-
中国特低-超低渗透油藏已成为勘探开发的主体,以鄂尔多斯盆地长6和长8储层为代表的特低-超低渗透油藏虽能进行水驱开发,但由于储层特征的影响,水驱波及效率低,开发评价难度大[1-3]。水驱开发过程中,平面波及系数是评价油藏水驱开发的一项重要指标,也是进行井网优化调整的基础[4-5],其计算方法包括解析法[6-8]、油藏数值模拟法[9-10]、流线模拟法[11]和基于流管理论的流管法[12-15]。其中,流管法将原本油藏流体的二维流动转变为沿流管的一维流动,具有建立简便和计算速度快的优点。计秉玉等最早提出的流管法,将低速非达西渗流公式沿单流管积分得到单根流管的产量公式,用于面积井网产油量的计算[12]。郭粉转等引入B-L方程,将单流管的流量代入B-L方程,计算各流管内的水驱前缘波及范围[13]。朱圣举等完善了五点法井网、反七点法井网和反九点法井网的流管法计算平面波及系数的公式[14]。何聪鸽等考虑了低渗透油藏的各向异性,通过坐标变换将各向异性油藏转变为等效各向同性油藏进行求解计算[15]。刘翀等考虑了稠油的油水性质差别,建立了稠油油藏非活塞驱替的平面波及系数计算方法[16]。孙强等考虑了渗流空间的不完善性,对含有窄河道的油藏进行流管划分,计算其平面波及系数[17-18]。陈冠中等将流管法用于示踪剂解释[19]。目前,低渗透油藏流管模型存在的问题包括:未考虑裂缝的影响; 在两相计算过程中忽略了油水黏度差异;流管模型的划分基于规则井网,无法实现非规则井网的模拟计算;未建立一套综合考虑启动压力梯度、各向异性、人工压裂裂缝以及非活塞水驱油 4 个渗流特征的低渗透油藏流管模型。
-
传统流管模型中已考虑了低渗透油藏的启动压力梯度和各向异性,笔者进一步引入压裂缝流管计算单元,完成了压裂缝在流管模型中的表征;结合等饱和度面移动方程,克服了流管模型未考虑油水黏度差异的缺点,实现了流管中沿程非活塞水驱油渗流特征;运用流管计算单元独立计算和重组的方法,突破了不规则井网流管计算的限制。在流管模型修正基础上,编制了低渗透油藏的水驱平面波及快速计算模块,研究了井网形式、井排距比和各向异性对水驱平面波及系数的影响,形成了井排距比优化图版,以期为对低渗透油藏水驱平面波及评价及开发调整提供理论基础和依据。
-
1 低渗透油藏流管模型对各渗流特征的处理方法
-
1.1 启动压力梯度的处理
-
采用拟启动压力梯度法刻画低渗透油藏渗流特征[12]。一条流管中位置为 ξ 的截面流量可表示为:
-
1.2 各向异性的处理
-
在生产过程中,低渗透油藏因天然裂缝的沟通或张开,导致沿裂缝方向渗透率明显大于其他方向的渗透率。通过引入等效各向同性渗透率,可以将各向异性油藏坐标系转换为等效的各向同性油藏坐标系,再进行流管的划分与计算[15,20]。转换式可表示为:
-
1.3 人工裂缝的处理与流管划分
-
任一井组均可划分为含有注水井和生产井的流管计算单元(图1a),在各流管计算单元内又可划分为若干根流管进行计算。对于低渗透油藏,需对生产井进行水力压裂制造人工裂缝确保生产井具有一定的产能。考虑生产井井底人工压裂裂缝的存在,假设人工裂缝为无限导流能力裂缝,即裂缝压力与生产井井底流压相同,同时裂缝方向总与井网主方向一致,引入含有注水井和裂缝的三角形流管计算单元(图1b),注入水沿各流管直接流向生产井井底裂缝。
-
图1 2种三角形流管计算单元
-
Fig.1 Two triangular flow-tube calculation units
-
将一个流管计算单元划分为 n1根流管,一注一采流管计算单元(图1a)中,在第 i 根流管中任意位置ξ处流管的截面积计算式为:
-
一注一裂缝流管计算单元(图1b)中,在第 i 根流管中任意位置ξ处流管的截面积计算式为:
-
1.4 不同井网类型及不同注采井控制方式的处理
-
在规则井网下以一个完整井组为代表,进行水驱平面波及研究。含有裂缝的井网可划分为若干个一注一采流管计算单元和一注一裂缝流管计算单元(图2)。各流管计算单元间的计算互不干扰,可编写程序并行计算各流管计算单元的水驱波及系数。在实际油藏开发的生产阶段,由于射孔不完善、砂体不连续和老井套损等原因,导致平面上无法构成完善的注采井网。针对不规则井网,同样可根据井位将其划分为若干个流管计算单元,分别计算各流管计算单元的平面水驱波及系数。
-
图2 低渗透油藏井网流管计算单元划分
-
Fig.2 Division of flow-tube calculation units in low permeability reservoirs
-
将单根流管截面流量方程((1)式)沿流管积分,可得到单根流管的产量公式。当注采井间以定生产压差生产时,各流管的流量为:
-
当生产井以定流量生产时,需要根据各流管的渗流阻力劈分流量。(5)式可简化为:
-
则该流管计算单元的总流量表达式为:
-
联立(6)式和(7)式,共有n1 + 1个方程,同一个流管计算单元内注采压差相同,则方程内共有n1 +1 个未知数(q1,q2,...,qn1,Δp),求解方程组可以得到各流管的产量。
-
1.5 单根流管两相区油水差异的处理
-
为区分流管内油水黏度差异、相渗差异,需要计算单根流管两相区内的油水分布情况。
-
生产井见水前流管内的油水分布计算 生产井见水前,流管内水驱前缘之后部分为单相流动区,水驱前缘之前的部分为油水两相流动区,结合等饱和度面移动方程,两相区各网格的含水率导数计算式为:
-
生产井见水后流管内的油水分布计算 生产井见水后,流管内均为两相流动,计算方法与生产井见水前类似。每个网格的含水率导数可表示为:
-
(8)式和(9)式由等饱和度面移动方程推导所得[21]。求取流管内各网格的含水率导数后,可根据已有的含水率导数曲线插值得到各网格内的含水饱和度。
-
2 流管模型计算流程及模型验证
-
2.1 计算流程
-
一注一采流管计算单元各流管内初始时刻的渗流阻力表达式为:
-
一注一裂缝流管计算单元各流管内的渗流阻力表达式为:
-
生产过程中,由于水从注入井注入,流管内存在两相区,所以使用数值积分的方法求各流管的渗流阻力:
-
流管模型通过 MATLAB 编程计算所得,具体计算流程(图3)为:①输入井位坐标、流体性质、油藏性质和计算步长、时间,将各向异性坐标系下的井网转换为等效各向同性坐标系下的井网,划分流管计算单元,输入流管划分条数和单根流管网格数。 ②计算各流管的渗流阻力。初始时刻流管内为单相油,可以使用相应的渗流阻力计算公式((10)式或(11)式)计算各流管的渗流阻力。③流管流量计算。在生产井定生产压差生产的情况下,将各流管的渗流阻力代入(5)式直接计算各流管的流量;在生产井定产量生产的情况下,将各流管的渗流阻力代入(6)式和(7)式,求解方程组可得到各流管划分的流量。④求解水驱前缘位置,利用水驱前缘的等饱和度面移动方程式((13)式)即可求得各流管内水驱前缘位置,然后根据水驱前缘位置,利用波及的体积除以流管的总体积计算平面波及系数。⑤ 重新计算各流管内油水分布。若流管内的水驱前缘未到达生产井,采用(8)式计算各网格的含水率导数;若流管内的水驱前缘已到达生产井,采用(9) 式计算各网格的含水率导数,然后依据含水率曲线反求各网格的含水饱和度。⑥重复步骤②—⑤计算下一时刻的水驱波及情况,直到输入的计算时间为止。
-
图3 流管模型计算流程
-
Fig.3 Calculation flow chart of flow tube model
-
水驱前缘的等饱和度面移动方程式为:
-
2.2 模型验证
-
分别采用流管模型和商业数值模拟软件(tNavigator)模拟鄂尔多斯盆地长庆油区L1油藏典型井组的水驱波及状况。研究油藏位于长 8 储层,单斜构造,主力层厚度为 10 m,平均孔隙度为 12%,井网主向渗透率为 0.5 mD,垂直井网主向渗透率为 0.1 mD,是典型的低孔特低渗透油藏[22]。目前采用菱形反九点法井网开采,井距为200 m,排距为100 m,对生产井进行水力压裂改造,裂缝缝长约 50 m(在数值模拟软件中,水力压裂裂缝采用离散裂缝网格表征)。地层原油黏度为 2.3 mPa·s,地层水黏度为 0.6 mPa·s,相对渗透率曲线如图4所示,不考虑毛细管力,注采压差为20 MPa。
-
图4 油、水相相对渗透率曲线
-
Fig.4 Relative permeability curves of oil and water
-
从研究井组生产20 a时流管模型计算的流线分布和饱和度场分布与数值模拟模型计算的结果(图5)对比可以看出,流管模型计算结果与数值模拟模型计算结果基本一致,可准确计算平面波及状况及剩余油分布特征。从2种模型计算得到的生产井的生产动态曲线对比(图6)可以看出,流管模型可较准确预测生产井的生产状况和预测油井见水时间。数值模拟模型考虑了人工裂缝,对裂缝周围网格进行局部加密处理,网格数目增加,并且离散裂缝网络的网格属性急剧变化,初始计算的收敛性难以得到保证,模型计算时间为 116 s,而流管模拟的计算时间仅为0.48 s。
-
图5 模型验证
-
Fig.5 Model validation
-
图6 生产井生产动态曲线对比
-
Fig.6 Comparison of production performance of producers
-
3 水驱平面波及程度影响因素分析
-
3.1 启动压力梯度
-
油藏基本参数与模型验证部分一致,控制单一变量,利用流管模型计算可得不同的启动压力梯度下生产 20 a 时的水驱平面波及程度(图7)。从图7 中可以看出,低渗透油藏的启动压力梯度增大时,水驱平面波及程度明显减小,其原因为:启动压力梯度增大时注采井间的有效注采压力降低,一方面部分流管无法动用,另一方面可动用的流管水驱波及速度降低,从而导致水驱平面波及系数减小,注水井注不进,生产井采不出的状况。
-
3.2 各向异性
-
使用横向和纵向的渗透率之比来表示各向异性。不同的各向异性下,研究井组生产 20 a时的水驱平面波及程度不同(图8),当各向异性增大时,注入水沿主渗流方向突进加剧,主渗流方向生产井更易水淹。
-
在实际生产中,对于具有特定各向异性油藏,需要优化井排距,减缓生产井水淹,从而提高水驱平面波及程度。这里选取了油藏渗透率(0.1,0.5和 1 mD)、各向异性(1,5,10 和 20)和井排距比(1,2,3 和 4)3 组自变量,形成了 48 组参数组合,利用流管模型计算并制作菱形反九点法井网不同储层物性下,不同井排距比的平面波及系数图版(图9)。从图9 可以看出,储层物性对井排距比的优化影响不大,井排距比与各向异性的关系是判断油藏水驱是否均匀的主要指标。对于菱形反九点法井网,根据油藏各向异性,可以得到不同井排距比下的水驱平面波及系数,为进一步井网优化调整提供依据。
-
3.3 人工裂缝
-
控制单一变量,改变裂缝的长度,分析人工裂缝半长为 15,25,35和 50 m 下油藏的水驱平面波及程度和累积产油量曲线(图10)。人工压裂裂缝虽能通过减少部分流管的长度而减少对应的渗流阻力,单井产量增加,水驱平面波及速度增大,但是渗流阻力减小的有限,不同裂缝的水驱平面波及差别不大。生产初期改造强度大的井可使其产液能力更高,但见水时间早,生产中后期反而由于生产井水淹,产油量降低。所以在实际的低渗透油藏注水开发中,建议改造程度适中,进行水力压裂产生较短的裂缝,在生产初期可有效改善油井周围的储层,提高初期产能,若改造裂缝太长,注入水波及至裂缝尖端,生产井水淹严重。
-
3.4 井网形式
-
低渗透油藏的开发一般采用面积注水井网,利用流管模型研究分析相同井网密度条件下,低渗透油藏使用五点法井网、菱形反九点法井网和不规则的反九点法井网形式开发的水驱平面波及程度。从图11中可以看出,五点法井网水驱前缘移动更均匀,生产井几乎同时见水;菱形反九点法井网中注水井与其周围的 4 口边井间区域易形成有效驱替,但是边井与角井间的三角形区域难以波及到,所以实际生产中后期菱形反九点法井网常配合角井转注,以增大水驱动用区域;且当井网不完善时,在缺少生产井的方向上,无法形成有效驱替,水驱平面波及范围较小。
-
图7 不同启动压力梯度下井组的水驱平面波及状况
-
Fig.7 Water-flooding plane sweep conditions under different threshold pressure gradients
-
图8 不同各向异性下水驱平面波及状况
-
Fig.8 Water-flooding plane sweep conditions under different anisotropies
-
利用流管模型计算可得到典型井组生产 30 a 时,不同井网形式的水驱平面波及系数。结果(图12)表明,相同井网密度条件下,五点法井网的井排距小于菱形反九点法井网,更易建立有效驱替,相同生产时间下平面水驱波及效果更好;同时,对比菱形反九点法井网与不规则反九点法井网的水驱平面波及系数曲线可以看出,低渗透油藏由于射孔不完善、套损等原因造成的井网不完善会对水驱平面波及造成影响,开发过程中应注意井间的注采对应性,并及时补孔。
-
图9 井排距比优化图版
-
Fig.9 Optimization chart in different well array ratios
-
4 结论
-
通过引入坐标变换、启动压力梯度公式、带裂缝的流管划分方法和非活塞驱流管数值计算的方法,建立了低渗透油藏平面波及系数计算的流管模型,该模型可系统地考虑低渗透油藏的人工压裂裂缝、启动压力梯度、各向异性和油水非活塞驱替的影响。以此为基础编制了相应的流管法计算模块,实现了低渗透油藏水驱开发条件下,平面波及的快速表征,与数值模拟方法验证表明,在保证足够精度的同时,可大大提高计算效率,为实际油藏生产中井网评价及井网优化调整提供依据;同时拟将流管模型用于多层系地层的水驱波及状况计算和多段压裂水平井段间驱替效率的计算中,相关研究在进展中。
-
图10 不同裂缝长度的水驱平面波及程度和累积产油量
-
Fig.10 Curves of water-flooding plane sweep and oil well production with different fracture lengths
-
图11 不同井网的水驱平面波及状况
-
Fig.11 Water-flooding plane sweep conditions under different well patterns
-
图12 不同井网条件下的水驱平面波及系数
-
Fig.12 Water-flooding plane sweep coefficients under different well patterns
-
符号解释
-
A(ξ)——截面的横截面积,m2;
-
d——注水井到生产井或裂缝一端的距离,m;
-
fw(Sw,ij)——含水率,小数;
-
h——储层厚度,m;
-
i——流管的编号;
-
j——流管网格的编号;
-
K——储层渗透率,mD;
-
Kro——油相相对渗透率;
-
Krw——水相相对渗透率;
-
Kx——各向异性坐标系下x方向的渗透率,mD;
-
Ky——各向异性坐标系下y方向的渗透率,mD;
-
Li ——第i根流管的长度,m;
-
n1——流管计算单元内划分的流管总数;
-
N2——单根流管划分的网格数目;
-
p——注采井间任意一点的压力,MPa;
-
Δp——注采压差,MPa;
-
Δq——截面的流量,m3;
-
qi ——第i根流管的流量,m3;
-
Q——流管计算单元的总流量,m3;
-
rw——井筒半径,m;
-
R——单根流管的渗流阻力,(MPa·d)/m3;
-
Ri ——第i根流管的渗流阻力,(MPa·d)/m3;
-
Swf ——水驱前缘含水饱和度,小数;
-
Swo——生产井井底含水饱和度,小数;
-
t——时间,月;
-
T——生产时间,月;
-
TE——目前为止注采井组生产总时间,月;
-
Vi——第i条流管的体积,m3;
-
Vij ——流管内任意网格位置之前流管的体积,m3;
-
Vwf ——水驱前缘之前流管的体积,m3;
-
x——等效各向同性坐标系下x方向的坐标,m;
-
x′——各向异性坐标系下x方向的坐标,m;
-
y——等效各向同性坐标系下y方向的坐标,m;
-
y′——各向异性坐标系下y方向的坐标,m;
-
α——流管计算单元中以注水井为顶点的角,(°);
-
Δα——单根流管在注水井端的角度,(°);
-
β——流管计算单元中生产井或裂缝端点为顶点的角, (°);
-
Δβ——单根流管在生产井或裂缝端点端的角度,(°);
-
λ——启动压力梯度,MPa/cm;
-
μo——地层原油黏度,mPa·s;
-
μw——地层水黏度,mPa·s;
-
ϕ——孔隙度,小数;
-
ξ——流管中任意位置,m。
-
参考文献
-
[1] 邹才能,丁云宏,卢拥军,等“.人工油气藏”理论、技术及实践 [J].石油勘探与开发,2017,44(1):144-154.ZOU Caineng,DING Yunhong,LU Yongjun,et al.Concept,technology and practice of“man-made reservoirs”development[J].Petroleum Exploration and Development,2017,44(1):144-154.
-
[2] 贾承造,庞雄奇,姜福杰.中国油气资源研究现状与发展方向 [J].石油科学通报,2016,1(1):2-23.JIA Chengzao,PANG Xiongqi,JIANG Fujie.Research status and development directions of hydrocarbon resources in China[J].Petroleum Science Bulletin,2016,1(1):2-23.
-
[3] 付金华,范立勇,刘新社,等.鄂尔多斯盆地天然气勘探新进展、前景展望和对策措施[J].中国石油勘探,2019,24(4):418-430.FU Jinhua,FAN Liyong,LIU Xinshe,et al.New progresses,prospects and countermeasures of natural gas exploration in the Ordos Basin[J].China Petroleum Exploration,2019,24(4):418-430.
-
[4] 金艳鑫.X 区块特高含水期层系井网优化调整技术及其应用 [J].大庆石油地质与开发,2020,39(2):86-93.JIN Yanxin.Optimizing and adjusting technologies and their applications of the stratigraphic-series well pattern in the extra-high watercut period in Block X[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(2):86-93.
-
[5] 杨明,刘英宪,陈存良,等.复杂断块油藏不规则注采井网平面均衡驱替方法[J].断块油气田,2019,26(6):756-760.YANG Ming,LIU Yingxian,CHEN Cunliang,et al.Equilibrium displacement of irregular injection-production pattern in complex fault block reservoir[J].Fault-Block Oil and Gas Field,2019,26(6):756-760.
-
[6] FASSIHI M R.New correlation for calculation of vertical coverage and areal sweep efficiency[J].SPE Reservoir Engineering,1986,1(6):604-606.
-
[7] 俞启泰,赵明,林志芳.水驱砂岩油田驱油效率和波及系数研究(二)[J].石油勘探与开发,1989,3(3):48-52.YU Qitai,ZHAO Ming,LIN Zhifang.A study of the displacement efficiency and the conformance factor in waterflooded sandstone reservoirs in China[J].Petroleum Exploration and Development,1989,3(3):48-52.
-
[8] 杨子由,陈民锋,屈丹,等.特低渗透各向异性油藏井网加密储量动用规律[J].油气地质与采收率,2020,27(3):57-63.YANG Ziyou,CHEN Minfeng,QU Dan,et al.Reserve producing law of extra-low permeability anisotropic reservoirs with infilled well pattern[J].Petroleum Geology and Recovery Efficiency,2020,27(3):57-63.
-
[9] 张丽华,郎兆新.用数值方法研究面积井网系统的扫油效率 [J].石油大学学报:自然科学版,1988,12(3):86-98.ZHANG Lihua,LANG Zhaoxin.Determination of areal sweep efficiency of pattern flooding by use of simulator[J].Journal of the University of Petroleum,China:Edition of Natural Science,1988,12(3):86-98.
-
[10] 李林祥,张栋杰.孤东油田馆陶组水驱特征与调整挖潜对策研究[J].西安石油大学学报:自然科学版,2008,23(2):48-51,62.LI Linxiang,ZHANG Dongjie.Water-flooding characteristics and potential tapping measures of Guantao Formation in Gudong Oilfield[J].Journal of Xi’an Shiyou University:Natural Science Edition,2008,23(2):48-51,62.
-
[11] 曹仁义,周焱斌,熊琪,等.低渗透油藏平面波及系数评价及改善潜力[J].油气地质与采收率,2015,22(1):74-77,83.CAO Renyi,ZHOU Yanbin,Xiong Qi,et al.Evaluation and improvement of areal sweep efficiency for low permeability reservoir [J].Petroleum Geology and Recovery Efficiency,2015,22(1):74-77,83.
-
[12] 计秉玉,李莉,王春艳.低渗透油藏非达西渗流面积井网产油量计算方法[J].石油学报,2008,29(2):256-261.JI Bingyu,LI Li,WANG Chunyan.Oil production calculation for areal well pattern of low-permeability reservoir with non-Darcy seepage flow[J].Acta Petrolei Sinica,2008,29(2):256-261.
-
[13] 郭粉转,唐海,吕栋梁,等.渗流启动压力梯度对低渗透油田四点井网面积波及效率影响[J].大庆石油学院学报,2010,34(1):33-38.GUO Fenzhuan,TANG Hai,LÜ Dongliang,et al.Effects of seepage threshold pressure gradient on areal sweep efficiency for 4-spot pattern of low permeability reservoir[J].Journal of Daqing Petroleum Institute,2010,34(1):33-38.
-
[14] 朱圣举,朱洁,安小平,等.低渗透油藏菱形反九点井网面积波及系数研究[J].重庆科技学院学报:自然科学版,2013,15(2):80-84.ZHU Shengju,ZHU Jie,An Xiaoping,et al.Research on areal sweep efficiency for rhombus invert 9-spot areal well pattern of low-permeability reservoir[J].Journal of Chongqing University of Science and Technology:Natural Sciences Edition,2013,15(2):80-84.
-
[15] 何聪鸽,范子菲,方思东,等.特低渗透各向异性油藏平面波及系数计算方法[J].油气地质与采收率,2015,22(3):77-83.HE Congge,FAN Zifei,FANG Sidong,et al.Calculation of areal sweep efficiency for extra-low permeability anisotropy reservoir [J].Petroleum Geology and Recovery Efficiency,2015,22(3):77-83.
-
[16] 刘翀,范子菲,许安著,等.稠油油藏反九点井网非活塞水驱平面波及系数计算方法[J].石油钻采工艺,2018,40(2):228-233,239.LIU Chong,FAN Zifei,XU Anzhu,et al.A calculation method for the areal sweep efficiency of heavy oil reservoirs by non-piston like waterflood in inverted nine-spot pattern[J].Oil Drilling & Production Technology,2018,40(2):228-233,239.
-
[17] 孙强,石洪福,王记俊,等.窄条带状普通稠油油藏平面波及系数计算方法[J].特种油气藏,2018,25(6):126-130.SUN Qiang,SHI Hongfu,WANG Jijun,et al.A method for calculating the areal sweep efficiency of narrow banded ordinary heavy oil reservoirs[J].Special Oil & Gas Reservoirs,2018,25(6):126-130.
-
[18] 孙强,周海燕,石洪福,等.窄河道普通稠油油藏见水规律研究 [J].油气藏评价与开发,2019,9(2):21-24,37.SUN Qiang,ZHOU Haiyan,SHI Hongfu,et al.Research on water production rule of heavy oil reservoirs in narrow channels[J].Reservoir Evaluation and Development,2019,9(2):21-24,37.
-
[19] 陈冠中,林春阳,姜瑞忠,等.基于流管模型的裂缝性低渗透油藏井间示踪剂解释模型[J].测井技术,2018,42(2):200-204.CHEN Guanzhong,LIN Chunyang,JIANG Ruizhong,et al.Interpretation model for inter-well tracer tests in fractured low-permeability reservoirs based on stream-tube model[J].Well Logging Technology,2018,42(2):200-204.
-
[20] 贾晓飞,雷光伦,孙召勃,等.三维各向异性油藏水平井产能新公式[J].油气地质与采收率,2019,26(2):113-119.JIA Xiaofei,LEI Guanglun,SUN Zhaobo,et al.A new formula for predicting productivity of horizontal wells in three-dimensional anisotropic reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(2):113-119.
-
[21] 张琪琛.海上油田注采井网合理调整策略研究[D].北京:中国石油大学(北京),2017.ZHANG Qichen.Study on the strategy of injection-production pattern adjustment in offshore oilfield[D].Beijing:China University of Petroleum(Beijing),2017.
-
[22] 邓亚仁,任战利,马文强,等.鄂尔多斯盆地富县地区长8层段致密砂岩储层特征及充注下限[J].石油实验地质,2018,40(2):288-294.DENG Yaren,REN Zhanli,MA Wenqiang,et al.Reservoir properties and hydrocarbon charging threshold of Chang8 tight sandstones in Fuxian Area,Ordos Basin[J].Petroleum Geology & Experiment,2018,40(2):288-294.
-
摘要
中国部分低渗透油藏通过注水开发实现了有效动用,但水驱波及程度较低,亟需开展水驱平面波及评价方法研究。传统流管模型是一种较好的水驱平面波及快速评价模型。通过对其进行改进,建立可考虑启动压力梯度、各向异性、人工压裂裂缝、非活塞驱替和不规则井网的流管模型。在修正的流管模型基础上,编制低渗透油藏的水驱平面波及系数快速计算模块,研究井网形式、井排距比和各向异性对水驱平面波及系数的影响。研究结果表明:低渗透油藏储层物性差且存在启动压力梯度是生产井注不进采不出的主要原因;不同各向异性下存在最优的井排距比,并给出了低渗透油藏井排距比优化图版;生产过程中应注意井网完善程度,及时补孔,改善注采对应关系。
Abstract
Some low permeability reservoirs in China have been effectively developed by water flooding,but with insufficient sweep. Thus,it is urgent to study the evaluation method of water-flooding plane sweep. The flow tube model is a good method for rapid evaluation of water-flooding plane sweep coefficient. An improved flow tube model that considers the threshold pressure gradient,anisotropy,artificial fracture,non-piston displacement,and irregular well pattern was developed. A fast calculation module for the water-flooding plane sweep of low permeability reservoirs was created,based on the modified flow tube model,to study the influence of well patterns,well array ratios,and anisotropy on the water-flooding plane sweep coefficient. Consequently,unsuccessful water injection into injectors and oil production from producers can be attributable mainly to poor physical properties of low permeability reservoirs and threshold pressure gradient. An optimal well array ratio can be found under different anisotropies,and the optimization chart in different well array ratios in low permeability reservoirs is proposed. During the production process,attention should be paid to the perfection of the well pattern and the in-time filling of holes to improve the injection-production correspondence.