-
随着世界能源需求日益增长以及新型清洁能源的匮乏,页岩气作为一种较为清洁的化石能源在世界能源格局的地位显得尤为重要,尤其是美国成功实现了页岩气的商业化开发[1-2],使得页岩气成为世界各国关注的热点[3]。中国针对页岩气相继开展了一系列区域性及局部性的基础研究工作[4-8],目前虽仍处于探索实践阶段,但也初步展示了中国页岩气勘探的巨大资源潜力。贵州页岩气地质资源量为13.54×1012 m3,可采资源量约为1.95×1012 m3,在中国排名第三[9],其烃源岩主要层位为震旦系陡山沱组、下寒武统牛蹄塘组、奥陶系五峰组、下志留统龙马溪组、中泥盆统罐子窑组—火烘组、下石炭统大塘组、二叠系栖霞组—龙潭组[10]。前人研究表明,贵州省内页岩气烃源岩层位多、厚度大、有机质含量高、成熟度高[11],而南方海相页岩储层具有构造改造强、地应力复杂、埋藏较深和地表条件特殊等特点[12-13],受“薄积、中厚、构造复杂”等成矿规律影响[14-16],贵州省页岩气开发更显难度大、技术复杂,要实现规模化、商业化开发,迫切需要开展富页岩气层段精细地质研究、研发形成适应贵州复杂地质条件的页岩气勘探开发理论与技术体系支撑。黔西北地区的上奥陶统五峰组—下志留统龙马溪组下段的富含有机质黑色页岩,普遍被认为是上扬子地区最有利的页岩气研究对象[17]。已有的研究主要集中在古生物地层学、岩石学、岩相古地理和构造演化等方面[18],在储层特征、地球化学特征、埋藏热演化等方面研究较少。笔者在研究黔西北地区五峰组—龙马溪组黑色页岩沉积背景基础上,选取燕子口地区典型的下水剖面,研究其矿物组成、孔隙构成、总有机碳含量以及等效镜质组反射率等特征,可为页岩气的勘探、开发提供基础的参考资料。
-
1 区域地质概况
-
燕子口地区行政区划上隶属于毕节市,位于贵州省西北部,属于上扬子地层分区。区内发育寒武系至侏罗系。中三叠统狮子山组沉积以前为海相碳酸盐岩和碎屑岩建造,分布广泛,而上三叠统沙镇溪组—侏罗系均为以碎屑岩为主的陆相沉积[19]。构造位置上,研究区位于黔中隆起西北部的黔北斜坡[9] (图1a)。受黔中隆起的影响,五峰组—龙马溪组主要出露于毕节、遵义、石阡、铜仁一线以北,黔西北地区南部五峰组—龙马溪组大量剥蚀,在临近云南和川东南地区才有出露和分布。
-
此次研究选取奥陶系—志留系界线清晰、地层发育连续、出露良好的燕子口地区下水剖面(距毕节市区约50 km)进行野外观察、描述和测量(图1b,图2)。该剖面涧草沟组、五峰组、龙马溪组和石牛栏组之间均未见明显的沉积间断,为整合接触关系。奥陶系上统涧草沟组顶部为灰—深灰色瘤状黏土质灰岩、含生屑灰岩(图2a),以此与五峰组底部的黑色页岩相区分;五峰组发育厚度约为 5.1 m,以黑色纹层—薄层状碳质页岩为主,水平层理发育,富含笔石化石,中部发育厚度约为 1 cm 的黄铁矿氧化薄层。在奥陶系五峰组和志留系龙马溪组两套黑色笔石页岩之间,发育厚度约为 80 cm 的深灰色灰岩为主的地层,其中富含赫南特贝等壳相生物化石[20],根据其所含化石,有的将其归入五峰组,作为其顶部层位的;也有的将其单独列出作为奥陶系的最高层位,称之为观音桥组的。鉴于中上扬子地区五峰组总体较薄,厚度一般为 2~10 m,而其顶部富含赫南特期腕足类化石的介壳层厚度一般不超过1.5 m,仅在黔北局部地区达2.0 m以上[21],本文将其作为广义五峰组的顶部层位,称之为观音桥段 (图2b)。龙马溪组地层厚约 170 m,根据岩性变化分为上、下两段,下段主要为连续的污手的黑色页岩以及页岩夹泥灰岩、泥质粉砂岩,其中黑色页岩笔石含量丰富(图2c),发育圆球状黄铁矿结核,上段主要为钙质泥岩、粉砂质泥岩、泥灰岩以及泥质粉砂岩组成(图2d),顶部风化严重,植被覆盖,露头不好。总体而言,以页岩为主的下段颜色较深,而泥岩、粉砂质泥岩和泥质粉砂岩更为发育的上段颜色较浅。
-
图1 贵州及其周缘构造分区和燕子口镇下水剖面位置
-
Fig.1 Structural units of Guizhou and its surrounding areas and location of Xiashui section
-
2 沉积特征
-
晚奥陶世五峰期—早志留世初期,由于地壳抬升,黔中古陆扩大并与滇东古陆相连。在铜仁—湄潭—毕节一线之南的贵州大部变为陆地,仅黔北为海水淹没。五峰组沉积中心靠近黔中隆起,主要分布在威信、纳羊箐(图3a)和遵义桐梓红花园附近,往北五峰组下部黑色页岩段和上部观音桥段均表现为明显变薄的趋势,燕子口地区五峰组沉积厚度介于威信和纳羊箐之间。威信地区五峰组观音桥段为介壳灰岩沉积,桐梓地区则为介壳灰岩夹黑色泥岩,往北不仅厚度变薄,岩性也转变为单一的黑色泥岩沉积[18]。从沉积环境来看,五峰组下部主要灰黑色碳质页岩、硅质碳质页岩,水平细层理发育,富含黄铁矿结核,厚度小,以浮游型笔石为主,属滞留海盆低能还原条件下的深水陆棚沉积。而到了五峰组沉积末期的赫南特冰期,海平面大幅下降,五峰组沉积的黑色笔石页岩相被观音桥段浅水陆棚相沉积所替代[22-23]。龙马溪组沉积早期,随着黔中隆起的隆升,沉积厚度中心北移,越靠近川南地区,沉积厚度逐渐增大(图3b),粒度变细,泥质含量增加,表明海水深度增加。龙马溪组下段主要为灰黑色页岩和粉砂质泥页岩的深水陆棚相沉积,页岩中富含笔石化石和有机质,发育黄铁矿结核,为低能强还原环境。龙马溪组沉积晚期海平面相对有所下降,发育以粉砂质泥岩、泥质粉砂岩等为主的浅水陆棚相沉积,逐渐趋于氧化环境。整体而言,受都匀运动的影响,龙马溪组烃源岩主要分布于遵义—毕节—石阡—江口一线以北的黔北斜坡和武陵凹陷[9]。早志留世中期—中志留世,海侵范围有所扩大,尤其是石牛栏组沉积时期海侵规模较大,形成以碳酸盐为主的沉积,海水清澈,珊瑚等生物繁衍,主要为开阔台地,在隆起边缘常出现一些生物礁滩[19]。
-
图2 燕子口地区下水剖面野外宏观特征
-
Fig.2 Field macro-characteristics of Xiashui section of Yanzikou area
-
图3 燕子口地区及其周缘五峰组和龙马溪组地层厚度等值线(据文献[25]修改)
-
Fig.3 Stratigraphic contour map of Wufeng-Longmaxi Formation in Yanzikou area and its adjacent area (modified according to Reference[25])
-
3 样品采集和分析测试
-
对五峰组和龙马溪组下段黑色页岩层段密集采样,其余层段稀疏采样,采集 XS01—XS40样品共 40 件,样品分布见图4。在成都理工大学油气藏地质及开发工程国家重点实验室完成薄片和阴极发光分析,其中阴极发光分析仪器为英国剑桥仪器公司CL8200MK5阴极发光仪(配以莱卡偏光显微镜),测试条件为束电压 12 kV、束电流 300 μA。在岩石学特征研究的基础上,挑选新鲜洁净无污染的样品在中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所实验研究中心完成扫描电镜分析、全岩和黏土矿物X射线衍射分析、总有机碳含量(TOC)分析、镜质组反射率分析。扫描电子显微镜分析执行 SY/T5162—2014 标准,镀膜和分析采用 SCD005 溅射镀膜仪(带 CEA035 镀碳装置)、 XL-30 扫描电子显微镜(放大倍数为 30~100 000 倍)。全岩和黏土矿物 X 射线衍射分析参照行业标准 SY T5163—2010 和中国石化企业标准 Q / SH 0498—2013。总有机碳含量分析采用美国Leco CS-230 碳硫测定仪,质量要求按照 GB/T19145—2003 规定执行,每批样品分析有 10% 的平行样,每隔 10 个样品抽查一次。镜质组反射率分析采用MPV-Ⅲ 显微光度计、AXIOPLAN2/MSP UV VIS-2000显微光谱仪,执行 SY/T5124—2012 石油天然气行业标准。
-
4 结果分析
-
4.1 矿物岩石学特征
-
根据野外露头和手标本观测、薄片和阴极发光分析,燕子口地区奥陶系涧草沟组主要发育含三叶虫、棘皮动物和双壳等生物化石的泥晶生屑灰岩 (图5a,5b);五峰组下部黑色页岩中碳酸盐矿物含量较高(图5c,5d),而五峰组中上部地层中的富有机质黑色页岩由于碳酸盐矿物含量低而几乎不具有阴极发光(图5e,5f),五峰组顶部的观音桥段为泥晶生屑灰岩,镜下可见的生屑主要包括介形虫、腹足、珊瑚和双壳碎片(图5g,5h)。龙马溪组主要由碳质或硅质页岩、泥质粉砂岩、粉砂质泥岩/页岩、云灰质泥/页岩、泥灰岩等组成。总体而言,黑色页岩主要集中分布在五峰组下部和龙马溪组下段,水平层理发育(图5i),富含有机质和黄铁矿(图5j),五峰组下部地层和龙马溪组上段的碳酸盐矿物含量均较高(图5k,5l)。
-
图4 燕子口地区下水剖面综合柱状图
-
Fig.4 Stratigraphic column of the Xiashui section in Yanzikou area,northwestern Guizhou
-
X 射线衍射分析结果(表1,图6)显示,研究区五峰组(不含观音桥段)和龙马溪组下段的矿物主要由黏土矿物、石英和碳酸盐矿物(方解石为主)组成,还含有少量的长石、黄铁矿等。脆性矿物以碳酸盐矿物和石英为主,其中,包含方解石、白云石和菱铁矿在内的碳酸盐矿物在岩石中的含量主要为 10%~35%,平均值为 22%,碳酸盐矿物含量的最大值和最小值分别出现在五峰组底部和顶部样品中,这与海平面在该时期不断加深的变化趋势相一致; 石英含量为 21%~41%,平均值为 29%。除此之外,长石含量为2%~11%,黄铁矿含量总体不高,但在五峰组—龙马溪组均有发育。黏土矿物主要由伊/蒙混层(约占黏土总量的 70%)和伊利石(约占黏土总量的 30%)构成,部分样品含有极少量的绿泥石和高岭石。黏土矿物在全岩样品中的含量为 22.6%~50.8%,平均值为41%。
-
图5 燕子口地区下水剖面奥陶系—志留系岩石微观特征
-
Fig.5 Micro-characteristics of Ordovician-Silurian rocks in Xiashui section of Yanzikou area
-
页岩气含量及其后期压裂效果与页岩的矿物组成息息相关,不同的矿物具有不同的物化特征。一般而言,具备商业开发条件的页岩其脆性矿物含量高于 40%[23],黔西北燕子口地区五峰组—龙马溪组的脆性矿物总含量为 49%~77%(平均为 59.4%),有利于压裂。与川东南以及渝东南(鹿角剖面和渝页1井)五峰组—龙马溪组的页岩矿物相比较而言,黔西北燕子口地区下水剖面页岩的矿物组成具有显著较高的碳酸盐矿物含量,由于碳酸盐矿物往往沉淀于温暖干净的浅水环境,这也印证了该地区水体相对更浅的特征,相应地,其石英和长石矿物含量低于更深水陆棚环境的黔西北遵义地区习页 1 井、桐页1井和建深1井(图6)。
-
图6 燕子口地区五峰组—龙马溪组页岩矿物组成
-
Fig.6 Shale mineral composition of Wufeng-Longmaxi Formation in Yanzikou area
-
4.2 储集空间特征
-
扫描电镜分析表明,黔西北燕子口地区下水剖面五峰组—龙马溪组储层中微孔发育,孔隙类型主要为层间裂缝、溶蚀孔和顺层缝隙(图7),有机质结构致密,缺乏有机质孔。由于脆性矿物碳酸盐矿物和长石具有机械抗压实,化学易溶蚀的物化特征,因而五峰组—龙马溪组中碳酸盐溶蚀孔和长石溶蚀孔隙均较发育(图7b,7c,7e),次生溶蚀孔隙的发育有效地改善了泥页岩的储集物性。
-
4.3 有机地球化学特征
-
4.3.1 总有机碳含量
-
五峰组总有机碳含量为 2.89%~3.67%,平均值为 3.40%;龙马溪组下段总有机碳含量为 0.38%~5.20%,具有较大的波动范围(表2)。总有机碳含量的高值主要集中在五峰组和龙马溪组底部。从底到顶,五峰组黑色页岩段总有机碳含量具有逐渐减小的趋势(3.67%减小至2.89%),龙马溪组下段富有机质页岩段的总有机碳含量亦呈现出比五峰组更为明显的从下至上逐渐减小的趋势(从 5.20% 减小至0.38%)。
-
总有机碳含量是评价烃源岩生烃潜力最常用的地球化学指标,参考海相泥质烃源岩有机质丰度的评价标准[27],五峰组属于好的烃源岩,龙马溪组下段的底部页岩为很好的烃源岩,其中部地层为中等—好的烃源岩,而其上部地层则为差烃源岩或非烃源岩层(图8)。整体而言,五峰组—龙马溪组总有机碳含量大于1%的中等以上的有效烃源岩的厚度约为20 m。
-
图7 燕子口地区五峰组一龙马溪组页岩储集空间类型
-
Fig.7 Pore types of shale reservoir in Wufeng–Longmaxi Formation in northwestern Guizhou of Yanzikou area
-
图8 燕子口地区下水剖面五峰组—龙马溪组总有机碳含量分布
-
Fig.8 Histogram of total organic carbon content of Wufeng-Longmaxi Formation in Xiashui section of Yanzikou area
-
4.3.2 有机质成熟度
-
镜质组反射率是目前广泛使用的评价烃源岩成熟度的指标之一,但是由于中国南方泥盆纪以前的海相地层中普遍缺乏高等植物[28],因而实验室测得的数据实际上为镜状体反射率,一般需要经过换算获得等效的镜质组反射率。研究区全岩和镜状体反射率的测试数据如表2 所示,采用刘祖发等[29] 提出的经验公式进行换算:设定Rom为测试所得的镜状体反射率,Ro为换算的等效镜质组反射率,当Rom<0.75% 时,Ro=1.26Rom +0.21;当 0.75%<Rom<1.5% 时, Ro=0.28Rom +1.03;当 Rom>1.5% 时,Ro=0.81Rom +0.18。研究区镜状体反射率均大于1.5%,换算结果显示下水剖面五峰组—龙马溪组页岩的镜质组反射率约为 2.5%,热演化程度高,根据中国南方黑色页岩成熟阶段划分标准[30],处于过成熟的干气阶段,尚具备一定的生烃能力。
-
5 结论
-
通过野外剖面观测,室内薄片鉴定、阴极发光、 X射线衍射、扫描电镜、总有机碳含量和镜质组反射率等分析,研究了黔西北燕子口地区奥陶系五峰组—志留系龙马溪组储层特征。黔西北燕子口地区潜质黑色页岩主要发育于深水陆棚相的五峰组下段和龙马溪组下段,以硅质页岩和云灰质页岩为主,普遍富含黄铁矿,总有机碳含量大于1%的中等以上的有效烃源岩地层厚度约为20 m,其等效镜质组反射率约为 2.5%,热演化程度高,处于过成熟的干气阶段,尚具备一定的生烃能力。五峰组—龙马溪组下段脆性矿物含量高(平均值为 59.4%),易于压裂;由于相对遵义等地区而言,其沉积水体更浅,因而具有相对较高的碳酸盐矿物含量(10%~35%),平均值为22%;黏土矿物含量为22.6%~50.8%,平均值为 41%,主要由伊/蒙混层和伊利石构成,绿泥石和高岭石少见。微米—纳米级的层间裂缝、溶蚀孔和顺层缝隙是研究区五峰组—龙马溪组主要的储集空间,溶蚀孔主要来源于以方解石和白云石为主的碳酸盐矿物以及长石的溶蚀作用,而块状有机质较致密,有机质孔不发育。
-
参考文献
-
[1] CURTIS J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1 921-1 938.
-
[2] HICKEY J J,HENK B.Lithofacies summary of the Mississippian Barnett shale Mitchell2 T.P.Sims well,Wise County,Texas[J].AAPG Bulletin,2007,91(4):437-443.
-
[3] 张奥博,汤达祯,陶树,等.中美典型含油气页岩地质特征及开发现状[J].油气地质与采收率,2019,26(1):37-45.ZHANG Aobo,TANG Dazhen,TAO Shu,et al.Analysis of geological background and development situation of typical oil/gas-bearing shales in China and America[J].Petroleum Geology and Recovery Efficiency,2019,26(1):37-45.
-
[4] 邹才能,龚剑明,王红岩,等.笔石生物演化与地层年代标定在页岩气勘探开发中的重大意义[J].中国石油勘探,2019,24(1):1-6.ZOU Caineng,GONG Jianming,WANG Hongyan,et al.Importance of graptolite evolution and biostratigraphic calibration on shale gas exploration[J].China Petroleum Exploration,2019,24(1):1-6.
-
[5] 曹华庆,高长斌.非常规龙马溪组和牛蹄塘组页岩取心技术 [J].油气藏评价与开发,2018,8(2):80-84.CAO Huaqing,GAO Changbin.Shale coring technology in Longmaxi formation and Niutitang formation of unconventional shale gas field[J].Reservoir Evaluation and Development,2018,8(2):80-84.
-
[6] 刘鹏,吴佩津,彭钰洁.焦石坝地区构造特征及页岩气保存模式研究[J].特种油气藏,2018,25(2):37-41.LIU Peng,WU Peijin,PENG Yujie.Structure characterization and shale gas preservation pattern in Jiaoshiba[J].Special Oil & Gas Reservoirs,2018,25(2):37-41.
-
[7] 钟城,秦启荣,胡东风,等.川东南丁山地区五峰组—龙马溪组页岩气藏“六性”特征[J].油气地质与采收率,2019,26(2):14-23.ZHONG Cheng,QIN Qirong,HU Dongfeng,et al.Experimental study on“six properties”of shale gas reservoirs in the Wufeng-Longmaxi Formation in Dingshan area,southeastern Sichuan Basin[J].Petroleum Geology and Recovery Efficiency,2019,26(2):14-23.
-
[8] 邓宇,陈胜,欧阳永林,等.川西南威远地区页岩气效益“甜点区”地震综合预测方法及其应用[J].大庆石油地质与开发,2019,38(2):112-122.DENG Yu,CHEN Sheng,OUYANG Yonglin,et al.Seismic comprehensive predicting method and its application of the shale gas effect“sweet spot region”in Weiyuan area of Southwest Sichuan [J].Petroleum Geology & Oilfield Development in Daqing,2019,38(2):112-122.
-
[9] 郭世钊,郭建华,刘辰生,等.黔北地区志留系下统龙马溪组页岩气成藏潜力[J].中南大学学报:自然科学版,2016,47(6):1 973-1 980.GUO Shizhao,GUO Jianhua,LIU Chensheng,et al.Shale gas accumulation potential of Lower Silurian Longmaxi formation in northern Guizhou[J].Journal of Central South University:Science and Technology,2016,47(6):1 973-1 980.
-
[10] 杨瑞东,程伟,周汝贤.贵州页岩气源岩特征及页岩气勘探远景分析[J].天然气地球科学,2012,23(2):340-347.YANG Ruidong,CHENG Wei,ZHOU Ruxian.Characteristics of organic-rich shale and exploration area of shale gas in Guizhou province[J].Natural Gas Geoscience,2012,23(2):340-347.
-
[11] 葛明娜,庞飞,包书景.贵州遵义五峰组—龙马溪组页岩微观孔隙特征及其对含气性控制:以安页1井为例[J].石油实验地质,2019,41(1):23-30.GE Mingna,PANG Fei,BAO Shujing.Micro pore characteristics of Wufeng-Longmaxi shale and their control on gas content:a case study of well Anye1 in Zunyi area,Guizhou Province[J].Petroleum Geology & Experiment,2019,41(1):23-30.
-
[12] 张金川,徐波,聂海宽,等.中国天然气勘探的两个重要领域 [J].天然气工业,2007,27(11):1-6.ZHANG Jinchuan,XU Bo,NIE Haikuan,et al.Two essential gas accumulations for natural gas exploration in China[J].Natural Gas Industry,2007,27(11):1-6.
-
[13] 聂海宽,何发岐,包书景.中国页岩气地质特殊性及其勘探对策[J].天然气工业,2011,31(11):111-116.NIE Haikuan,HE Faqi,BAO Shujing.Peculiar geological characteristics of shale gas in China and its exploration countermeasures [J].Natural Gas Industry,2011,31(11):111-116.
-
[14] 戴传固,郑启钤,陈建书,等.贵州雪峰—加里东构造旋回期成矿地质背景研究[J].地学前缘,2013,20(6):219-225.DAI Chuangu,ZHENG Qiqian,CHEN Jianshu,et al.The metallogenic geological background of the Xuefeng-Caledonian tectonic cycle in Guizhou,China[J].Earth Science Frontiers,2013,20(6):219-225.
-
[15] 戴传固,郑启钤,陈建书,等.贵州海西—燕山构造旋回期成矿地质背景研究[J].贵州地质,2014,31(2):82-88.DAI Chuangu,ZHENG Qiqian,CHEN Jianshu,et al.Geological background study of metallogenic in Haixi-Yanshan tectonic cycle in Guizhou[J].Guizhou Geology,2014,31(2):82-88.
-
[16] 赵文韬,荆铁亚,姚光华,等.复杂构造区页岩气保存条件研究 [J].特种油气藏,2018,25(6):83-89.ZHAO Wentao,JING Tieya,YAO Guanghua,et al.Shale gas preservation condition in complex tectonic zone[J].Special Oil & Gas Reservoirs,2018,25(6):83-89.
-
[17] 万洪程,孙玮,刘树根,等.四川盆地及周缘地区五峰—龙马溪组页岩气概况及前景评价[J].成都理工大学学报:自然科学版,2012,39(2):176-181.WAN Hongcheng,SUN Wei,LIU Shugen,et al.General situation and prospect evaluation of the shale gas in Wufeng-Longmaxi Formation of Sichuan Basin and surrounding areas[J].Journal of Chengdu University of Technology:Science & Technology Edition,2012,39(2):176-181.
-
[18] 王世玉.黔北地区上奥陶统五峰组—下志留统龙马溪组黑色页岩(气)特征研究[D].成都:成都理工大学,2013.WANG Shiyu.The study of the shale gas features in upper Ordovician-lower Silurian,uplift in the northern Guizhou[D].Chengdu:Chengdu University of Technology,2013.
-
[19] 贵州省地质矿产局.贵州省区域地质志[M].北京:地质出版社,1987:5-367.Guizhou Provincial Bureau of Geology and Mineral Resources.Regional geology of Guizhou Province[M].Beijing:Geological Publishing House,1987:5-367.
-
[20] 戎嘉余.中国的赫南特贝动物群(Hirnatia fauna)并论奥陶系与志留系的分界[J].地层学杂志,1979,3(1):1-31.RONG Jiayu.The Hirnatia fauna in China and the boundary between Ordovician and Silurian[J].Acta Stratigraphica Sinica,1979,3(1):1-31.
-
[21] 王玉满,董大忠,黄金亮,等.四川盆地及周边上奥陶统五峰组观音桥段岩相特征及对页岩气选区意义[J].石油勘探与开发,2016,43(1):42-50.WANG Yuman,DONG Dazhong,HUANG Jinliang,et al.Guanyinqiao Member lithofacies of the Upper Ordovician Wufeng Formation around the Sichuan Basin and the significance to shale gas plays,SW China[J].Petroleum Exploration and Development,2016,43(1):42-50.
-
[22] 张鹏.沉积环境对页岩气发育的控制作用及应用[D].北京:中国地质大学(北京),2015.ZHANG Peng.The control mechanism and application of sedimentary environment for the shale gas accumulation[D].Beijing:China University of Geosciences(Beijing),2015.
-
[23] 李佳欣.观音桥段地质特征及其对页岩气产量的影响——以南川地区为例[J].油气藏评价与开发,2018,8(4):68-72.LI Jiaxin.Geological features of Guanyinqiao member and its influence on the shale gas production:A case study of Nanchuan district[J].Reservoir Evaluation and Development,2018,8(4):68-72.
-
[24] 贵州省地质局区域地质调查大队.威信幅区域地质调查报告 [M].贵阳:贵州省地质局,1979:15-48.Regional Geological Survey Brigade,Geological Bureau of Guizhou Province.Regional geological survey report of Weixin[M].Guiyang:Guizhou Provincial Geological Bureau,1979:15-48.
-
[25] 郑益军.四川盆地东南缘五峰—龙马溪组页岩地球化学、物性特征及其影响因素[D].广州:中国科学院大学,2017.ZHENG Yijun.Geochemical,petrophysical properties and its effecting factors of the Wufeng-Longmaxi shale in southeastern margins of the Sichuan Basin[D].Guangzhou:University of Chinese Academy of Science,2017.
-
[26] 李娟.渝东南地区龙马溪组黑色页岩储层特征——以鹿角剖面和渝页1井为例[D].北京:中国地质大学(北京),2013.LI Juan.Reservoir Characteristics of Longmaxi shale in the southeast of Chongqing:A case study from Lujiao outcrop section and Well Yuye-1[D].Beijing:China University of Geosciences(Beijing),2013.
-
[27] 魏红霞.黔北武陵山地区安场向斜天然气储集条件[D].北京:中国地质科学院,2018.WEI Hongxia.Reservoir conditions of Anchang synclinal in Wuling area of north Guizhou[D].Beijing:Chinese Academy of Geological Sciences,2018.
-
[28] 史洪亮,王同,陈霞,等.川南下古生界高演化页岩成熟度指标 [J].断块油气田,2018,25(1):43-47.SHI Hongliang,WANG Tong,CHEN Xia,et al.Research on thermal maturity indicators of lower Palaeozoic over-mature shale in southern Sichuan Area[J].Fault-Block Oil and Gas Field,2018,25(1):43-47.
-
[29] 刘祖发,肖贤明,傅家谟,等.海相镜质组反射率用作早古生代烃源岩成熟度指标研究[J].地球化学,1999,28(6):580-588.LIU Zufa,XIAO Xianming,FU Jiamo,et al.Marine vitrinite reflectance as a maturity indicator of Lower Palaeozoic hydrocarbon source rocks[J].Geochimica,1999,28(6):580-588.
-
[30] 聂海宽,包书景,高波,等.四川盆地及其周缘上奥陶统—下志留统页岩气成藏体系研究[J].石油实验地质,2012,34(2):115-119,124.NIE Haikuan,BAO Shujing,GAO Bo,et al.Accumulation system for shale gas from Upper Ordovician to Lower Silurian in Sichuan Basin and surrounding areas[J].Petroleum Geology & Experiment,2012,34(2):115-119,124.
-
摘要
在野外地质露头剖面测量和样品采集的基础上,通过铸体薄片鉴定、阴极发光、X射线衍射、扫描电镜、总有机碳含量和镜质组反射率等地球化学分析,结合区域地质背景和前人研究成果,探讨黔西北燕子口地区奥陶系五峰组—志留系龙马溪组泥页岩储层特征。结果表明:①研究区五峰组—龙马溪组主要沉积浅水—深水陆棚相的粉砂质页岩、云灰质页岩、泥质粉砂岩,烃源岩主要为五峰组以及龙马溪组下部黑色炭质/硅质页岩。②矿物组成主要由黏土矿物(22%~51%)、石英(21%~41%)和碳酸盐矿物(10%~35%)构成,含少量的黄铁矿和石膏,其中黏土矿物以伊/蒙混层和伊利石为主,总体具有脆性矿物含量高(平均值为59.4%),非均质性强,纵向变化大的特征。③储集空间主要为层间裂缝及溶蚀孔、顺层缝隙,尤以碳酸盐和长石溶蚀现象较明显,有机质孔不发育。④五峰组—龙马溪组总有机碳含量大于1%的中等以上的有效烃源岩的厚度约为20 m。⑤等效镜质组反射率约为2.5%,热演化程度高,处于过成熟的干气阶段,尚具备一定的生烃能力。
Abstract
On the basis of the outcrop profile measurement and sample collection,through casting sheet identification,cathodoluminescence analysis,X-ray diffraction analysis,scanning electron microscopy analysis,geochemical analysis of total organic carbon content and vitrinite reflectance,the characteristics of shale reservoirs in the Ordovician Wufeng Formation-Silurian Longmaxi Formation(Wufeng-Longmaxi Formation)were discussed combined with the regional geological background and previous research results in Yanzikou area,northwestern Guizhou with the following results obtained:①The rock types of Wufeng-Longmaxi Formation are dominated by silty shale,dolomitic/calcareous shale,and argillaceous siltstone deposited in shallow water-deep water shelf environment,and the black carbonaceous/siliceous shale in Wufeng Formation and lower Longmaxi Formation are potential source rocks. ②The mineral composition mainly includes clay minerals (22% -51%),quartz(21% -41%),and carbonate minerals(10% -35%),with a small amount of pyrite and gypsum,of which clay minerals mainly include illite/smectite mixed layer and illite. Generally,it has a large proportion of brittle minerals(average 59.4%),strong heterogeneity,and great vertical variation. ③ Reservoir space consists mainly of interlayer cracks,dissolution pores,and bedding fractures.Carbonate and feldspar dissolution phenomena are especially obvious,but organic pores are underdeveloped. ④The effective thickness of source rocks with a total organic carbon content of more than 1% in the Wufeng-Longmaxi Formation is about 20 m. ⑤The equivalent vitrinite reflectance of the Wufeng-Longmaxi Formation is around 2.5%,showing its high degree of thermal evolution. It is in the stage of overmature dry gas and is still capable of hydrocarbon generation.