-
川西北位于四川省广元市剑阁县境内,研究区栖霞组气藏埋深超过 7 000 m,原始地层压力为 95 MPa,地层温度为 154℃,储层特低孔低渗透(平均孔隙度为 3.4%,平均渗透率为 3.35 mD),平均储层厚度约为20 m,属于超深高温高压海相碳酸盐岩气藏[1-2]。受构造和热液流体改造作用,储层微裂缝和溶洞发育,储集空间类型多样,不同类型储层渗流能力差异大[3-6],探井测试日产气量为3×104~88×104 m3 /d,由于该超深气藏的气井投资大,亟需准确掌握不同类型储层孔喉结构特征,快速评价气藏是否具备普遍高产稳产的基础,对气藏实现大规模开发至关重要。
-
目前评价储层岩石孔喉结构的技术主要分为定性和定量两类[7-13]。其中,铸体薄片和扫描电镜用于定性分析岩石孔喉大小和形态,而高压压汞、微米级 CT 扫描和核磁共振等用于定量获取岩石孔喉大小和分布。高压压汞理论测试孔喉半径为 0.003~490 μm,具有成本低和测试快的优点,获得的毛管压力曲线是进行储层分类和渗流能力评价的重要依据[14-15];基于微米级CT扫描图像建立数字岩心,可直观展示岩石储集空间形态和孔喉匹配关系[16-17];核磁共振具有无损且测试孔径范围大等优点。很多学者采用以上方法分别定性或定量分析了碳酸盐岩孔喉结构[18-22]。但碳酸盐岩除发育微米级孔喉和裂缝外,毫米级、厘米级溶洞也较为发育,储集空间具有显著的多尺度性,现有研究均未能完整获取不同类型碳酸盐岩孔喉分布。如:高压压汞实验不能定量评价碳酸盐岩中溶洞性质,微米级CT扫描难以同时准确获取岩石中微米级孔隙和厘米级溶洞性质,而核磁共振无法评价岩石表面未饱和水的溶洞性质。因此,仍缺乏准确获取不同类型碳酸盐岩储层完整孔喉分布的方法,对不同类型碳酸盐岩的孔喉结构特征仍认识不清。
-
为此,采用川西北栖霞组碳酸盐岩微米级CT扫描图像建立三维数字岩心,定量评价岩石表面溶洞和大孔隙性质,校正高压压汞实验得到的毛管压力曲线,获取不同类型碳酸盐岩完整的孔喉分布和真实的孔喉结构特征,进一步提升对川西北栖霞组不同类型储层产能的认识。
-
1 实验器材与方法
-
1.1 实验器材
-
实验岩样取自川西北双鱼石区块栖霞组储层探井,根据岩心观察,选取不发育缝洞(图1a)、只发育裂缝(图1b)、只发育孔洞(图1c)和同时发育缝洞 (图1d)的岩样各一块。3 号岩样为孔隙型,表面既无裂缝也无溶洞;7 号岩样为裂缝-孔隙型,端面发育明显的贯通微裂缝;S6-1号和 9号岩样的端面分别发育毫米级大孔隙和厘米级溶洞,分别为孔洞型和裂缝-孔洞型。
-
1.2 实验方法
-
依据岩心分析方法行业标准[23],利用 OPP-1高压孔渗仪测试所选岩样的孔隙度、渗透率。依据岩石毛管压力曲线的测定行业标准[24],利用美国康塔公司生产的 Poremaster PM-33-13 型压汞仪测试得到所选岩样的毛管压力曲线。具体步骤包括:①基于岩样外表体积选择膨胀计样品管,放入岩样后,放置到低压站。②输入样品、样品管和汞的相关参数,抽真空,随后从最小起始压力1.5 kPa注入汞,以确保低压分析前样品管已注满汞;当压力增至 345 kPa,低压分析完成,测量孔喉半径为 2.1~490 μm,测量站返回大气压。③将样品管从低压站移走,转移至高压舱中,运行高压分析,压力为 140~231 MPa,测量孔喉半径为 0.003~5.25 μm,高压分析完成。④实验结束,卸载并倒空样品管,处理数据。
-
图1 实验选取典型岩样端面照片
-
Fig.1 End faces of typical rock samples
-
2 实验结果及分析
-
2.1 储集类型划分
-
各岩样基础物性参见表1,结合目的储层储集类型分类标准[25],将所选岩样分为孔隙型、裂缝-孔隙型、孔洞型和裂缝-孔洞型。孔隙型渗透率、孔隙度均较低,物性最差;裂缝-孔隙型渗透率较高、孔隙度较低,物性较好;孔洞型渗透率较低、孔隙度较高,物性较差;裂缝-孔洞型渗透率、孔隙度均较高,物性最好。
-
2.2 高压压汞实验结果
-
依据碳酸盐岩储集空间的划分标准[26-27],高压压汞实验结果显示各类型岩样的储集空间均以微孔隙为主(图2),最大孔喉半径为105 μm,这显然与实际不符。需要指出的是,各类型岩样的毛管压力曲线呈现先下凹、后上凸的形态,因此无需进行麻皮效应校正[28-29]。排驱压力、最大汞饱和度和退汞效率共同反映了岩样孔隙空间的连通性、渗流能力和非润湿相采收率[30]。裂缝-孔洞型岩样的排驱压力比裂缝-孔隙型岩样高,而最大汞饱和度和退汞效率反而均低于裂缝-孔隙型岩样。这与岩样的基本物性矛盾。这是由于高压压汞实验的最大理论测试孔喉半径为490 μm,获得的毛管压力曲线未能计量岩样表面孔喉半径大于 490 μm 的大孔隙或小溶洞,不能反映裂缝-孔洞型岩样的真实物性。结果(表2)表明,各类型岩样不同尺寸孔隙对应不同的进汞饱和度,孔隙型和裂缝-孔隙型中微孔隙含量要远远高于孔洞型和裂缝-孔洞型。
-
图2 实验所得毛管压力曲线
-
Fig.2 Capillary pressure curves obtained from the experiment
-
3 数字岩心法校正毛管压力曲线
-
三维数字岩心可准确反映岩样孔喉空间形态,定量评价岩样孔隙、裂缝和溶洞性质[31],被广泛应用于定量分析岩石孔隙结构。三维数字岩心测量孔径范围与 CT 扫描分辨率密切相关。对比高压压汞实验和数字岩心(分辨率为 8 μm)评价碳酸盐岩不同尺寸孔隙的能力,发现微米级CT扫描可较好地弥补高压压汞实验测量范围较小的不足。结合三维数字岩心定量评价岩样表面溶洞和大孔隙性质,进一步校正岩样毛管压力曲线,则可得到岩样较为完整的孔喉分布。本文称该校正方法为数字岩心法。
-
3.1 数字岩心法校正原理
-
压汞测试前,对切割后的柱塞岩样进行分辨率为8 μm的微米级CT扫描,得到其原始CT图像。首先,基于原始 CT 图像,利用 Mask 方法,对图像进行判定,在 Mask 区域内的体素被判定为有效体素,在 Mask区域之外的体素被判定为无效体素,从而为构建完整的数字岩心模型提供必要条件。其次,对原始 CT 图像进行中值过滤和图像二值化。图像中值过滤是一种非线性的图像处理方法,能在有效抑制随机噪声的同时不使边缘变得模糊,从而得到原始 CT 图像的灰度图像(图3a)。图像二值化采用分水岭算法[32],即基于灰度值频率直方图选取适当的阈值对灰度图像进行二值化处理,得到表征孔隙和岩石骨架的二值化图像(图3b),处理后灰度图像中数据量将大大减少。最后将所有二值化图像相叠,得到表征孔隙空间的数字岩心(图3c)。选择数字岩心孔隙空间中的表面溶洞和大孔隙,使用等效半径 (定义为与该孔隙具有相同体积的球体半径)定量表征表面溶洞和大孔隙的尺寸。基于获得的岩样表面溶洞和大孔隙的等效半径,计算对应的进汞饱和度;将岩样表面溶洞和大孔隙对应的毛管压力和进汞饱和度加入到毛管压力曲线中,最终获得反映岩样完整孔喉分布的毛管压力曲线。
-
3.2 校正结果及分析
-
由全柱塞岩样的 CT图像(图4)可以看出,红色区域为岩样孔隙空间,灰色区域为岩样骨架。由重构三维数字岩心(图5)可以看出,三维数字岩心展示的各类型岩样内部孔隙特征十分明显:3 号岩样 (孔隙型)主要发育小孔隙,7号岩样(裂缝-孔隙型) 主要发育微裂缝,S6-1号岩样(孔洞型)主要发育大孔隙,9 号岩样(裂缝-孔洞型)同时发育小溶洞、大孔隙和裂缝。9 号岩样孔隙体积最大,最大值超过 300 mm3,其次是 S6-1 和 7 号岩样,3 号岩样孔隙体积最小,最大的不超过 1 mm3。对比表1 和表3 发现,受分辨率影响,CT扫描不能识别半径小于 4 μm 的微孔隙,而孔隙型和裂缝-孔隙型岩样又以微孔隙为主,因此二者的数字岩心孔隙度小于实验测试值;实验测试孔隙度为连通孔隙度,受孤立溶洞的影响,孔洞型和裂缝-孔洞型岩样数字岩心的孔隙度高于实验测试孔隙度。分析数字岩心校正不同类型岩样不同类型孔隙的进汞饱和度,结果(表3) 表明,裂缝-孔洞型岩样表面存在 1 个小溶洞,等效半径为3 558 μm,对应汞饱和度为32.6%;孔洞型岩样表面存在 5 个大孔隙,平均等效半径为 515 μm,对应汞饱和度为 0.6%。将岩样表面溶洞和大孔隙对应的毛管压力和进汞饱和度加入到对应的毛管压力曲线中,最终获得不同类型岩样数字岩心法校正后的毛管压力曲线(图6)。图6 显示,校正后裂缝-孔洞型岩样的毛管压力曲线变化最大,主要分为小溶洞段(①段)和小微孔隙段(②段),呈现明显的双重孔喉特征;孔洞型岩样分为大孔隙段(③段) 和大微孔隙段(④段),校正前后毛管压力曲线变化不大,仍以微孔隙为主。裂缝-孔隙型岩样微裂缝发育,汞先进入大微裂缝和基质孔隙(⑤段),然后再进入小微裂缝和基质孔隙(⑥段),最大汞饱和度低于孔隙型,退汞效率高于孔隙型岩样。校正后裂缝-孔洞型岩样的毛管压力曲线更靠近坐标轴左下方,表明校正后其物性优于其他类型岩样,这与岩样基础物性保持一致(表1)。对校正后的毛管压力曲线进行定量分析,列出不同类型岩样的毛管压力曲线特征量见表3。数字岩心法校正后,裂缝-孔洞型和孔洞型岩样的排驱压力和汞饱和度中值压力均大幅度下降,低于裂缝-孔隙型和孔隙型岩样;裂缝-孔洞型岩样的最大汞饱和度和退汞效率大幅度提高,其退汞效率高于孔隙型,由于瓶颈孔的存在,溶洞发育的裂缝-孔洞型岩样退汞效率低于裂缝-孔隙型岩样;孔洞型岩样的最大汞饱和度和退汞效率也有轻微增加,但由于瓶颈孔的大量存在且又无有效裂缝沟通,退汞过程中大部分汞滞留在瓶颈孔中,因此孔洞型岩样的退汞效率最低。
-
图3 CT扫描法生成数字岩心
-
Fig.3 Digital core from CT scan
-
图4 不同岩样的CT扫描图像
-
Fig.4 CT scan images of different rock samples
-
图5 不同岩样的数字岩心
-
Fig.5 Digital cores of different rock samples
-
图6 数字岩心法校正后不同岩样的毛管压力曲线
-
Fig.6 Capillary pressure curves of different rock samples corrected by digital cores
-
3.3 校正方法准确性分析
-
在高压压汞实验前,对切割前的实验岩样进行了渗流能力测试实验:将岩样放入岩心夹持器中,并按照流程图(图7)连接好实验装置,建立地层温度和压力条件。实验围压为 130 MPa,流体压力为 95 MPa,实验温度为95℃。实验开始时保持入口端压力为95 MPa,控制岩心夹持器下游的回压阀逐级降低出口端压力,在每个净有效应力点同步测量出口端气体瞬时流量、岩心夹持器入口端和出口端压力,直至出口端压力降低至 65 MPa。用入口端、出口端压力和岩样长度计算岩样的压力平方差梯度,并计算实验过程中岩样的气测渗透率。最终得到4 种不同类型岩样的渗流能力变化规律,即气体流量和岩样气测渗透率随压力平方差梯度的关系曲线 (图8)。
-
图7 实验流程
-
Fig.7 Flow chart of high pressure mercury injection experiment
-
图8 不同岩样渗流能力变化规律曲线
-
Fig.8 Trends in seepage capacities of different rock samples
-
相同压力平方差梯度下,裂缝-孔隙型和裂缝-孔洞型岩样的气体流量较大,其次是孔隙型岩样,而孔洞型岩样的气体流量最小。随着出口端压力的降低,压力平方差梯度增大,裂缝-孔隙型和裂缝-孔洞型岩样的气测渗透率均表现为先增大后减小(裂缝-孔隙型岩样渗透率变化更明显),孔隙型岩样渗透率逐渐增大而趋于不变,孔洞型岩样渗透率最小且变化较小。这是由于:随着出口端压力下降,净应力增加,裂缝发生闭合,裂缝-孔隙型和裂缝-孔洞型的气测渗透率大幅度下降,当裂缝闭合至一定程度不再闭合,渗透率则趋于稳定,此时岩样依靠裂缝沟通的喉道仍能保持一定的渗流能力。而孔洞型岩样只发育大孔隙,不发育裂缝,其主要渗流通道为喉道,喉道数量和尺寸较小,在地层应力条件下,细小喉道极易发生闭合导致主要渗流通道关闭,故渗流能力极差。孔隙型岩样喉道数量较多,在地层应力条件下,仍有部分喉道保留有效孔隙,因此其渗流能力能保持一定的水平。
-
裂缝-孔隙型岩样的渗流能力最好,该类型储层的产能最高,对应校正后其退汞效率最高;裂缝-孔洞型的渗流能力略微低于裂缝-孔隙型,该类型储层的产能较高,对应校正后其退汞效率较高;由于瓶颈孔的存在,孔隙型和孔洞型岩样的渗流能力分别低于裂缝-孔隙型和裂缝-孔洞型,对应校正后其退汞效率分别低于裂缝-孔隙型和裂缝-孔洞型,孔洞型岩样喉道数量较少,受瓶颈孔影响最大,因此退汞效率最低,产能最低。渗流实验得到结果与校正后毛管压力曲线的结果一致,表明毛管压力曲线校正方法是正确有效的。
-
4 储层岩石孔喉结构特征
-
基于数字岩心法校正前后的毛管压力曲线,可进一步得到校正前后岩样孔喉体积分布曲线,对累积汞饱和度进行归一化处理可得岩样孔喉体积累积分布曲线(图9,图10)。对比图9和图10可知,数字岩心法校正前后孔隙型和裂缝-孔隙型岩样的孔喉体积(累积)分布曲线无变化,校正后孔洞型和裂缝-孔洞型岩样的孔喉分布范围更大,储集空间非均质性更强。其中,孔隙型岩样主要发育孔隙半径小于 0.3 μm 的微孔隙;裂缝-孔隙型岩样主要发育孔隙半径小于 2.76 μm 的微孔隙和裂缝宽度为 53.7,1.5 和 0.036 μm 的微裂缝;孔洞型岩样主要发育孔隙半径为0.54 μm左右的微孔隙、21.4 μm左右的中孔隙和 515 μm 左右的大孔隙;裂缝-孔洞型岩样主要发育孔隙半径为 0.089~0.356 μm 的微孔隙、 21.4 μm左右的中孔隙和大于1 mm的小溶洞。
-
根据参考文献[33-34]公式,进一步评价不同类型碳酸盐岩岩样的孔喉结构特征。由数字岩心法校正前后不同类型岩样的孔喉特征参数(表4)可知,数字岩心法校正后,裂缝-孔洞型岩样的孔喉半径中值、孔喉半径均值均大幅提高,歪度由负值变为正值,储气能力增强,孔喉分布曲线呈双峰分布,分别集中在微孔隙和溶洞,分选系数增大,孔隙空间非均质性变强;孔洞型岩样的最大孔喉尺寸和平均孔喉尺寸均有较大幅度提高,平均孔喉半径高于孔隙型和裂缝-孔隙型,呈粗歪度,储气能力增强,孔喉分布曲线呈单峰分布,以微孔隙为主(集中在 0.539 μm),孔隙分选性优于裂缝-孔隙型。裂缝-孔隙型和孔隙型岩样的孔喉结构特征校正前后未发生变化。裂缝-孔隙型岩样平均孔喉半径大于孔隙型岩样,呈细歪度,同时发育多尺度微裂缝,孔喉分布曲线呈多峰分布,孔隙分选性比孔隙型岩样差。孔隙型岩样的平均孔喉半径最小,孔喉分布曲线呈单峰分布,孔喉尺寸分布最为集中(0.089 μm附近),分选性最好。
-
图9 数字岩心法校正前岩样孔喉结构评价曲线
-
Fig.9 Evaluation curves of pore-throat structure of rock samples before correction by digital cores
-
图10 数字岩心法校正后岩样孔喉结构评价曲线
-
Fig.10 Evaluation curves of pore-throat structure of rock samples after correction by digital cores
-
分析表明,数字岩心法校正后,裂缝-孔洞型岩样的平均孔喉半径最大,孔喉分布范围最广,分选性最差,孔喉结构最为复杂,储渗性能最优。裂缝-孔隙型和裂缝-孔洞型岩样的物性分别优于孔隙型和孔洞型。数字岩心法校正后的毛管压力曲线和孔喉体积分布曲线更加准确地反映了岩石孔喉结构特征,提升了对川西北栖霞组多类型碳酸盐岩储层孔隙空间的认识程度。裂缝发育对于储层高产十分重要,为进一步研究编制栖霞组气藏年产 10× 108 m3 试采方案、部署新井提供了重要的理论支持。
-
注:校正前/校正后。
-
5 结论
-
运用数字岩心法定量表征岩样表面溶洞和大孔隙,校正高压压汞法得到的毛管压力曲线,建立了定量评价碳酸盐岩微米-厘米级孔喉结构的方法,弥补了高压压汞法测试尺度局限。数字岩心法校正后,孔洞型和裂缝-孔洞型岩样孔喉分布范围和分选系数均增大,双重介质特征显著,与岩石基础物性更加吻合。本研究提升了毛管压力曲线评价碳酸盐岩储层孔喉结构的准确性,增进了对川西北栖霞组气藏孔洞型和裂缝-孔洞型碳酸盐岩渗流能力的认识,进一步提升了碳酸盐岩气藏储层评价准确性。
-
参考文献
-
[1] 胡勇,彭先,李骞,等.四川盆地深层海相碳酸盐岩气藏开发技术进展与发展方向[J].天然气工业,2019,39(9):48-57.HU Yong,PENG Xian,LI Qian,et al.Progress and development direction of technologies for deep marine carbonate gas reservoirs in the Sichuan Basin[J].Natural Gas Industry,2019,39(9):48-57.
-
[2] 白晓亮,杨跃明,杨雨,等.川西北栖霞组优质白云岩储层特征及主控因素[J].西南石油大学学报:自然科学版,2019,41(1):47-56.BAI Xiaoliang,YANG Yueming,YANG Yu,et al.Characteristics and controlling factors of high-quality dolomite reservoirs in the Permian Qixia Formation,Northwestern Sichuan[J].Journal of Southwest Petroleum University:Science & Technology Edition,2019,41(1):47-56.
-
[3] 杨雨然,张亚,谢忱,等.川西北地区中二叠统栖霞组热液作用及其对储层的影响[J].岩性油气藏,2019,31(6):44-53.YANG Yuran,ZHANG Ya,XIE Chen,et al.Hydrothermal action of Middle Permian Qixia Formation in northwestern Sichuan Ba⁃ sin and its effect on reservoirs[J].Lithologic Reservoirs,2019,31(6):44-53.
-
[4] 卞从胜,汪泽成,江青春,等.四川盆地川西地区雷口坡组岩溶储层特征与分布[J].中国石油勘探,2019,24(1):82-94.BIAN Congsheng,WANG Zecheng,JIANG Qingchun,et al.Char⁃ acteristics and distribution of karst reservoirs in the Leikoupo For⁃ mation,western Sichuan Basin[J].China Petroleum Exploration,2019,24(1):82-94.
-
[5] 杨光,汪华,沈浩,等.四川盆地中二叠统储层特征与勘探方向 [J].天然气工业,2015,35(7):10-16.YANG Guang,WANG Hua,SHEN Hao,et al.Charateristics and exploration prospects of Middle Permian reservoirs in the Sichuan Basin[J].Natural Gas Industry,2015,35(7):10-16.
-
[6] 王蓓,刘向君,司马立强,等.磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用[J].岩性油气藏,2019,31(2):124-133.WANG Bei,LIU Xiangjun,SIMA Liqiang,et al.Multi-scale dis⁃ crete fracture modeling technology for carbonate reservoir of Long⁃ wangmiao Formation in Moxi area and its application[J].Litholog⁃ ic Reservoirs,2019,31(2):124-133.
-
[7] 张全培,吴文瑞,刘丽萍,等.鄂尔多斯盆地镇北地区延长组超低渗透储层孔隙结构及其分形特征[J].油气地质与采收率,2020,27(3):20-31.ZHANG Quanpei,WU Wenrui,LIU Liping,et al.Pore structure and fractal characteristics of ultra-low permeability reservoirs in Yanchang Formation in Zhenbei area,Ordos Basin[J].Petroleum Geology and Recovery Efficiency,2020,27(3):20-31.
-
[8] 黄亮.松辽盆地龙西地区扶余油层特低渗透储层孔隙结构[J].大庆石油地质与开发,2019,38(4):15-21.HUANG Liang.Pore structure of Fuyu ultra-low-permeability oil reservoir in Longxi area of Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(4):15-21.
-
[9] 高树生,胡志明,安为国,等.四川盆地龙王庙组气藏白云岩储层孔洞缝分布特征[J].天然气工业,2014,34(3):103-109.GAO Shusheng,HU Zhiming,AN Weiguo,et al.Distribution char⁃ acteristics of dolomite reservoir pores and caves of Longwangmiao Fm gas reservoirs in the Sichuan Basin[J].Natural Gas Industry,2014,34(3):103-109.
-
[10] 何庆,何生,董田,等.鄂西下寒武统牛蹄塘组页岩孔隙结构特征及影响因素[J].石油实验地质,2019,41(4):530-539.HE Qing,HE Sheng,DONG Tian,et al.Pore structure characteris⁃ tics and controls of Lower Cambrian Niutitang Formation,western Hubei Province[J].Petroleum Geology & Experiment,2019,41(4):530-539.
-
[11] 田伟,刘慧卿,何顺利,等.吉木萨尔凹陷芦草沟组致密油储层岩石微观孔隙结构表征[J].油气地质与采收率,2019,26(4):24-32.TIAN Wei,LIU Huiqing,HE Shunli,et al.Characterization of mi⁃ croscopic pore structure of tight oil reservoirs in Lucaogou Forma⁃ tion,Jimusaer Sag[J].Petroleum Geology and Recovery Efficien⁃ cy,2019,26(4):24-32.
-
[12] 汪贺,师永民,徐大卫,等.非常规储层孔隙结构表征技术及进展[J].油气地质与采收率,2019,26(5):21-30.WANG He,SHI Yongmin,XU Dawei,et al.Unconventional reser⁃ voir pore structure characterization techniques and progress[J].Petroleum Geology and Recovery Efficiency,2019,26(5):21-30.
-
[13] 肖佃师,卢双舫,房大志,等.海相高成熟页岩气储层孔隙连通关系——以彭水地区龙马溪组为例[J].油气藏评价与开发,2019,9(5):45-53.XIAO Dianshi,LU Shuangfang,FANG Dazhi,et al.Pore connec⁃ tivity of marine high-maturity shale gas reservoirs:A case study in Longmaxi formation,Pengshui area[J].Reservoir Evaluation and Development,2019,9(5):45-53.
-
[14] 金值民,谭秀成,郭睿,等.伊拉克哈法亚油田白垩系Mishrif组碳酸盐岩孔隙结构及控制因素[J].沉积学报,2018,36(5):981-994.JIN Zhimin,TAN Xiucheng,GUO Rui,et al.Pore structure char⁃ acteristics and control factors of carbonate reservoirs:The Creta⁃ ceous Mishrif Formation,Halfaya oilfield,Iraq[J].Acta Sedimen⁃tologica Sinica,2018,36(5):981-994.
-
[15] 王起琮,赵淑萍,魏钦廉,等.鄂尔多斯盆地中奥陶统马家沟组海相碳酸盐岩储集层特征[J].古地理学报,2012,14(2):229-242.WANG Qicong,ZHAO Shuping,WEI Qinlian,et al.Marine car⁃ bonate reservoir characteristics of the Middle Ordovician Majia⁃ gou Formation in Ordos Basin[J].Journal of Palaeogeography,2012,14(2):229-242.
-
[16] 薛华庆,胥蕊娜,姜培学,等.岩石微观结构CT扫描表征技术研究[J].力学学报,2015,47(6):1 073-1 078.XUE Huaqing,XU Ruina,JIANG Peixue,et al.Characterization of rock microstructure using 3D x-ray computed tomography[J].Chinese Journal of Theoretical and Applied Mechanics,2015,47(6):1 073-1 078.
-
[17] 白斌,朱如凯,吴松涛,等.利用多尺度CT成像表征致密砂岩微观孔喉结构[J].石油勘探与开发,2013,40(3):329-333.BAI Bin,ZHU Rukai,WU Songtao,et al.Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation,Ordos Basin[J].Petroleum Ex⁃ ploration and Development,2013,40(3):329-333.
-
[18] 王璐,杨胜来,彭先,等.缝洞型碳酸盐岩气藏多类型储集层孔隙结构特征及储渗能力——以四川盆地高石梯—磨溪地区灯四段为例[J].吉林大学学报:地球科学版,2019,49(4):947-958.WANG Lu,YANG Shenglai,PENG Xian,et al.Pore structure characteristics and storage-seepage capability of multi-type res⁃ ervoirs in fracture-cavity carbonate gas reservoirs:A case study of Deng-4 Member in Gaoshiti-Moxi area,Sichuan Basin[J].Journal of Jilin University:Earth Science Edition,2019,49(4):947-958.
-
[19] WANG Lu,HE Yongming,XIAN Peng,et al.Pore structure char⁃ acteristics of an ultradeep carbonate gas reservoir and their effects on gas storage and percolation capacities in the Deng IV member,Gaoshiti-Moxi Area,Sichuan Basin,SW China[J].Marine and Pe⁃ troleum Geology,2020,111:44-65.
-
[20] NJIEKAK G,SCHNITT D R,KOFMAN R S.Pore systems in car⁃ bonate formations,Weyburn field,Saskatchewan,Canada:Microtomography,helium porosimetry and mercury intrusion porosime⁃ try characterization[J].Journal of Petroleum Science and Engi⁃ neering,2018,171:1 496-1 513.
-
[21] FUSI N,MARTINEZ J M.Mercury porosimetry as a tool for im⁃ proving quality of micro-CT images in low porosity carbonate rocks[J].Engineering Geology,2013,166:272-282.
-
[22] KLOBES P,RIESEMEIER H,MEYER K,et al.Rock porosity de⁃ termination by combination of X-ray computerized tomography with mercury porosimetry[J].Fresenius J Analytical Chemistry,1997,357:543-547.
-
[23] 曲岩涛,戴志坚,李桂梅,等.岩心分析方法:SY/T 5336—2006 [S].北京:石油工业出版社,2007.QU Yantao,DAI Zhijian,LI Guimei,et al.Practices for core analy⁃ sis:SY/T 5336-2006[S].Beijing:Petroleum Industry Press,2007.
-
[24] 张祖波,洪颖,罗曼莉.岩石毛管压力曲线的测定:SY/T 5346— 2005[S].北京:石油工业出版社,2005.ZHANG Zubo,HONG Ying,LUO Manli.Rock capillary pressure measurement:SY/T 5346-2005[S].Beijing:Petroleum Industry Press,2005.
-
[25] 王俊杰,胡勇,刘义成,等.碳酸盐岩储层多尺度孔洞缝的识别与表征——以川西北双鱼石构造中二叠统栖霞组白云岩储层为例[J].天然气工业,2020,40(3):48-57.WANG Junjie,HU Yong,LIU Yicheng,et al.Identification and characterization of multi-scale pores,vugs and fractures in car⁃ bonate reservoirs:A case study of the Middle Permian Qixia dolo⁃ mite reservoirs in the Shuangyushi Structure of the northwestern Sichuan Basin[J].Natural Gas Industry,2020,40(3):48-57.
-
[26] 谢继容.碳酸盐岩气藏开发地质特征描述:SY/T 6110—2002 [S].北京:石油工业出版社,2002.XIE Jirong.The description of exploitation geologic characteristics for carbonate gas reservoir:SY/T 6110-2002[S].Beijing:Petro⁃ leum Industry Press,2002.
-
[27] CHOQUETTE P W,PRAY L C.Geologic nomenclature and classi⁃ fication of porosity in sedimentary carbonates[J].AAPG Bulletin,1970,54(2):207-250.
-
[28] 万永清,刘峰,张生兵,等.三塘湖火山岩孔隙结构类型及压汞资料应用[J].吐哈油气,2010,15(3):244-247.WAN Yongqing,LIU Feng,ZHANG Shengbing,et al.Types of pore structure of volcanic rock in Santanghu and application of mercury penetration data[J].Tuha Oil & Gas,2010,15(3):244-247.
-
[29] 汤永净,汪鹏飞,邵振东.压汞实验和误差分析[J].实验技术与管理,2015,32(5):50-54.TANG Yongjing,WANG Pengfei,SHAO Zhendong.Mercury intru⁃ sion porosimetry and error analysis[J].Experimental Technology and Management,2015,32(5):50-54.
-
[30] 杨胜来,魏俊之.油层物理学[M].北京:石油工业出版,2004.YANG Shenglai,WEI Junzhi.Reservoir physics[M].Beijing:Pe⁃ troleum Industry Press,2004.
-
[31] 朱志强.利用数字岩心技术研究变质岩潜山裂缝油藏剩余油特征[J].特种油气藏,2019,26(5):148-152.ZHU Zhiqiang.Remaining oil distribution patterns of metamor⁃ phic buried-hill fractured reservoir based on digital core technol⁃ ogy[J].Special Oil & Gas Reservoirs,2019,26(5):148-152.
-
[32] RUSPINI L C,FAROKHPOOR R,ØREN P E.Pore-scale model⁃ ing of capillary trapping in water-wet porous media:A new coop⁃ erative pore-body filling model[J].Advances in Water Resources,2017,108:1-14.
-
[33] 罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:石油工业出版社,1993.LUO Zhetan,WANG Yuncheng.Pore structure of oil and gas res⁃ ervoir[M].Beijing:Petroleum Industry Press,1993.
-
[34] 李滔,李闽,张烈辉,等.微多孔介质迂曲度与孔隙结构关系 [J].天然气地球科学,2018,29(8):1 181-1 189.LI Tao,LI Min,ZHANG Liehui,et al.Study on the relationship of tortuosity with pore structure in micro-porous media[J].Natural Gas Geoscience,2018,29(8):1 181-1 189.
-
摘要
川西北栖霞组气藏属于超深层海相碳酸盐岩气藏,其开发成本巨大,急需准确评价储层的孔喉结构并明确该区块的生产能力,但碳酸盐岩储层孔喉结构具有多样性和多尺度性,目前缺乏准确评价其完整孔喉结构的有效手段。为此,结合数字岩心和高压压汞法优点,建立了评价碳酸盐岩微米-厘米级孔喉结构的方法,并利用室内渗流实验验证了该方法的准确性。结果表明:①利用数字岩心法定量表征岩样表面溶洞和大孔隙,校正高压压汞法得到的毛管压力曲线,弥补了高压压汞法测试尺度局限,可准确评价碳酸盐岩微米-厘米级孔喉结构。②用该方法评价碳酸盐岩完整孔喉结构,孔洞型和裂缝-孔洞型岩样的孔喉分布范围和分选系数均增大,裂缝-孔洞型岩样双重孔隙特征和储渗能力优势显著,与岩石基础物性更加吻合。川西北栖霞组储层的完整孔喉结构具备气井高产稳产的基础,寻找裂缝发育区是该区块气井高产的关键。
Abstract
The deep marine carbonate gas reservoir plays an important role in increasing the reserve and production of con- ventional natural gas in Sichuan Basin. Qixia Formation in northwest Sichuan is an ultra-deep gas reservoir at a huge cost of development,so it is urgent to accurately evaluate the pore-throat structure of the reservoir and the production capacity of the block. However,we are now facing a lack of effective ways of precisely evaluating its diverse and multi-scale porethroat structure. To solve this,we made use of digital cores and high pressure mercury injection to work out a method for the evaluation of the complete micron-centimeter pore-throat structure of carbonate rocks. Then,we validated this method by laboratory seepage experiments and finally reached the following conclusions:①The correction of the capillary pressure curves obtained from high pressure mercury injection and the quantitative characterization of the vugs and macropores on the surface of rock samples by digital cores overcome the scale limitation of conventional high pressure mercury injection and can accurately evaluate the complete micron-centimeter pore-throat structure of carbonate rocks. ②This method re- sults in wider pore-throat size distribution and higher sorting coefficients of rock samples from vuggy and fractured-vuggy reservoirs. The rock samples from fractured-vuggy reservoirs see obvious dual pore characteristics and great storage and seepage capacity,which are more consistent with basic physical properties of rocks. The complete pore-throat structure of Qixia Formation in Northwest Sichuan lays the groundwork for the high and stable production of gas wells,and finding frac- ture zones is the key to high production.