2007,62(4):919-928.

    • [2] MAHESHWARI P,RATNAKAR R R,KALIA N,et al.3-D simu⁃ lation and analysis of reactive dissolution and wormhole formation in carbonate rocks[J].Chemical Engineering Science,2013,90:258-274.

    • [3] DACCORD G.Chemical dissolution of a porous medium by a reac⁃ tive fluid[J].Physical Review Letters,1987,58(5):479-482.

    • [4] FREDD C N,MILLER M J.Validation of carbonate matrix stimula⁃ tion models[R].SPE 58713,2000.

    • [5] BARRON A N,HENDRICKSON A R,WIELAND D R.The effect of flow on acid reactivity in a carbonate fracture[J].Journal of Pe⁃ troleum Technology,1962,14(4):409-415.

    • [6] WALSH J B.Effect of pore pressure and confining pressure on fracture permeability[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,18(5):429-435.

    • [7] MIRZA S B,KUNAK O A,GONG M.A systematic experimental study of acid fracture on conductivity[R].SPE 31098,1996.

    • [8] POURNIK M,LI L,SMITH B,et al.Effect of acid spending on etching and acid fracture conductivity[J].SPE Production & Oper⁃ations,2013,28(1):46-54.

    • [9] 齐宁,陈国彬,李振亮,等.基于分步算法的裂缝性碳酸盐岩油藏大尺度酸化数值模拟[J].石油学报,2020,41(3):348-362,371.QI Ning,CHEN Guobin,LI Zhenliang,et al.Numerical simulation of large-scale acidification in fractured carbonate reservoirs based on a step-by-step algorithm[J].Acta Petrolei Sinica,2020,41(3):348-362,371.

    • [10] QI Ning,CHEN Guobin,LIANG Chong,et al.Numerical simula⁃ tion and analysis of the influence of fracture geometry on worm⁃ hole propagation in carbonate reservoirs[J].Chemical Engineering Science,2019,198:124-143.

    • [11] 柳明,张士诚,牟建业.碳酸盐岩酸化径向蚓孔扩展形态研究 [J].油气地质与采收率,2012,19(2):106-110.LIU Ming,ZHANG Shicheng,MOU Jianye.Dissolution pattern of radial wormhole model in carbonate acidizing[J].Petroleum Geol⁃ ogy and Recovery Efficiency,2012,19(2):106-110.

    • [12] LIU Piyang,YAO Jun,GARY Douglas Couples,et al.Numerical modelling and analysis of reactive flow and wormhole formation in fractured carbonate rocks[J].Chemical Engineering Science,2017,172:143-157.

    • [13] 赵春明,张建民,李祖兵.渤中 28-1油田奥陶系碳酸盐岩储层特征及主控因素[J].大庆石油地质与开发,2017,36(1):27-34.ZHAO Chunming,ZHANG Jianmin,LI Zubing.Characteristics and main controlling factors for the Ordovician carbonate reser⁃ voirs in Bozhong28-1 Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2017,36(1):27-34.

    • [14] 刘冉,霍飞,王鑫,等.普光气田下三叠统飞仙关组碳酸盐岩储层特征及主控因素分析[J].中国石油勘探,2017,22(6):34-46.LIU Ran,HUO Fei,WANG Xin,et al.Characteristics and main controlling factors of Lower Triassic Feixianguan Formation car⁃ bonate reservoir in Puguang gas field[J].China Petroleum Explo⁃ration,2017,22(6):34-46.

    • [15] 陈昱林,曾焱,段永明,等.川西龙门山前雷口坡组四段白云岩储层孔隙结构特征及储层分类[J].石油实验地质,2018,40(5):621-631.CHEN Yulin,ZENG Yan,DUAN Yongming,et al.Pore structure characteristics and reservoir classification of dolomite reservoirs in fourth member of Leikoupo Formation,Longmen Mountain front,western Sichuan Basin[J].Petroleum Geology & Experi⁃ ment,2018,40(5):621-631.

    • [16] 王明星,吴亚红,孙海洋,等.酸液对酸蚀裂缝导流能力影响的研究[J].特种油气藏,2019,26(5):153-158.WANG Mingxing,WU Yahong,SUN Haiyang,et al.Influence of acid on the conductivity of acid etch fracture[J].Special Oil & Gas Reservoirs,2019,26(5):153-158.

    • [17] 滕建彬.东营凹陷利页1井泥页岩中白云石成因及层序界面意义[J].油气地质与采收率,2018,25(2):1-7,36.TENG Jianbin.Genesis of dolomite in shale drilled by Well Liye1 in Dongying Sag and its significance on sequence boundary indi⁃ cation[J].Petroleum Geology and Recovery Efficiency,2018,25(2):1-7,36.

    • [18] 滕建彬.东营凹陷页岩油储层中方解石的成因及证据[J].油气地质与采收率,2020,27(2):18-25.TENG Jianbin.Origin and evidence of calcite in shale oil reservoir of Dongying Sag[J].Petroleum Geology and Recovery Efficiency,2020,27(2):18-25.

    • [19] 叶颉枭,李力,韩慧芬,等.多级交替注入酸压工艺优化研究——以磨溪龙女寺构造龙王庙组储层改造为例[J].油气藏评价与开发,2018,8(3):46-50.YE Jiexiao,LI Li,HAN Huifen,et al.Optimization research of multistage alternating acid fracturing:A case study of reservoir stimulation for Longwangmiao Formation in Moxi-Longnvsi area [J].Reservoir Evaluation and Development,2018,8(3):46-50.

  • 参考文献

    • [1] KALIA N,BALAKOTAIAH V.Modeling and analysis of wormhole formation in reactive dissolution of carbonate rocks[J].Chemical Engineering Science,2007,62(4):919-928.

    • [2] MAHESHWARI P,RATNAKAR R R,KALIA N,et al.3-D simu⁃ lation and analysis of reactive dissolution and wormhole formation in carbonate rocks[J].Chemical Engineering Science,2013,90:258-274.

    • [3] DACCORD G.Chemical dissolution of a porous medium by a reac⁃ tive fluid[J].Physical Review Letters,1987,58(5):479-482.

    • [4] FREDD C N,MILLER M J.Validation of carbonate matrix stimula⁃ tion models[R].SPE 58713,2000.

    • [5] BARRON A N,HENDRICKSON A R,WIELAND D R.The effect of flow on acid reactivity in a carbonate fracture[J].Journal of Pe⁃ troleum Technology,1962,14(4):409-415.

    • [6] WALSH J B.Effect of pore pressure and confining pressure on fracture permeability[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,18(5):429-435.

    • [7] MIRZA S B,KUNAK O A,GONG M.A systematic experimental study of acid fracture on conductivity[R].SPE 31098,1996.

    • [8] POURNIK M,LI L,SMITH B,et al.Effect of acid spending on etching and acid fracture conductivity[J].SPE Production & Oper⁃ations,2013,28(1):46-54.

    • [9] 齐宁,陈国彬,李振亮,等.基于分步算法的裂缝性碳酸盐岩油藏大尺度酸化数值模拟[J].石油学报,2020,41(3):348-362,371.QI Ning,CHEN Guobin,LI Zhenliang,et al.Numerical simulation of large-scale acidification in fractured carbonate reservoirs based on a step-by-step algorithm[J].Acta Petrolei Sinica,2020,41(3):348-362,371.

    • [10] QI Ning,CHEN Guobin,LIANG Chong,et al.Numerical simula⁃ tion and analysis of the influence of fracture geometry on worm⁃ hole propagation in carbonate reservoirs[J].Chemical Engineering Science,2019,198:124-143.

    • [11] 柳明,张士诚,牟建业.碳酸盐岩酸化径向蚓孔扩展形态研究 [J].油气地质与采收率,2012,19(2):106-110.LIU Ming,ZHANG Shicheng,MOU Jianye.Dissolution pattern of radial wormhole model in carbonate acidizing[J].Petroleum Geol⁃ ogy and Recovery Efficiency,2012,19(2):106-110.

    • [12] LIU Piyang,YAO Jun,GARY Douglas Couples,et al.Numerical modelling and analysis of reactive flow and wormhole formation in fractured carbonate rocks[J].Chemical Engineering Science,2017,172:143-157.

    • [13] 赵春明,张建民,李祖兵.渤中 28-1油田奥陶系碳酸盐岩储层特征及主控因素[J].大庆石油地质与开发,2017,36(1):27-34.ZHAO Chunming,ZHANG Jianmin,LI Zubing.Characteristics and main controlling factors for the Ordovician carbonate reser⁃ voirs in Bozhong28-1 Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2017,36(1):27-34.

    • [14] 刘冉,霍飞,王鑫,等.普光气田下三叠统飞仙关组碳酸盐岩储层特征及主控因素分析[J].中国石油勘探,2017,22(6):34-46.LIU Ran,HUO Fei,WANG Xin,et al.Characteristics and main controlling factors of Lower Triassic Feixianguan Formation car⁃ bonate reservoir in Puguang gas field[J].China Petroleum Explo⁃ration,2017,22(6):34-46.

    • [15] 陈昱林,曾焱,段永明,等.川西龙门山前雷口坡组四段白云岩储层孔隙结构特征及储层分类[J].石油实验地质,2018,40(5):621-631.CHEN Yulin,ZENG Yan,DUAN Yongming,et al.Pore structure characteristics and reservoir classification of dolomite reservoirs in fourth member of Leikoupo Formation,Longmen Mountain front,western Sichuan Basin[J].Petroleum Geology & Experi⁃ ment,2018,40(5):621-631.

    • [16] 王明星,吴亚红,孙海洋,等.酸液对酸蚀裂缝导流能力影响的研究[J].特种油气藏,2019,26(5):153-158.WANG Mingxing,WU Yahong,SUN Haiyang,et al.Influence of acid on the conductivity of acid etch fracture[J].Special Oil & Gas Reservoirs,2019,26(5):153-158.

    • [17] 滕建彬.东营凹陷利页1井泥页岩中白云石成因及层序界面意义[J].油气地质与采收率,2018,25(2):1-7,36.TENG Jianbin.Genesis of dolomite in shale drilled by Well Liye1 in Dongying Sag and its significance on sequence boundary indi⁃ cation[J].Petroleum Geology and Recovery Efficiency,2018,25(2):1-7,36.

    • [18] 滕建彬.东营凹陷页岩油储层中方解石的成因及证据[J].油气地质与采收率,2020,27(2):18-25.TENG Jianbin.Origin and evidence of calcite in shale oil reservoir of Dongying Sag[J].Petroleum Geology and Recovery Efficiency,2020,27(2):18-25.

    • [19] 叶颉枭,李力,韩慧芬,等.多级交替注入酸压工艺优化研究——以磨溪龙女寺构造龙王庙组储层改造为例[J].油气藏评价与开发,2018,8(3):46-50.YE Jiexiao,LI Li,HAN Huifen,et al.Optimization research of multistage alternating acid fracturing:A case study of reservoir stimulation for Longwangmiao Formation in Moxi-Longnvsi area [J].Reservoir Evaluation and Development,2018,8(3):46-50.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告