-
内源微生物采油技术是通过向油层注入激活剂,利用油藏条件下微生物的生长代谢活动提高原油采收率。该技术作为一项环保、低成本的可持续性发展技术,已在中外油田显示良好的应用前景[1-6]。前期研究发现中高温乳化微生物在中高温油藏驱油过程中起着举足轻重的作用[7-11]。由于油藏微生物生态系统及其生长代谢途径纷繁复杂,定向调控内源微生物中的乳化功能菌使其发挥驱油作用的难度大[12-14]。与内源菌相比,外源菌具有复杂度低、可控性强、稳定性好等优点,因此,向油藏注入外源乳化功能菌,调整油藏微生物种群结构使其朝着有利于驱油的方向发展,成为内源微生物采油技术发展的新思路。注入的外源菌必须适应油藏环境,并与油藏内源菌相兼容,形成油藏微生物群落中稳定的优势菌群,从而发挥内外源菌的协同驱油作用[15-16]。目前,乳化功能菌在油藏环境中生长繁殖情况、时空分布规律及其与油藏内源菌群之间的竞争关系尚不清楚,外源菌对生态系统中内源菌驱油影响的相关文献报道非常少[17],还未见外源乳化功能菌在内源菌群落驱油过程中的追踪生长变化报道,导致在油藏环境下对该类重要功能菌的激活调控针对性不强。
-
Geobacillus 是高温油藏中一类具有嗜烃和产乳化剂功能的菌属[18-21],它是从Bacillus菌属中分离出来的一组在表型和系统发育上相似的嗜热菌群,该菌属中大多数细菌的生长温度高于55℃,并能降解烃类化合物。胜利油田石油工程技术研究院从油藏环境中筛选获得一株SL-1菌,该菌能以烃类为唯一碳源进行生长代谢,烃类乳化能力强,最适宜生长温度是65~70℃[22-23],且能产生一种以糖、蛋白和脂为主的生物乳化剂。本文将该乳化功能菌进行微观可视模型和岩心填砂模型的多孔介质驱油研究,首次探索研究了多孔介质中油藏内源菌生态系统影响下外源乳化功能菌的驱油机理及生长分布规律,为中高温油藏环境下利用外源菌强化内源菌驱油效果提供指导。
-
1 实验器材与方法
-
1.1 实验器材
-
实验仪器包括微观可视模型、微观驱替系统、物理模拟驱油装置、岩心填砂模型(尺寸:1 800 mm×38 mm,如图1 所示)、定量 PCR 仪、分光光度计。油水样品取自胜利油田沾 3 区块,原油黏度为 230 mPa·s,地层水矿化度为 1 890 mg/L;菌种采用 SL-1菌,来自胜利油田石油工程技术研究院微生物中心菌种库。激活剂体系包括尿素,酵母粉, K2HPO4·3H2O,KH2PO4,MgSO4·7H2O和微量元素,其质量浓度分别为5,1,2.7,1.0,0.2和0.1 g/L,pH值调至中性。
-
图1 岩心填砂模型分段取样
-
Fig.1 Sectional sampling of core sand-packed model
-
1.2 实验方法
-
1.2.1 微观驱油实验方法
-
利用高温高压微观可视驱油系统,模拟油藏高温、高压环境,将 SL-1菌注入至微观可视模型中进行培养,研究剩余油变化[24],具体步骤包括:①将微观可视模型升温至 65℃,抽真空,饱和含有激活剂的地层水。②饱和原油后,进行一次水驱至约 1.5 PV,停止水驱。③注入 0.8 PV的 SL-1菌液,缓慢增压至 10 MPa,培养不同时间,观察剩余油变化。④ 培养结束后,后续二次水驱1.5 PV,水驱后分析剩余油驱替情况。
-
1.2.2 岩心填砂模型驱油实验方法
-
利用岩心填砂模型驱油系统,模拟油藏高温、高压环境,将不同介质分批次注入岩心填砂模型中,激活培养,研究该菌的时间及空间变化规律,具体步骤包括:①将岩心填砂抽真空、饱和水,并饱和原油。②进行一次水驱,注入速度为1 mL/min,驱替3 PV至含水率95%以上。③岩心中注入0.05 PV的激活剂体系/SL-1 菌/SL-1 菌+激活剂体系,注入结束后继续以相同速度用注入水连续驱替。分别于一次水驱后的第 1 d、第 8 d、第 15 d 和第 22 d,共注入4轮次激活剂体系/SL-1菌/SL-1菌+激活剂体系。 ④对不同时间产出液进行驱替效率、微生物种群结构及 SL-1数量等指标检测。⑤实验结束后拆卸岩心,分析不同位点油砂内滞留的SL-1菌数量及残余油饱和度。以一直注水驱替的岩心作为空白对照。其中,仅注入激活剂体系是利用内源菌的生长代谢进行驱油,仅注入 SL-1 菌是利用 SL-1 菌的发酵代谢产物进行驱油,而同时注入SL-1菌和激活剂体系是利用 SL-1菌和内源菌共同繁殖代谢来发挥驱油作用。
-
1.2.3 SL-1菌定量检测
-
从 NCBI 的 GenBank 数据库中下载 G.stearothermophilus 目的序列,根据功能基因中的保守区设计特异性引物,功能基因 Geb-F 引物序列为 5`-TAA GCG TGA GAT CGG TGG TTC-3`,功能基因 Geb-R 引物序列为5`-GCG CTC TCG GTT TCT TCC TT-3`。从油藏微生物中提取细菌总DNA后,利用特异性引物进行基因扩增,扩增片段纯化后构建标准品质粒,制作SL-1菌标准曲线。
-
1.2.4 微生物种群结构分析
-
提取样品中微生物 DNA,然后扩增获取 16s DNA基因文库克隆,送至深圳华大基因公司进行微生物高通量测试,确定样品中微生物种群结构组成。
-
1.2.5 油砂中原油测定
-
利用沾 3 区块原油绘制原油含量标准曲线,对岩心中的油砂进行石油醚萃取,分离并收集原油萃取液,然后利用分光光度计对萃取液进行吸光度检测,明确样品中的原油含量,并通过岩心孔隙体积计算残余油饱和度。
-
2 实验结果
-
2.1 SL-1菌的微观驱油
-
一次水驱之后,微观可视模型中存在膜状、簇状、盲端等大量不同形态的剩余油,继续同时注入外源菌SL-1和激活剂体系作为实验组进行培养,以只添加激活剂体系作为空白对照。随着地层水中内源菌的激活,代谢产生的生物表面活性剂使膜状剩余油减少,但是壁面残余油及盲端剩余油的剥离能力有限(图2)。SL-1菌在油藏环境中生长繁殖产生生物表面活性剂,导致模型润湿性发生改变,孔隙壁面的膜状剩余油收缩,乳化成油滴从壁面剥离,盲端剩余油也被有效剥离驱出,原油乳化现象增强(图3)。
-
油藏环境下,微生物与原油作用一段时间后,再进行二次水驱,剩余油明显减少,大部分簇状、柱状剩余油被驱替(图4,图5)。与空白对照相比,SL-1菌作用后的油膜、盲端等剩余油被有效驱动,二次水驱后剩余油更少。由此可见,在高温、高压油藏环境下,加入SL-1菌可以有效提高剩余油驱替效率。
-
图2 空白培养期间剩余油变化
-
Fig.2 Changes of residual oil in blank control group
-
图3 SL-1菌培养期间剩余油变化
-
Fig.3 Changes of residual oil in test group with SL-1
-
2.2 岩心填砂模型微生物驱油效果
-
从表1中可以看出,外源菌+内源菌体系提高原油采收率达 13.5%。其次,内源菌提高原油采收率为 8.8%,外源菌提高原油采收率为 7.2%。由此可见,内、外源菌的生长繁殖,强化了单纯内源菌或单纯外源菌发酵液的驱油效果,从而进一步提高了原油采收率。
-
2.3 不同注入体系产出液中微生物数量变化
-
不同注入体系产出液中的微生物数量变化不同(图6)。仅注入外源菌的岩心产出液中微生物数量很低,基因拷贝数最高约为102 copies/mL,说明微生物在地层水贫瘠的营养环境中难以有效生长,这时驱油效率的贡献来自发酵液中存在的生物表面活性剂产物,与外源菌繁殖代谢无关;仅注入激活剂体系的岩心产出液中微生物数量开始呈现波动变化,然后逐渐趋于稳定,约为 107 copies/mL,说明激活剂体系可以有效促进内源菌的生长,但是到后期,微生物增殖到一定程度,数量难以进一步增加; 而同时注入外源菌和激活剂体系的岩心产出液中微生物总量呈上升变化趋势,基因拷贝数约为 109 copies/mL,微生物数量始终高于其余2种注入体系。由此可见,同时注入外源菌和激活剂可以进一步提高油藏微生物的数量,强化微生物代谢活性,有利于微生物驱油。
-
图4 空白对照作用前后剩余油分布
-
Fig.4 Distribution of residual oil before and after blank control
-
图5 SL-1菌作用前后剩余油分布
-
Fig.5 Distribution of residual oil before and after addition of SL-1
-
图6 不同注入体系驱替中微生物数量变化
-
Fig.6 Changes in number of microorganisms during oil displacement in different injection systems
-
2.4 复合驱替中微生物群落结构
-
2.4.1 不同轮次微生物群落结构
-
微生物种群结构分析结果显示,同时注入外源菌 SL-1 菌和激活剂体系的岩心产出液<中 Geobacillus始终是产出液中微生物群落的优势菌之一,而其他优势菌在各轮次之间变化较大。但是整个微生物生态系统中的功能菌以烃降解菌为主,每轮次中占比均达70%以上,可能与注入的无机盐激活剂体系有关。由表2 可知,除 Geobacillus 菌之外,第 1 轮激活后主要是栖热孢菌(Thermotoga)、不动杆菌 (Acinetobacter)、海杆菌(Marinobacter)和油杆菌 (Petrobacter);第 2轮激活后主要包括脱硫杆菌(Dethiobacter)、不动杆菌(Acinetobacter)、吞菌弧菌(Peredibacter)、栖热孢菌(Thermotoga);第3轮优势菌以纤维单孢菌属(Cellulomonas)、脱硫弧菌(Desulfovibrio)、脱硫杆菌(Dethiobacter)、海杆菌(Marinobacter)为主;第 4 轮优势菌以假单胞菌(Pseudomonas)、脱硫弧菌(Desulfovibrio)、希瓦氏菌属(Shewanella)和海杆菌(Marinobacter)。
-
SL-1菌能够适应沾 3油藏环境,在油藏微生物生态系统中具有一定竞争优势,多轮次外源菌的注入使该菌在内源群落中逐渐保持稳定,功能菌优势地位凸显。但是随着培养时间延长,Geobacillus 菌在整个微生物生态系统中的占比有所下降,由开始 21%降低至13%,推测随着激活剂体系消耗,代谢产物积累、内源菌的竞争繁殖等因素影响,油藏生态系统中微生物群落结构开始发生转变。
-
2.4.2 不同岩心位置微生物群落结构
-
对岩心不同部位油砂中微生物种群结构及SL-1菌进行了分析,结果显示 SL-1菌在岩心入口处占比最高,可达 55%,随着离入口端距离增加,该菌在菌群中的比例逐渐降低,出口端为 12%(图7)。分析认为:一方面,该菌具备兼性厌氧的生理特性,可以在岩心不同位置进行生长繁殖;另一方面,激活剂体系注入后充分激活了地层水中内源菌,微生物多样性增强。同时,对不同位置的SL-1菌进行基因定量分析,结果显示(图8),该菌在岩心中前部数量较高,最高可达 106 copies/mL,随之缓慢下降,出口端数量约为 103 copies/mL,说明大部分外源菌依然滞留于岩心中,可以继续有效发挥驱油作用。此外,还可以看出SL-1菌在岩心不同位点的浓度与残余油饱和度存在一定负对应关系,该菌浓度高的位点对应的残余油饱和度比较低(残余油饱和度约为 30%)。
-
图7 油砂不同取样点的微生物种群结构
-
Fig.7 Microbial community structure at different sampling points in oil sands
-
图8 SL-1菌在岩心中的空间分布
-
Fig.8 Spatial distribution of SL-1 in core
-
3 结论
-
SL-1 菌能够在模拟油藏环境的微观可视模型中生长代谢,同单纯激活内源菌的空白对照相比,添加该菌后可以增强微生物与原油的相互作用,提高了微生物的原油驱替效率。岩心填砂模型实验中该菌始终是产出液微生物优势种群之一,其浓度与岩心残余油饱和度呈现负对应关系,表明该菌生长繁殖与岩心驱油密切相关,与微观模型驱油现象一致。随着注入时间延长,该菌在生态系统中占比有所下降。因此,要使该菌长期在油藏内源菌生态系统中维持稳定,还需要对 SL-1菌的注入方式、注入时间、激活剂体系种类等调控方式继续进行深入研究。
-
此外,内源菌驱油过程中油藏微生物数量随着时间延长逐渐趋于平稳,后期即使再注入激活剂体系,微生物数量也不会有显著的增殖变化,整个生态系统达到一个平衡状态。外源菌的注入可以刺激油藏微生物进一步生长繁殖,提高微生物驱油效果。因此,调控研究外源菌与内源菌之间的协同机制,充分发挥外源菌强化内源菌驱油的效果,将为微生物驱油技术的发展提供新思路。
-
参考文献
-
[1] LI C F,LI Y,LI X M,et al.The application of microbial enhanced oil recovery technology in Shengli Oilfield[J].Petroleum Science & Technology,2015,33(5):556-560.
-
[2] GAO C H,ZEKRI A.Applications of microbial-enhanced oil recovery technology in the past decade[J].Energy Sources,2011,33(10):972-989.
-
[3] CASTORENA Cortés G,ROLDÁN Carrillo T,REYES Avila J,et al.Coreflood assay using extremophile microorganisms for recovery of heavy oil in Mexican oil fields[J].Journal of Bioscience & Bioengineering,2012,114(4):440-445.
-
[4] BATISTA S B,MOUNTEER A H,AMORIM F R,et al.Isolation and characterization of biosurfactant/bioemulsifier-producing bacteria from petroleum contaminated sites[J].Bioresource Technology,2006,97(6):868-875.
-
[5] XIAO Meng,ZHANG Zhongzhi,WANG Jingxiu,et al.Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery[J].Bioresource Technology,2013,147(10):110-116.
-
[6] AL-BAHRY S N,ELSHAFIE A E,AL-WAHAIBI Y M,et al.Microbial consortia in Oman oil fields:a possible use in enhanced oil recovery[J].Journal of Microbiology & Biotechnology,2013,23(1):106-117.
-
[7] KUMAR M,LEON V,MATERANO A D S,et al.Enhancement of oil degradation by co-culture of hydrocarbon degrading and biosurfactant producing bacteria[J].Polish Journal of Microbiology,2006,55(2):139-146.
-
[8] 李忠洋,林军章,钱钦,等.一株采油用地衣芽孢杆菌厌氧生长代谢[J].中国石油大学学报:自然科学版,2018,42(6):179-184.LI Zhongyang,LIN Junzhang,QIAN Qin,et al.Study on anaerobic growth metabolism of a Bacillus licheniformis strain[J].Journal of China University of Petroleum:Edition of Natural Science,2018,42(6):179-184.
-
[9] 薛峰,刘瑾.喜热噬油芽胞杆菌产生的生物乳化剂的组成与性质[J].微生物学杂志,2009,29(1):50-54.XUE Feng,LIU Jin.Components and properties of a bioemulsifier from Geobacillus thermoleovorans[J].Journal of Microbiology,2009,29(1):50-54.
-
[10] MOHAMED C,SAMI M,SAMI S.Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field[J].Fems Microbiology Letters,2010,283(1):23-29.
-
[11] WANG L,TANG Y,WANG S,et al.Isolation and characterization of a novel thermophilic Bacillus,strain degrading long-chain n-alkanes[J].Extremophiles Life under Extreme Conditions,2006,10(4):347-356.
-
[12] 李彩风,宋永亭,谭晓明,等.激活剂对油藏微生物群落及其驱油能力的影响[J].西安石油大学学报:自然科学版,2013,28(6):77-81.LI Caifeng,SONG Yongting,TAN Xiaoming,et al.Effect of activator on community structure and oil displacement ability of reservoir microbial[J].Journal of Xi’an Shiyou University:Natural Science Edition,2013,28(6):77-81.
-
[13] 任红燕,宋志勇,李霏霁,等.胜利油藏不同时间细菌群落结构的比较[J].微生物学通报,2011,38(4):561-568. REN Hongyan,SONG Zhiyong,LI Feiji,et al.Comparison of bacterial community structures in Shengli oil reservoir of different time point[J].Microbiology,2011,38(4):561-568.
-
[14] LIU Y F,GALZERANI D D,MBADINGA S M,et al.Metabolic capability and in situ activity of microorganisms in an oil reservoir [J].Microbiome,2018,6(1):5.
-
[15] GUDINA E J,PEREIRA J F,COSTA J A,et al.Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns[J].Journal of Hazardous Materials,2013,261:106-113.
-
[16] 郭万奎,侯兆伟,石梅,等.短短芽孢杆菌和蜡状芽孢杆菌采油机理及其在大庆特低渗透油藏的应用[J].石油勘探与开发,2007,34(1):73-78.GUO Wankui,HOU Zhaolin,SHI Mei,et al.The recovery mechanism and application of Brevibacillus brevis and Bacillus cereus in extra-low permeability reservoir of Daqing[J].Petroleum Exploration and Development,2007,34(1):73-78.
-
[17] 王大威,张健,马挺,等.外源和内源微生物在营养剂激活过程中丰度变化及对原油作用研究[J].生物技术通报,2013,(11):164-169.WANG Dawei,ZHANG Jian,MA Ting,et al.Study of changes in abundance and degradation crude oil capacity of endogenous bacteria and andexogenous bacteria activation in oilfield under injecting activation agent conditions[J].Biotechnology Bulletin,2013,(11):164-169.
-
[18] 夏文杰,董汉平,俞理,等.一株耐温耐盐烃降解菌 Geobacillus sp.XDF-4性能[J].化工学报,2010,61(11):2 951-2 959.XIA Wenjie,DONG Hanping,YU Li,et al.Characterization of a thermophilic and halotolerant strain Geobacillus sp.XDF-4[J].Journal of Chemical Industry and Engineering,2010,61(11):2 951-2 959.
-
[19] FULAZZAKY M,ASTUTI D I,FULAZZAKY M A.Laboratory simulation of microbial enhanced oil recovery using Geobacillus toebii R-32639 isolated from the Handil reservoir[J].Rsc Advances,2015,5(5):3 908-3 916.
-
[20] LIU X,DONG Y,ZHANG J,et al.Two novel metal-independent long-chain alkyl alcohol dehydrogenases from Geobacillus ther⁃modenitrificans NG80-2[J].Microbiology,2009,155(6):2 078-2 085.
-
[21] 徐爽,黄志勇,路福平,等.高温产生物乳化剂菌的筛选及其功能分析[J].科技导报,2011,29(15):52-57.XU Shuang,HUANG Zhiyong,LU Fuping,et al.Screening bioemulsifier-produced microorganisms and its function analysis[J].Science & Technology Review,2011,29(15):52-57.
-
[22] 李彩风,吴晓玲,刘涛,等.高温产生物乳化剂菌株 SL-1 的性能评价及物模驱油研究[J].安徽大学学报:自然科学版,2014,38(1):90-95.LI Caifeng,WU Xiaoling,LIU Tao,et al.Study on the property evaluation and physical simulation oil displacement of a thermophilic bioemulsifier-producing bacteria SL-1[J].Journal of Anhui University:Natural Science Edition,2014,38(1):90-95.
-
[23] 曹嫣镔,刘涛,李彩风,等.一株嗜热脂肪地芽孢杆菌的驱油性能及机理[J].应用与环境生物学报,2015,21(6):1 060-1 064.CAO Yanbin,LIU Tao,LI Caifeng,et al.Efficiency and mechanism of oil displacement by a strain of Geobacillus stearothermophilus[J].Chinese Journal of Applied & Environmental Biology,2015,21(6):1 060-1 064.
-
[24] 朱维耀,夏小雪,郭省学,等.高温高压条件下油藏内源微生物微观驱油机理[J].石油学报,2014,35(3):528-535.ZHU Weiyao,XIA Xiaoxue,GUO Shengxue,et al.Microscopic oil displacement mechanism of indigenous microorganisms under high-pressure conditions in reservoirs[J].Acta Petrolei Sinica,2014,35(3):528-535.
-
摘要
嗜热脂肪地芽孢杆菌 Geobacillus stearothermophilus SL-1(简称 SL-1)菌是从油藏环境中分离获得的一种嗜烃乳化功能菌,烃类乳化能力强,适宜生长温度为65~70 ℃。利用微观可视模型和岩心填砂模型,对该菌进行了多孔介质中的生长分布规律及驱油机理研究。结果表明,高温高压油藏环境下,与空白对照只添加激活剂体系激活内源菌相比,添加 SL-1菌后可以改变孔壁润湿性,乳化膜状油,剥离盲端油,二次水驱后残余油驱替能力显著增强。物理模拟驱油实验显示,外源菌+内源菌体系提高原油采收率最高达 13.5%,内源菌提高原油采收率为 8.8%,外源菌发酵液提高原油采收率为 7.2%;外源菌+内源菌体系中微生物数量最高,基因拷贝数约为 109 copies/mL,内源菌体系中微生物数量约为 107 copies/mL,外源菌发酵液体系中微生物数量最低,约为 102 copies/mL。4轮次注入培养中Geobacillus菌始终是微生物生态系统的优势菌群之一,该菌数量与岩心残余油饱和度呈负相关。显示出嗜烃乳化菌在油藏环境下具有增加微生物数量,强化微生物驱油效果的重要作用。
Abstract
The Geobacillus stearothermophilus SL-1(referred to as SL-1)is a hydrocarbonophilic emulsifying bacterium isolated from oil reservoir environment. It has strong emulsifying ability for hydrocarbons,with the suitable growth temperature at 65-70 ℃. The oil displacement mechanism and growth law of SL-1 bacteria in porous media were studied by a microscopic visual model and a core sand-packed model. Results demonstrate that in the high-temperature and high-pressure reservoir environment,the addition of SL-1 bacteria can change the wettability of the pore wall,emulsify film-like oil,and strip blind end oil,compared with single activator system for endogenous bacteria in the blank control group. Besides,residual oil displacement is significantly enhanced after the secondary water flooding. Physical simulations of oil displacement show that the combination of exogenous and endogenous bacteria can enhance oil recovery by up to 13.5%,followed by 8.8% with the only endogenous bacteria and 7.2% with the only exogenous bacteria. The number of microorganisms in the combined system of exogenous and endogenous bacteria is the highest,with the gene copy number of about 109 copies/mL, followed by that in the system with only endogenous bacteria about 107 copies/mL,and then that in the system with only exogenous bacteria about 102 copies/mL. Geobacillus has always been activated to be one of the dominant bacteria in the culture solution during four rounds of injection,and its concentration in the produced fluid is negatively correlated with the residual oil saturation of core. It reveals that the hydrocarbonophilic emulsifying bacteria have an important role in increasing the number of microorganisms and enhancing microbial oil displacement in the reservoir environment.