en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

唐磊(1972—),男,陕西三原人,高级工程师,从事油气田开发工程的研究与管理工作。E-mail:tanglei@sinopec.com。

中图分类号:TE355.6

文献标识码:A

文章编号:1009-9603(2021)03-0090-06

DOI:10.13673/j.cnki.cn37-1359/te.2021.03.011

参考文献 1
李攀.稠油蒸汽吞吐井氮气泡沫调剖工艺技术优化[D].青岛:中国石油大学(华东),2015.LI Pan.Profile modification optimization technology by using nitro⁃ gen foam for steam huff and puff[D].Qingdao:China University of Petroleum(East China),2015.
参考文献 2
赵燕,吴光焕,孙业恒.泡沫辅助蒸汽驱矿场试验及效果[J].油气地质与采收率,2017,24(5):106-110.ZHAO Yan,WU Guanghuan,SUN Yeheng.Field test and effect analysis of foam-assisted steam flooding[J].Petroleum Geology and Recovery Efficiency,2017,24(5):106-110.
参考文献 3
卢川,郑强,朱国金,等.双水平井蒸汽辅助重力泄油合理井距优选[J].油气地质与采收率,2019,26(5):107-111.LU Chuan,ZHENG Qiang,ZHU Guojin,et al.Reasonable well spacing optimization for double horizontal wells in process of steam-assisted gravity drainage[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(5):107-111.
参考文献 4
葛涛涛,庞占喜,罗成栋,等.海上稠油油藏水平井多元热流体驱物理模拟实验研究[J].油气地质与采收率,2019,26(4):62-69.GE Taotao,PANG Zhanxi,LUO Chengdong,et al.Experimental study on multi-thermal fluid flooding by using horizontal wells in offshore heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(4):62-69.
参考文献 5
孙焕泉,王海涛,吴光焕,等.稠油油藏注 CO2提高采收率影响因素研究[J].石油实验地质,2020,42(6):1 009-1 013,1 023.SUN Huanquan,WANG Haitao,WU Guanghuan,et al.CO2 EOR factors in heavy oil reservoirs[J].Petroleum Geology & Experi⁃ ment,2020,42(6):1 009-1 013,1 023.
参考文献 6
吴乐忠.水平井堵剂及堵水技术研究[D].东营:中国石油大学(华东),2009.WU Lezhong.Study on agent and technique of water-shutoff for horizontal well[D].Dongying:China University of Petroleum(East China),2009.
参考文献 7
龚宁,李进,陈娜,等.渤海油田水平井出水特征及控水效果评价方法[J].特种油气藏,2019,26(5):147-152.GONG Ning,LI Jin,CHEN Na,et al.Water breakthrough patterns and water control evaluation of horizontal wells in Bohai Oilfield [J].Special Oil & Gas Reservoirs,2019,26(5):147-152.
参考文献 8
刘强.辽河油田稠油油藏水平井找堵水配套工艺技术[J].石油地质与工程,2019,33(1):101-103.LIU Qiang.Supporting technique of water plugging detection in horizontal wells of heavy oil reservoir in Liaohe oilfield[J].Petro⁃ leum Geology and Engineering,2019,33(1):101-103.
参考文献 9
甄宝生.井下智能找水、堵水技术在渤海油田水平井中的应用 [J].油气井测试,2016,25(4):56-57.ZHEN Baosheng.Application of intelligent water zone identifica⁃ tion and water shut-off in horizontal wells in Bohai offshore Oil⁃ field[J].Well Testing,2016,25(4):56-57.
参考文献 10
崔文昊,高榕,牛彩云,等.低渗透油田水平井高效找水技术研究与应用[J].石油化工应用,2016,35(9):20-24.CUI Wenhao,GAO Rong,NIU Caiyun,et al.Research and appli⁃ cation of high efficient water detection technology of horizontal wells in low permeability reservoir[J].Petrochemical Industry Ap⁃ plication,2016,35(9):20-24.
参考文献 11
肖彦英,涂学万,王百,等.元284区水淹水平井见水方向判识新技术试验[J].石油化工应用,2017,36(2):111-113,119.XIAO Yanying,TU Xuewan,WANG Bai,et al.A new technique for detecting the direction of water in horizontal wells in Yuan284 area[J].Petrochemical Industry Application,2017,36(2):111-113,119.
参考文献 12
温守国,谢诗章,黄成,等.缓释型长效固体示踪剂研究[J].天津科技,2018,45(6):82-85.WEN Shouguo,XIE Shizhang,HUANG Cheng,et al.Study on long-term slow-releasing solid tracer[J].Tianjin Science & Tech⁃ nology,2018,45(6):82-85.
参考文献 13
高超利,梁锋,李洋,等.吴起油田水平井找水工艺技术研究及堵水工艺工作建议[J].非常规油气,2019,6(1):44-50.GAO Chaoli,LIANG Feng,LI Yang,et al.Research on waterseeking technology of horizontal wells and suggestions for water plugging technology of Wuqi Oilfield[J].Unconventional Oil & Gas,2019,6(1):44-50.
参考文献 14
LI Liang,WU Yajun,GUO Na,et al.Application of selective water plugging technology for slotted pipe horizontal well[J].Earth and Environmental Science,2019,252(5):45-48.
参考文献 15
王瑞,张义之,张翱,等.热采水平井找堵水技术在春光油田的应用[J].石油地质与工程,2020,34(3):108-112.WANG Rui,ZHANG Yizhi,ZHANG Ao,et al.Application of wa⁃ ter locating and plugging techniques with thermal horizontal wells in Chunguang oilfield[J].Petroleum Geology and Engineering,2020,34(3):108-112.
参考文献 16
HE Youwei,QIN Jiazheng,CHENG Shiqing,et al.Estimation of fracture production and water breakthrough locations of multistage fractured horizontal wells combining pressure-transient analysis and electrical resistance tomography[J].Journal of Petro⁃ leum Science and Engineering,2020,194(5):22-23.
参考文献 17
赵晓伟.低液量水平井找水技术研究[D].西安:西安石油大学,2014.ZHAO Xiaowei.A study on finding water of technology for low pro⁃ duction horizontal well[D].Xi’an:Xi’an Shiyou University,2014.
参考文献 18
梁文福.大庆萨南油田特高含水期水驱注采结构优化调整方法[J].大庆石油地质与开发,2020,39(4):53-58.LIANG Wenfu.Optimizing and adjusting methods of the water⁃ flooding injection-production structure at extra-high watercut stage for Daqing Sanan Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):53-58.
参考文献 19
罗红文,李海涛,刘会斌,等.低渗气藏两相渗流压裂水平井温度剖面预测[J].天然气地球科学,2019,30(3):389-399.LUO Hongwen,LI Haitao,LIU Huibin,et al.Predicting tempera⁃ ture profiles of fractured horizontal well with two-phase flow in low-permeability gas reservoir[J].Natural Gas Geoscience,2019,30(3):389-399.
参考文献 20
李元华.水平井井筒温度场数值模拟方法及影响因素研究 [D].青岛:中国石油大学(华东),2015.LI Yuanhua.Numerical simulation method and effect factors about temperaturein horizontal wellbore[D].Qingdao:China University of Petroleum(East China),2015.
目录contents

    摘要

    热采水平井出水机理复杂,寻找出水点是高效堵水的关键。针对目前常用找水方法具有仪器起下困难、油井动态测量成本高等问题,提出了一种基于井筒温度剖面的热采水平井找水方法。基于传热学及多相管流理论,在井筒内油水两相流体流动的状态下,综合井筒处热对流及热传导、焦耳-汤姆生效应以及重力做功产生的井筒温度变化,与重力及剪切力做功引起的井筒压力降,建立热采水平井生产阶段井筒温度计算模型,得到生产时水平井井筒温度剖面。由于生产过程中水平井井段的出水会导致该段流体温度异常,通过对比理论剖面与实测温度曲线的差异,可以确定出水位置,根据温度可进一步分析产出水来源。

    Abstract

    The water production mechanism of thermal recovery horizontal wells is complicated,and detect the water break- through point is the key to efficient water blocking. At present,the common water detection methods have difficulty in rais- ing and lowering the instrument and high cost of dynamic test in oil well. Therefore,this paper proposes an analysis method of the wellbore temperature profile to detect the water breakthrough point of thermal recovery horizontal wells. According to the theory of heat conduction and multiphase pipe flow,under the condition of oil-water two-phase flow in the wellbore,we analyze the heat convection and heat conduction at the wellbore,the Joule-Thomson effect,the temperature change of the wellbore induced by the work of gravity,and the pressure drop of the wellbore caused by the joint work of gravity and shear. Then we construct a calculation model of wellbore temperature of thermal recovery horizontal wells during production,ob- taining the wellbore temperature profile of the horizontal wells. Since the water production from the horizontal section dur- ing production will cause abnormal fluid temperature in this interval,the water breakthrough point can be determined by comparing the difference between the theoretical profile and the measured temperature curve. Then the source of the pro- duced water can be analyzed according to the temperature.

  • 水平井具有产层泄油面积大、采油指数高、生产压差小、无水采油期长等优点,目前已成为开采稠油的一种常用技术,其缺点是由于水平井的井身与油藏平行,经过多轮次蒸汽吞吐后,会出现井间汽窜干扰现象,且水平井发生水突破后含水率急剧上升,使得吞吐效果变差[1];在蒸汽驱、蒸汽辅助重力泄油等热采方式中均会出现汽窜、高含水率等影响开发效果的问题[2-5]

  • 由于水平井特殊的布井及完井方式,水平井井段中流体的流动状态为水平态,流动速度较低,因此无法采用常规的测井方法探测出水段,如何在水平井中找到出水段是一个亟待解决的难题[6-8]。中国的大港、新疆、塔里木等油田,水平井出水问题均较为严重,例如塔里木油田三分之一的水平井处于中高含水率状态,近年来中国各大油田相继进行了高含水率水平井的找水作业。2016年,渤海油田针对水平井高含水率的问题,为减缓含水率上升速度,提高油田开发效果,引进了井下智能开关装置,采取智能分段找水、堵水技术,控水增油效果显著[9]。同年,崔文昊等通过分析不同见水特征、出水类型、改造情况,研发了水平井分段生产找水、井下取样找水、单封拖动管柱找水及双封抽汲拖动管柱找水等方法,形成了多段压裂水平井高效低成本找水方法系列,为水平井控水稳油提供可靠依据[10]。 2017 年,肖彦英等针对长庆油田元 284 区暴性水淹水平井开展了新技术试验,借助井下高精度压力计来增强井口压力变化识别灵敏度和数据录取连续性,人工激动油井井口压力、监测相邻一、二线注水井井口压力响应情况,现场试验1口井,成功识别了水淹井见水方向[11]。2018年,温守国等利用不同种类氟苯甲酸示踪剂、环氧树脂506、顺丁烯二酸酐混合成型,研制出系列缓释型长效固体示踪剂[12]。将不同种类固体示踪剂安装在水平井不同井段的完井管柱上,开井生产后通过测试不同示踪剂产出情况来识别出水位置。现场试验证明,目前固体示踪剂至少可缓释半年以上,能够满足对水平井出水位置的长期监测。2019年,高超利等提出了适合吴起油田现状的水平井找水堵水工艺,即采用机械卡封+油管抽汲试油的方法找水,并取得了良好的应用效果[13]。同年,LI Liang 等提出了通过分析动力学和 PNN 测试数据进行水平井出水点或出水段确定的方法,应用于高选择性凝胶的 H2井,提出了针对性的堵漏方案并取得良好的效果[14]。2020年,王瑞等针对春光油田稠油热采水平井原油黏度高、隔层薄、出水点复杂、常规找水不适应的问题,开展了热采水平井动态温度剖面找水方法研究[15]。同年, HE Youwei 等提出了一种通过组合压力瞬变分析 (PTA)和电阻层析成像(ERT)来估算水平井水力压裂裂缝和确定出水位置的新方法,并对长庆油田 MFHW 井进行了现场应用,准确找出了出水段,取得良好的堵水效果[16]

  • 目前现场的热采水平井找水方法具有管柱环空小、仪器起下困难、设备成本高、适用范围窄等问题。为此,笔者提出了一种基于井筒温度剖面的找水方法,该方法适用性广且成本较低,对于水平井找水方面的研究具有重要的指导意义。

  • 1 常用水平井找水方法

  • 目前常用的水平井找水方法有机械管柱找水、储层参数评价测井、产出剖面测井等方法(表1)。机械管柱找水与储层参数评价测井方法在中国油田中的使用较为广泛,但只适用于直井与定向井。储层参数评价测井方法测试剩余油饱和度分布状况在水平井处于静态时应用较多,当其开井生产或进行注汽操作时不宜应用[17]。产出剖面测井方法以斯伦贝谢公司的 Flow Scanner水平井生产测井仪与中国的油井多参数测井仪为代表,可以弥补储层参数评价测井不能够实现油井动态测量的缺点,但仪器起下较为困难[18],因此在大套管水平井中的应用较多。

  • 表1 常用水平井找水方法简介

  • Table1 Introduction to common water detection methods in horizontal wells

  • 2 井筒温度剖面分析法

  • 前人模型关于井筒总传热系数的推导,均是在高温蒸汽沿井筒纵向由井口至井底的注入过程中,干度逐渐变小的[19]。对于直井而言,可假设井筒摩擦阻力所引起的压力降忽略不计,其原因为与油藏接触的井筒长度较短。但由于水平井井筒较长,若忽略井筒的压力降,则无法正确预测井筒壁面流量。首先通过考虑热采水平井生产阶段井筒内油水两相流体流动状态,综合井筒处热对流及热传导、焦耳-汤姆生效应以及重力做功产生的井筒温度变化,与重力及剪切力做功引起的井筒压力降变化,建立油水两相流的水平井筒温度计算模型,得到水平井生产阶段井筒温度的分布规律。

  • 2.1 假设条件

  • 假设条件主要包括:①考虑油水两相流,不存在滑脱效应。②水平井裸眼筛管完井,即射开程度为1。③井筒内的压力降变化由重力及剪切力做功引起。④井筒内温度变化由井筒处热对流及热传导、焦耳-汤姆生效应以及重力做功引起。⑤考虑水平井生产阶段的井筒温度分布。⑥流体流入水平井筒的流入速度为整段井筒的平均速度。⑦井壁压力与流入井筒处的一致。⑧井筒微元段的流动分成井筒外围径向流动与井筒内轴向流动 2 种 (图1)。

  • 图1 井筒微元段

  • Fig.1 Wellbore micro-element section

  • 2.2 井筒压力梯度的计算

  • 井筒流速可表示为:

  • v=vxvrvθ=v100 0vI0
    (1)
  • 考虑水平井裸眼筛管完井,即射开程度为1,对于长度为Δx的微元段,流动表面积为2πRΔx

  • 微元段内流体的质量守恒方程为:

  • πR2Δxρ1t=2πRΔxρ1vI+πR2ρ1v1x-ρ1v1x+Δx
    (2)
  • 对(2)式化简,并令 Δx→ 0 可得稳态条件下的质量守恒方程为:

  • 2ρ1vIR=dρ1v1dx
    (3)
  • 对于油水两相流,流体密度与流速分别为:

  • ρ1=ρoyo+ρwyw
    (4)
  • v1=ρovoyo+ρwvwywρoyo+ρwyw
    (5)
  • 微元段内流体的动量守恒方程为:

  • ρ1v1t=1Δxρ1v12+p-43μv1xx-ρ1v12+p-43μv1xx+Δx-2RτrxR-ρ1gsinθ
    (6)
  • 令Δx → 0,则(6)式可变为:

  • ρ1v1t=xρ1v12+p-43μv1x-2RτrxR-ρ1gsinθ
    (7)
  • 忽略二阶导数的影响,并假设流动处于稳态条件,则(7)式可变为:

  • 0=xρ1v12+p-2RτrxR-ρ1gsinθ
    (8)
  • 由范宁摩擦因子[20]可求得井壁剪切力的表达式为:

  • τrxR=ρ1fv122
    (9)
  • f=f01+0.043042Rρ1v1μ10.6142
    (10)
  • 整理(8)式得到压力梯度分布方程为:

  • dpdx=-ρ1v12fR-dρ1v12dx-ρ1gsinθ
    (11)
  • 2.3 井筒温度梯度的计算

  • 考虑重力与剪切力做功,井筒微元段内的能量守恒方程表示为:

  • πR2Δxt12ρ1v12+ρ1U=2πRΔxerR+πR2exx-πR2exx+Δx-πR2Δxρ1v1gsinθ
    (12)
  • 令Δx → 0,对(12)式化简可得:

  • t12ρ1v12+ρ1U=2v1R12ρ1v12+23μv1R+ρ1Hr+exx-ρ1v1gsinθ
    (13)
  • 忽略流体间的热传导,则 x 方向的能量流方程为:

  • ex=12ρ1v12+ρ1Uv1-43μv1xv1
    (14)
  • 将(14)式代入(13)式可得:

  • t12ρ1v12+ρ1U=2v1R12ρ1v12+23μv1R+ρ1H1-x12ρ1v12+ρ1Hv1-43μv1xv1-ρ1v1gsinθ
    (15)
  • 动能项方程式为:

  • EK=2vIR12ρ1vI2-x12ρ1vl2vl
    (16)
  • 黏滞剪切力项方程式为:

  • EV=4vI3RμvIR+x43μv1xv1
    (17)
  • 将(16)式、(17)式分别代入(15)式,方程式可变为:

  • 0=2Rρ1v1H1-ρ1Hv1x+EK+EV-ρ1v1gsinθ
    (18)
  • 将(3)式代入(18)式,可得:

  • 0=2RρlvIHI-H-ρ1v1dHdx+EK+EV-ρ1v1gsinθ
    (19)
  • 而焓是有关温度与压力的方程,可表示为:

  • dH=CpdT+1ρ1(1-βT)dp
    (20)
  • 井壁压力与流入井筒处的压力若大小一致,则流体与井筒之间焓的差值可表示为:

  • HI-H=CpTI-T+1ρl1-βTIpI-p=CpTI-T
    (21)
  • 将(20)式、(21)式分别代入(19)式,可得:

  • 0=2Rρ1vICpTI-T-ρ1CpdTdx-v1(1-βT)dpdx+EK+EV-ρ1v1gsinθ
    (22)
  • 忽略动能和黏滞剪切力对井筒温度变化的影响,可得油水两相流动时水平井井筒内的温度梯度表达式为:

  • dTdx=2Rv1vITI-T-(1-βT)ρ1Cp×dpdx-gsinθCp
    (23)
  • (23)式中右边第1项表示井筒处流体热对流导致的温度变化,第2项表示焦耳-汤姆生效应造成的井筒流体的温度变化,第 3 项表示重力做功引起的井筒内流体的温度变化。

  • 2.4 计算步骤

  • (3)式、(11)式和(23)式这 3 个方程式离散化后,利用有限差分可获取数值解。解方程式步骤为:①通过(3)式计算速度剖面。②通过(11)式计算压力剖面。③通过(23)式计算温度剖面。④检查温度和压力剖面的收敛性。⑤重复以上步骤直至压力和温度收敛。

  • 假设水平井井筒趾部温度与水平井井筒的流入温度相同,根据(23)式与水平井井筒趾部温度可得出水平井井筒内的温度剖面。生产过程中水平井井段的出水会导致该段流体温度异常,通过对比理论剖面与实测温度曲线的差异,可以判断水平井的出水位置,通过温度的高低可进一步分析产出水来源。

  • 3 实例应用

  • 以哥伦比亚某油田2口高含水率水平井AF-06 与AF-13为例,2口井均为裸眼筛管完井,通过对比水平井井段温度剖面测井曲线与理论计算得到的井筒内温度分布,从而判断 2 口高含水率水平井的出水点。其中流体绝热膨胀系数为 0.02,原油密度为 920 kg/m3,原油黏度为 4 000 mPa·s,流体热容为 3 800 J/(kg·℃)。

  • AF-06井  AF-06井水平井井段长为620 m,井筒内半径为 0.1 m,入流温度即井筒趾部温度为 50℃,该井的水平井井段温度测井剖面曲线与理论计算得到的温度沿水平井井段的分布曲线如图2所示。

  • AF-06 井钻遇率为 1,造成温度剖面测井曲线上温度变化的原因是储量动用程度的不均匀,动用程度越高,说明该层段储层物性越好,使得下部的高温流体流入,从而造成该井段底水突破时间快,见水时间短,因此判断该井的趾端距离跟部 570~600 m处与中端距离跟部230~310 m处为出水位置。

  • 根据以上分析对 AF-06 井采取挤注 5% 栲胶+1 % 酚类促进剂 AC1+1.5% 醛类交联剂 CL3 体系堵剂封堵出水段,措施前日产液量为19.0 m3 /d,日产油量为 3.2 m3 /d,含水率为 83%;措施后日产液量为 33.4 m3 /d,日产油量为 12.7 m3 /d,含水率为 62%,产油量大幅增加,含水率迅速减小,封堵效果显著。

  • 图2 AF-06井水平井井段井筒温度对比

  • Fig.2 Comparison of wellbore temperatures in horizontal section of Well AF-06

  • AF-13井  AF-13井水平井井段长为450 m,井筒半径为0.1 m,入流温度即井筒趾部温度为80℃,水平井井段温度测井剖面曲线与理论计算得到的温度沿水平井井段的分布曲线如图3所示。

  • 图3 AF-13井水平段井筒温度对比

  • Fig.3 Comparison of wellbore temperatures in horizontal section of Well AF-13

  • 同理,图3 中温度测井剖面曲线上趾端温度较高,所以 AF-13 井的出水位置位于趾端,距离跟部 360~400 m处。

  • 根据以上分析,对AF-13井采取WFC堵剂封堵出水段,注入堵剂前日产液量为 28 m3 /d,日产油量为15 m3 /d,含水率为47.1%;注入堵剂后日产液量为 31 m3 /d,日产油量为 17 m3 /d,含水率下降至 44.4%,封堵效果明显。

  • 4 结论

  • 为解决常见热采水平井找水方法管柱环空仪器起下困难、设备成本高、适用范围窄等问题,基于传热学以及多相管流理论,建立了油水两相流的水平井筒温度剖面模型,计算可得水平井生产阶段井筒温度的分布规律;通过对比理论剖面与实测温度曲线的差异,可准确判断目标油藏水平井出水位置,进而分析产出水来源。实例应用表明基于井筒温度剖面的热采水平井找水方法有效可行,结合适当的堵水措施,可明显改善热采水平井开发效果。

  • 符号解释

  • Cp ——油水两相液流的热容,J/K;

  • e r ——径向动能,J;

  • ex ——轴向动能,J;

  • EK ——动能影响的井筒内流体热量变化,J;

  • EV ——黏滞剪切力影响的井筒内流体热量变化,J;

  • f——摩擦因子;

  • f 0——与井筒相对粗糙度有关的无径向流入时的摩擦因子;

  • g ——重力加速度,m/s2

  • H ——焓,J/mol;

  • H I ——井筒壁处流体的焓,J/mol;

  • p ——流体压力,Pa;

  • p I ——井筒壁处的压力,Pa;

  • R ——井筒半径,m;

  • t ——时间,s;

  • T ——温度,K;

  • U ——内能,J;

  • v ——矢量流速,m/s;

  • v I ——井筒壁上的径向流速,m/s;

  • v l ——井筒内部沿井筒流速,m/s;

  • vr ——r方向流速,m/s;

  • vx ——x方向流速,m/s;

  • vθ——θ方向流速,m/s;

  • x ——轴向坐标;

  • Δx ——微元段的长度;

  • y o——油相的体积分数;

  • y w——水相的体积分数;

  • β——油水两相液流的绝热膨胀系数;

  • θ——倾角,无量纲;

  • μ——流体黏度,mPa∙s;

  • μI ——井筒壁流体黏度,mPa·s;

  • ρl ——液相密度,kg/m3

  • ρI ——井筒壁流体密度,kg/m3

  • ρo——油相密度,kg/m3

  • ρw——水相密度,kg/m3

  • τrx——剪切力张量,N。

  • 参考文献

    • [1] 李攀.稠油蒸汽吞吐井氮气泡沫调剖工艺技术优化[D].青岛:中国石油大学(华东),2015.LI Pan.Profile modification optimization technology by using nitro⁃ gen foam for steam huff and puff[D].Qingdao:China University of Petroleum(East China),2015.

    • [2] 赵燕,吴光焕,孙业恒.泡沫辅助蒸汽驱矿场试验及效果[J].油气地质与采收率,2017,24(5):106-110.ZHAO Yan,WU Guanghuan,SUN Yeheng.Field test and effect analysis of foam-assisted steam flooding[J].Petroleum Geology and Recovery Efficiency,2017,24(5):106-110.

    • [3] 卢川,郑强,朱国金,等.双水平井蒸汽辅助重力泄油合理井距优选[J].油气地质与采收率,2019,26(5):107-111.LU Chuan,ZHENG Qiang,ZHU Guojin,et al.Reasonable well spacing optimization for double horizontal wells in process of steam-assisted gravity drainage[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(5):107-111.

    • [4] 葛涛涛,庞占喜,罗成栋,等.海上稠油油藏水平井多元热流体驱物理模拟实验研究[J].油气地质与采收率,2019,26(4):62-69.GE Taotao,PANG Zhanxi,LUO Chengdong,et al.Experimental study on multi-thermal fluid flooding by using horizontal wells in offshore heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(4):62-69.

    • [5] 孙焕泉,王海涛,吴光焕,等.稠油油藏注 CO2提高采收率影响因素研究[J].石油实验地质,2020,42(6):1 009-1 013,1 023.SUN Huanquan,WANG Haitao,WU Guanghuan,et al.CO2 EOR factors in heavy oil reservoirs[J].Petroleum Geology & Experi⁃ ment,2020,42(6):1 009-1 013,1 023.

    • [6] 吴乐忠.水平井堵剂及堵水技术研究[D].东营:中国石油大学(华东),2009.WU Lezhong.Study on agent and technique of water-shutoff for horizontal well[D].Dongying:China University of Petroleum(East China),2009.

    • [7] 龚宁,李进,陈娜,等.渤海油田水平井出水特征及控水效果评价方法[J].特种油气藏,2019,26(5):147-152.GONG Ning,LI Jin,CHEN Na,et al.Water breakthrough patterns and water control evaluation of horizontal wells in Bohai Oilfield [J].Special Oil & Gas Reservoirs,2019,26(5):147-152.

    • [8] 刘强.辽河油田稠油油藏水平井找堵水配套工艺技术[J].石油地质与工程,2019,33(1):101-103.LIU Qiang.Supporting technique of water plugging detection in horizontal wells of heavy oil reservoir in Liaohe oilfield[J].Petro⁃ leum Geology and Engineering,2019,33(1):101-103.

    • [9] 甄宝生.井下智能找水、堵水技术在渤海油田水平井中的应用 [J].油气井测试,2016,25(4):56-57.ZHEN Baosheng.Application of intelligent water zone identifica⁃ tion and water shut-off in horizontal wells in Bohai offshore Oil⁃ field[J].Well Testing,2016,25(4):56-57.

    • [10] 崔文昊,高榕,牛彩云,等.低渗透油田水平井高效找水技术研究与应用[J].石油化工应用,2016,35(9):20-24.CUI Wenhao,GAO Rong,NIU Caiyun,et al.Research and appli⁃ cation of high efficient water detection technology of horizontal wells in low permeability reservoir[J].Petrochemical Industry Ap⁃ plication,2016,35(9):20-24.

    • [11] 肖彦英,涂学万,王百,等.元284区水淹水平井见水方向判识新技术试验[J].石油化工应用,2017,36(2):111-113,119.XIAO Yanying,TU Xuewan,WANG Bai,et al.A new technique for detecting the direction of water in horizontal wells in Yuan284 area[J].Petrochemical Industry Application,2017,36(2):111-113,119.

    • [12] 温守国,谢诗章,黄成,等.缓释型长效固体示踪剂研究[J].天津科技,2018,45(6):82-85.WEN Shouguo,XIE Shizhang,HUANG Cheng,et al.Study on long-term slow-releasing solid tracer[J].Tianjin Science & Tech⁃ nology,2018,45(6):82-85.

    • [13] 高超利,梁锋,李洋,等.吴起油田水平井找水工艺技术研究及堵水工艺工作建议[J].非常规油气,2019,6(1):44-50.GAO Chaoli,LIANG Feng,LI Yang,et al.Research on waterseeking technology of horizontal wells and suggestions for water plugging technology of Wuqi Oilfield[J].Unconventional Oil & Gas,2019,6(1):44-50.

    • [14] LI Liang,WU Yajun,GUO Na,et al.Application of selective water plugging technology for slotted pipe horizontal well[J].Earth and Environmental Science,2019,252(5):45-48.

    • [15] 王瑞,张义之,张翱,等.热采水平井找堵水技术在春光油田的应用[J].石油地质与工程,2020,34(3):108-112.WANG Rui,ZHANG Yizhi,ZHANG Ao,et al.Application of wa⁃ ter locating and plugging techniques with thermal horizontal wells in Chunguang oilfield[J].Petroleum Geology and Engineering,2020,34(3):108-112.

    • [16] HE Youwei,QIN Jiazheng,CHENG Shiqing,et al.Estimation of fracture production and water breakthrough locations of multistage fractured horizontal wells combining pressure-transient analysis and electrical resistance tomography[J].Journal of Petro⁃ leum Science and Engineering,2020,194(5):22-23.

    • [17] 赵晓伟.低液量水平井找水技术研究[D].西安:西安石油大学,2014.ZHAO Xiaowei.A study on finding water of technology for low pro⁃ duction horizontal well[D].Xi’an:Xi’an Shiyou University,2014.

    • [18] 梁文福.大庆萨南油田特高含水期水驱注采结构优化调整方法[J].大庆石油地质与开发,2020,39(4):53-58.LIANG Wenfu.Optimizing and adjusting methods of the water⁃ flooding injection-production structure at extra-high watercut stage for Daqing Sanan Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):53-58.

    • [19] 罗红文,李海涛,刘会斌,等.低渗气藏两相渗流压裂水平井温度剖面预测[J].天然气地球科学,2019,30(3):389-399.LUO Hongwen,LI Haitao,LIU Huibin,et al.Predicting tempera⁃ ture profiles of fractured horizontal well with two-phase flow in low-permeability gas reservoir[J].Natural Gas Geoscience,2019,30(3):389-399.

    • [20] 李元华.水平井井筒温度场数值模拟方法及影响因素研究 [D].青岛:中国石油大学(华东),2015.LI Yuanhua.Numerical simulation method and effect factors about temperaturein horizontal wellbore[D].Qingdao:China University of Petroleum(East China),2015.

  • 参考文献

    • [1] 李攀.稠油蒸汽吞吐井氮气泡沫调剖工艺技术优化[D].青岛:中国石油大学(华东),2015.LI Pan.Profile modification optimization technology by using nitro⁃ gen foam for steam huff and puff[D].Qingdao:China University of Petroleum(East China),2015.

    • [2] 赵燕,吴光焕,孙业恒.泡沫辅助蒸汽驱矿场试验及效果[J].油气地质与采收率,2017,24(5):106-110.ZHAO Yan,WU Guanghuan,SUN Yeheng.Field test and effect analysis of foam-assisted steam flooding[J].Petroleum Geology and Recovery Efficiency,2017,24(5):106-110.

    • [3] 卢川,郑强,朱国金,等.双水平井蒸汽辅助重力泄油合理井距优选[J].油气地质与采收率,2019,26(5):107-111.LU Chuan,ZHENG Qiang,ZHU Guojin,et al.Reasonable well spacing optimization for double horizontal wells in process of steam-assisted gravity drainage[J].Petroleum Geology and Re⁃ covery Efficiency,2019,26(5):107-111.

    • [4] 葛涛涛,庞占喜,罗成栋,等.海上稠油油藏水平井多元热流体驱物理模拟实验研究[J].油气地质与采收率,2019,26(4):62-69.GE Taotao,PANG Zhanxi,LUO Chengdong,et al.Experimental study on multi-thermal fluid flooding by using horizontal wells in offshore heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(4):62-69.

    • [5] 孙焕泉,王海涛,吴光焕,等.稠油油藏注 CO2提高采收率影响因素研究[J].石油实验地质,2020,42(6):1 009-1 013,1 023.SUN Huanquan,WANG Haitao,WU Guanghuan,et al.CO2 EOR factors in heavy oil reservoirs[J].Petroleum Geology & Experi⁃ ment,2020,42(6):1 009-1 013,1 023.

    • [6] 吴乐忠.水平井堵剂及堵水技术研究[D].东营:中国石油大学(华东),2009.WU Lezhong.Study on agent and technique of water-shutoff for horizontal well[D].Dongying:China University of Petroleum(East China),2009.

    • [7] 龚宁,李进,陈娜,等.渤海油田水平井出水特征及控水效果评价方法[J].特种油气藏,2019,26(5):147-152.GONG Ning,LI Jin,CHEN Na,et al.Water breakthrough patterns and water control evaluation of horizontal wells in Bohai Oilfield [J].Special Oil & Gas Reservoirs,2019,26(5):147-152.

    • [8] 刘强.辽河油田稠油油藏水平井找堵水配套工艺技术[J].石油地质与工程,2019,33(1):101-103.LIU Qiang.Supporting technique of water plugging detection in horizontal wells of heavy oil reservoir in Liaohe oilfield[J].Petro⁃ leum Geology and Engineering,2019,33(1):101-103.

    • [9] 甄宝生.井下智能找水、堵水技术在渤海油田水平井中的应用 [J].油气井测试,2016,25(4):56-57.ZHEN Baosheng.Application of intelligent water zone identifica⁃ tion and water shut-off in horizontal wells in Bohai offshore Oil⁃ field[J].Well Testing,2016,25(4):56-57.

    • [10] 崔文昊,高榕,牛彩云,等.低渗透油田水平井高效找水技术研究与应用[J].石油化工应用,2016,35(9):20-24.CUI Wenhao,GAO Rong,NIU Caiyun,et al.Research and appli⁃ cation of high efficient water detection technology of horizontal wells in low permeability reservoir[J].Petrochemical Industry Ap⁃ plication,2016,35(9):20-24.

    • [11] 肖彦英,涂学万,王百,等.元284区水淹水平井见水方向判识新技术试验[J].石油化工应用,2017,36(2):111-113,119.XIAO Yanying,TU Xuewan,WANG Bai,et al.A new technique for detecting the direction of water in horizontal wells in Yuan284 area[J].Petrochemical Industry Application,2017,36(2):111-113,119.

    • [12] 温守国,谢诗章,黄成,等.缓释型长效固体示踪剂研究[J].天津科技,2018,45(6):82-85.WEN Shouguo,XIE Shizhang,HUANG Cheng,et al.Study on long-term slow-releasing solid tracer[J].Tianjin Science & Tech⁃ nology,2018,45(6):82-85.

    • [13] 高超利,梁锋,李洋,等.吴起油田水平井找水工艺技术研究及堵水工艺工作建议[J].非常规油气,2019,6(1):44-50.GAO Chaoli,LIANG Feng,LI Yang,et al.Research on waterseeking technology of horizontal wells and suggestions for water plugging technology of Wuqi Oilfield[J].Unconventional Oil & Gas,2019,6(1):44-50.

    • [14] LI Liang,WU Yajun,GUO Na,et al.Application of selective water plugging technology for slotted pipe horizontal well[J].Earth and Environmental Science,2019,252(5):45-48.

    • [15] 王瑞,张义之,张翱,等.热采水平井找堵水技术在春光油田的应用[J].石油地质与工程,2020,34(3):108-112.WANG Rui,ZHANG Yizhi,ZHANG Ao,et al.Application of wa⁃ ter locating and plugging techniques with thermal horizontal wells in Chunguang oilfield[J].Petroleum Geology and Engineering,2020,34(3):108-112.

    • [16] HE Youwei,QIN Jiazheng,CHENG Shiqing,et al.Estimation of fracture production and water breakthrough locations of multistage fractured horizontal wells combining pressure-transient analysis and electrical resistance tomography[J].Journal of Petro⁃ leum Science and Engineering,2020,194(5):22-23.

    • [17] 赵晓伟.低液量水平井找水技术研究[D].西安:西安石油大学,2014.ZHAO Xiaowei.A study on finding water of technology for low pro⁃ duction horizontal well[D].Xi’an:Xi’an Shiyou University,2014.

    • [18] 梁文福.大庆萨南油田特高含水期水驱注采结构优化调整方法[J].大庆石油地质与开发,2020,39(4):53-58.LIANG Wenfu.Optimizing and adjusting methods of the water⁃ flooding injection-production structure at extra-high watercut stage for Daqing Sanan Oilfield[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(4):53-58.

    • [19] 罗红文,李海涛,刘会斌,等.低渗气藏两相渗流压裂水平井温度剖面预测[J].天然气地球科学,2019,30(3):389-399.LUO Hongwen,LI Haitao,LIU Huibin,et al.Predicting tempera⁃ ture profiles of fractured horizontal well with two-phase flow in low-permeability gas reservoir[J].Natural Gas Geoscience,2019,30(3):389-399.

    • [20] 李元华.水平井井筒温度场数值模拟方法及影响因素研究 [D].青岛:中国石油大学(华东),2015.LI Yuanhua.Numerical simulation method and effect factors about temperaturein horizontal wellbore[D].Qingdao:China University of Petroleum(East China),2015.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告