-
聚合物驱油机理主要是通过增加注入水的黏度,降低水油流度比,扩大注入水在油层中的波及体积来提高原油采收率[1-6]。聚合物驱在陆上油田得到了广泛应用,已成为提高油藏采收率比较成熟的三次采油技术[7-11]。随着海上油田开发的不断进行,聚合物驱油技术在海上油田获得大规模推广和应用[12-13]。
-
海上平台空间和承载能力有限,而聚合物溶解时间长,因此陆上油田所使用的聚合物配注系统不再适合。由于海上油田原油黏度高、地层剪切能力强、地层水矿化度高,常规的线性聚合物难以满足在海上油田注聚条件下的增黏能力、抗剪切能力和耐盐能力的需求,为此研发了疏水缔合聚合物[14-15],疏水缔合聚合物由于疏水基团的引入使其溶解更加缓慢,进一步加剧了海上平台空间及承载能力有限与聚合物溶解时间长的矛盾[16-18]。因此,加速海上平台聚合物的溶解成为亟待解决的问题。
-
针对疏水缔合聚合物溶解时间长的问题,研发了聚合物分级强制拉伸装置,并取得了显著的成果。经过强制拉伸装置后聚合物溶解时间从 120 min缩短至 25 min。聚合物分级强制拉伸装置在满足海上油田配注要求的情况下极大地缩短了疏水缔合聚合物的溶解时间,在一定程度上减小了配注系统的占地面积。为进一步优化聚合物配注系统,减小配注系统的占地面积,将超重力技术引入海上平台聚合物快速溶解,配制聚合物溶液,设计了一种超重力速溶装置,并对其进行室内实验研究。
-
1 实验器材与方法
-
1.1 实验器材
-
实验仪器主要包括超重力速溶装置(自主研发)、Brookfield DV-Ⅲ黏度计(美国 Brookfield 公司)、数显悬吊臂搅拌器(江苏江阴保利科研器材有限公司)、恒温水浴锅(上海光地仪器设备有限公司)、电子天平(上海精科公司)、计时器、烧杯、针筒 (去针头)。
-
化学试剂主要包括疏水缔合聚合物 AP-P4(四川光亚聚合物化工有限公司);NaCl,KCl,CaCl2,Mg⁃ Cl2,Na2CO3,NaHCO3和 Na2SO4均为分析纯,模拟水中的Na+,K+,Ca2+,Mg2+,CO3 2-,HCO3-,SO4 2- 和Cl-的质量浓度分别为 3 091.96,3 091.96,276.17,158.68, 14.21,311.48,85.29 和 5 436.34 mg/L。模拟注入水矿化度为9 374.13 mg/L。
-
1.2 实验方法
-
1.2.1 实验步骤
-
按聚合物超重力高效配制的工艺流程(图1)连接仪器,速溶装置入口和出口均设有取样口,便于取样。
-
图1 聚合物超重力高效配制工艺流程
-
Fig.1 High-efficiency high-gravity polymer compounding process
-
经离心泵输送的水与 AP-P4 干粉在溶解罐内混合,经过搅拌后形成处于溶胀阶段的 AP-P4 溶液,经过转液泵进入超重力速溶装置,最后流入废液池。装置稳定运行 2 min 后,用烧杯从取样口接取AP-P4溶液,测定其溶解时间。
-
1.2.2 聚合物基本溶解时间测定
-
在45℃条件下,将所取AP-P4溶液样品置于恒温水浴锅内搅拌溶解,搅拌转速为 200 r/min。搅拌溶解过程中,每隔 5 min 测定一次溶液黏度,直至 3 次取样测量黏度变化不大(黏度变化率小于 5%),停止取样。黏度测试使用Brookfield DV-Ⅲ黏度计,剪切速率为 7.34 s-1,不同型号转子的转速及黏度见表1。
-
根据测试数据绘制聚合物溶液黏度随时间的变化曲线,对溶液黏度相对平稳时的曲线进行拟合得到一条直线,再对溶液黏度平稳前的曲线进行拟合得到另一条直线,两条直线的交点所对应的时间点,即是基本溶解时间点。
-
2 结果与讨论
-
2.1 填料孔隙尺寸对聚合物溶解时间的影响
-
设定配制温度为 45℃,配液质量浓度为 5 000 mg/L,超重力因子为 1 037,考察速溶装置填料孔隙尺寸对聚合物溶解时间的影响。根据 AP-P4 溶液在溶解过程中记录的实验数据绘制溶液黏度随时间的变化曲线(图2)和 AP-P4 溶液基本溶解时间、基本溶解黏度与填料孔隙直径的关系曲线(图3)。从图2 和图3 可以看出,超重力速溶装置可有效实现聚合物的加速溶解,缩短溶解时间。空白组(未经超重力速溶装置)AP-P4 溶液黏度上升缓慢,基本溶解时间为 80 min,基本溶解黏度为 2 628.2 mPa·s;经速溶装置处理后 AP-P4 溶液黏度上升速度显著提升,45~70 min内黏度达到稳定完成基本溶解,溶解时间缩短15~35 min。随着填料孔隙直径的减小,AP-P4 溶液的基本溶解时间逐渐减小,基本溶解黏度逐渐降低。
-
图2 不同填料孔隙直径条件下AP-P4溶液黏度随时间的变化
-
Fig.2 Viscosity curve of AP-P4 solution with time under the condition of different filler pore diameters
-
图3 不同填料孔隙直径下AP-P4溶液的基本溶解时间和基本溶解黏度
-
Fig.3 Basic dissolution time and basic dissolution viscosity of AP-P4 under different filler pore diameters
-
2.2 超重力因子对聚合物溶解时间的影响
-
设定配制温度为 45℃,配液质量浓度为 5 000 mg/L,速溶装置填料孔隙直径为 100 μm,考察超重力因子对聚合物溶解时间的影响。根据 AP-P4 溶液在溶解过程中记录的实验数据绘制溶液黏度随时间的变化曲线(图4)和 AP-P4 溶液基本溶解时间、基本溶解黏度与超重力因子的关系曲线(图5)。从图4 和图5 可以看出,随着超重力因子的增加, AP-P4溶液的基本溶解时间逐渐减小,基本溶解黏度逐渐降低。超重力因子从770增加到1 307,基本溶解时间从50 min缩短至40 min。这是因为随着超重力因子的增加,水和AP-P4溶胀颗粒在填料内聚并和分散的过程中,相际界面得到快速更新,强化了水和聚合物溶胀颗粒的传质;另外,由于超重力因子增加,水和 AP-P4 溶胀颗粒所受的离心力增加,加速了水向 AP-P4溶胀颗粒内部的渗透。超重力因子为 1 307时,取得最佳速溶效果,此时溶解时间缩短至 40 min,基本溶解黏度为 1 516.5 mPa·s。考虑到目前加工工艺和动力消耗,选择适宜的超重力因子为1 307。
-
图4 不同超重力因子条件下AP-P4溶液黏度随时间的变化
-
Fig.4 Viscosity curve of AP-P4 solution with time under different high-gravity factors
-
图5 不同超重力因子下AP-P4溶液的基本溶解时间和基本溶解黏度
-
Fig.5 Basic dissolution time and basic dissolution viscosity of AP-P4 under different high-gravity factors
-
2.3 装置填料组合对聚合物溶解时间的影响
-
设定配制温度为 45℃,配液质量浓度为 5 000 mg/L,超重力因子为 1 307,考察填料组合对聚合物溶解时间的影响。根据 AP-P4 溶液在溶解过程中记录的实验数据绘制溶液黏度随时间的变化曲线 (图6)和 AP-P4 溶液基本溶解时间、基本溶解黏度与填料组合的关系曲线(图7)。从图6 和图7 可以看出,当速溶装置填料组合为组合 1(单层厚度为 100 μm)时,AP-P4溶液的基本溶解时间为 40 min,基本溶解黏度为 1 516.5 mPa·s;填料组合为组合 2 (双层:内径为200 μm、外径为100 μm)和组合3(双层:内径为 300 μm、外径为 100 μm)时,AP-P4 溶液黏度上升速度明显提升,35 min左右黏度达到稳定,完成基本溶解,基本溶解时间较采用组合 1 时缩短 5 min,基本溶解时采用组合3的溶液黏度为1 731.2 mPa·s,高于采用组合 2 的溶液黏度(1 602.1 mPa·s);速溶装置填料组合为组合 4(双层:内径为 300 μm、外径为 200 μm)时,AP-P4 溶液的基本溶解时间为 45 min,基本溶解黏度为 1 779.2 mPa·s。这是因为组合2和组合3采用双层填料,增加了水和AP-P4溶胀颗粒在装置内的运动行程和混合传质时间,加速了 AP-P4 溶胀颗粒水化,缩短其溶解时间;此外 AP-P4 溶胀颗粒先经过 300 μm 填料分散,形成均匀的300 μm左右的溶胀颗粒,提高在下一层填料中AP-P4溶胀颗粒水渗效果,加速其溶解。而组合 4由于二层填料尺寸为200 μm,孔隙尺寸大,对聚合物溶胀颗粒作用小,所以其溶解时间较长,基本溶解时的黏度较高。综合考虑速溶装置加速 AP-P4 溶解的效果,以及 AP-P4 溶液基本溶解黏度,速溶装置填料组合选取组合3,即填料孔隙直径300 μm/ 100 μm的双层填料组合。
-
图6 不同填料组合条件下AP-P4溶液黏度随时间的变化
-
Fig.6 Viscosity curve of AP-P4 solution under different filler combinations
-
图7 不同填料组合下AP-P4溶液的基本溶解时间和基本溶解黏度
-
Fig.7 Basic dissolution time and basic dissolution viscosity of AP-P4 solution under different filler combinations
-
3 结论
-
超重力速溶实验装置可有效地加速聚合物的溶解,显著缩短聚合物溶解时间,满足海上平台聚合物的配制需求。填料孔隙尺寸越小,超重力因子越大,聚合物溶解时间越短。在配液温度为 45℃,配液质量浓度为 5 000 mg/L,填料组合为 300 μm/ 100 μm、超重力因子为 1 307的条件下,AP-P4溶液的基本溶解时间由 80 min 缩短至 35 min,缩短了 56.25%。
-
参考文献
-
[1] 田敏,李楠.聚合物驱油机理及增效新措施[J].内蒙古石油化工,2010,36(18):34-36.TIAN Min,LI Nan.Polymer flooding mechanism and new stimula⁃ tions[J].Inner Mongolia Petrochemical Industry,2010,36(18):34-36.
-
[2] 夏惠芬,王德民,刘中春,等.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60-65.XIA Huifen,WANG Demin,LIU Zhongchun,et al.Study on the mechanism of polymer solution with visco-elastic behavior in⁃ creasing microscopic oil displacement efficiency[J].Acta Petrolei Sinica,2001,22(4):60-65.
-
[3] TAYLOR Kevin C,NASR-EL-DIN Hisham A.Water-soluble hy⁃ drophobically associating polymers for improved oil recovery:A literature review[J].Journal of Petroleum Science and Engineer⁃ ing,1998,19(3):265-280.
-
[4] 于娣.聚合物驱油技术探究[J].石化技术,2015,22(7):73,87.YU Di.Research on polymer flooding technology[J].Petrochemi⁃ cal Industry Technology,2015,22(7):73,87.
-
[5] 曹绪龙,季岩峰,祝仰文,等.聚合物驱研究进展及技术展望 [J].油气藏评价与开发,2020,10(6):8-16.CAO Xulong,JI Yanfeng,ZHU Yangwen,et al.Research advance and technology outlook of polymer flooding[J].Reservoir Evalua⁃ tion and Development,2020,10(6):8-16.
-
[6] 敬豪,张广东,孙大龙,等.注水倍数对储层微观孔隙结构影响实验研究[J].石油实验地质,2020,42(6):1 041-1 046.JING Hao,ZHANG Guangdong,SUN Dalong,et al.The influence of water flooding multiples on reservoir micro pore structure[J].Petroleum Geology & Experiment,2020,42(6):1 041-1 046.
-
[7] 许国民,高忠敏.疏松砂岩油藏化学驱技术研究与试验[J].特种油气藏,2020,27(6):139-144.XU Guomin,GAO Zhongmin.Research and test of chemical flood⁃ ing technology in unconsolidated sandstone reservoirs[J].Special Oil & Gas Reservoirs,2020,27(6):139-144.
-
[8] 王志远,张烈辉,谭龙,等.砾岩储集层聚合物驱油机理与控制因素实验研究[J].油气藏评价与开发,2020,10(3):109-114.WANG Zhiyuan,ZHANG Liehui,TAN Long,et al.Study on mech⁃ anism and controlling factors of polymer flooding in conglomerate reservoir[J].Reservoir Evaluation and Development,2020,10(3):109-114.
-
[9] 赵方剑,曹绪龙,祝仰文,等.胜利油区海上油田二元复合驱油体系优选及参数设计[J].油气地质与采收率,2020,27(4):133-139.ZHAO Fangjian,CAO Xulong,ZHU Yangwen,et al.Injection pa⁃ rameters optimization of binary combination flooding system in offshore oil field,Shengli oil province[J].Petroleum Geology and Recovery Efficiency,2020,27(4):133-139.
-
[10] 胡松.喇嘛甸油田TS1200抗盐聚合物驱现场应用效果[J].大庆石油地质与开发,2021,40(1):117-121.HU Song.The field applied effect of TS1200 salt-resistant poly⁃ mer flooding in Lamadian Oilfield[J].Petroleum Geology & Oil⁃ field Development in Daqing,2021,40(1):117-121.
-
[11] 徐冰.纵向非均质储层凝胶调剖剩余油分布特征实验研究[J].油气地质与采收率,2020,27(6):71-80.XU Bing.Experimental study on distribution characteristics of re⁃ maining oil in vertical heterogeneous reservoirs by gel profile con⁃ trol[J].Petroleum Geology and Recovery Efficiency,2020,27(6):71-80.
-
[12] 周守为,韩明,向问陶,等.渤海油田聚合物驱提高采收率技术研究及应用[J].中国海上油气,2006,18(6):386-389,412.ZHOU Shouwei,HAN Ming,XIANG Wentao,et al.Application of EOR technology by means of polymer flooding in Bohai oilfields [J].China Offshore Oil and Gas,2006,18(6):386-389,412.
-
[13] 刘合年,史卜庆,薛良清,等.中国石油海外“十三五”油气勘探重大成果与前景展望[J].中国石油勘探,2020,25(4):1-10.LIU Henian,SHI Buqing,XUE Liangqing,at al.Major achieve⁃ ments of CNPC overseas oil and gas exploration during the 13th Five-Year Plan and its prospects[J].China Petroleum Explora⁃ tion,2020,25(4):1-10.
-
[14] 赖南君,叶仲斌,周扬帆,等.新型疏水缔合聚合物溶液性质及提高采收率研究[J].油气地质与采收率,2005,12(2):63-65.LAI Nanjun,YE Zhongbin,ZHOU Yangfan,et al.Study on solu⁃ tion properties of new hydrophobic associating polymer and en⁃ hanced oil recovery[J].Petroleum Geology and Recovery Efficien⁃ cy,2005,12(2):63-65.
-
[15] 周守为,韩明,张健,等.用于海上油田化学驱的聚合物研究 [J].中国海上油气,2007,19(1):25-29.ZHOU Shouwei,HAN Ming,ZHANG Jian,et al.Study on polymer for chemical flooding in offshore oilfield of China[J].China Off⁃ shore Oil and Gas,2007,19(1):25-29.
-
[16] 张贤松,王海江,唐恩高,等.渤海油区提高采收率技术油藏适应性及聚合物驱可行性研究[J].油气地质与采收率,2009,16(5):56-59.ZHANG Xiansong,WANG Haijiang,TANG Engao,et al.Re⁃ search on reservoir potential and polymer flooding feasibility for EOR Technology in Bohai offshore Oilfield[J].Petroleum Geology and Recovery Efficiency,2009,16(5):56-59.
-
[17] 刘敏,邹明华,吴华晓,等.海上油田聚合物驱平台配注工艺技术[J].中国海上油气,2010,22(4):259-261.LIU Min,ZOU Minghua,WU Huaxiao,et al.Injection distribution technique on platform for offshore polymer flooding[J].China Off⁃ shore Oil and Gas,2010,22(4):259-261.
-
[18] 邹明华,刘敏,王瑶,等.渤海油田聚合物驱配注工艺及系统的改进与应用[J].中国海上油气,2013,25(3):57-60.ZOU Minghua,LIU Min,WANG Yao,et al.Improvement and ap⁃ plication of the solution preparation and injection technology and system for polymer flooding in Bohai oilfield[J].China Offshore Oil and Gas,2013,25(3):57-60.
-
摘要
海上平台空间及承重能力有限,而疏水缔合聚合物溶解时间长,聚合物分级强制拉伸装置极大的缩短了疏水缔合聚合物的溶解时间,在一定程度上减小了配注系统的占地面积。为进一步优化海上油田聚合物配注系统,减小其占地面积,通过室内实验研究了填料孔隙尺寸、超重力因子、填料组合对聚合物溶解时间的影响规律,确定最佳聚合物溶解工艺条件,设计了超重力速溶装置。研究结果表明:超重力速溶装置能够很好的缩短聚合物溶解时间,在配液温度为45 ℃,配液质量浓度为5000 mg/L,装置内部填料组合为300 μm/100 μm、超重力因子为1307时, AP-P4溶液的基本溶解时间由80 min缩短至35 min,缩短了56.25%。
Abstract
The space and load-bearing capacity of offshore platforms are limited,and the dissolution time of hydrophobical- ly associating polymers is long. The polymer-graded forced stretching device greatly shortens the dissolution time of those polymers and reduces the footprint of the dispensing system. To further optimize the polymer dispensing system and reduce its footprint,we designed a high-gravity instant dissolving device. Through laboratory experiments,the influence of filler pore sizes,the high-gravity factor,and packing ring combinations on polymer dissolution time was studied,and the optimal polymer dissolution conditions were determined. The research results reveal the high-gravity instant dissolving device can considerably shorten the polymer dissolution time. The basic dissolution time of AP-P4 was cut by 56.25%,from 80 min to 35 min,with the mixing temperature of 45 ℃,the mixing concentration of 5000 mg/L,the packing ring combination inside the device of 300 μm/100 μm,and the high-gravity factor of 1307.