en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

柴汝宽(1993—),男,河北衡水人,在读博士研究生,从事提高采收率机理研究。E-mail:rukuan_edu@163.com。

中图分类号:TE341

文献标识码:A

文章编号:1009-9603(2021)04-0093-08

DOI:10.13673/j.cnki.cn37-1359/te.2021.04.011

参考文献 1
HAO J S,MOHAMMADKHANI S,SHAHVERDI H,et al.Mecha⁃ nisms of smart waterflooding in carbonate oil reservoirs-A review [J].Journal of Petroleum Science and Engineering,2019,179(4):276-291.
参考文献 2
WEI B,LU L M,LI Q Z,et al.Mechanistic study of oil/brine/solid interfacial behaviors during low-salinity waterflooding using visu⁃ al and quantitative methods[J].Energy & Fuels,2017,31(6):6 615-6 624.
参考文献 3
SKRETTINGLAND K,HOLT T,TWEHEYO M,et al.Snorre lowsalinity-water injection-core flooding experiments and singlewell field pilot[J].SPE Reservoir Evaluation & Engineering,2011,14(2):182-192.
参考文献 4
SECCOMBE J,LAGER A,JERAULD G,et al.Demonstration of low-salinity EOR at interwell scale,Endicott Field,Alaska[R].SPE 129692,2010.
参考文献 5
MAHANI H,SOROP T,LIGTHELM D J,et al.Analysis of field re⁃ sponses to low-salinity waterflooding in secondary and tertiary mode in Syria[R].SPE 142960,2011.
参考文献 6
LIU F L,WANG M R.Review of low salinity waterflooding mecha⁃ nisms:Wettability alteration and its impact on oil recovery[J].Fu⁃ el,2020,267(1):1-14.
参考文献 7
KASMAEI K A,RAO D N.Is wettability alteration the main cause for enhanced recovery in low-salinity waterflooding?[J].SPE Res⁃ ervoir Evaluation & Engineering,2015,18(2):228-235.
参考文献 8
LAGER A,WEBB K J,COLLINS I R,et al.LoSalTM enhanced oil recovery:Evidence of enhanced oil recovery at the reservoir scale [R].SPE 113976,2008.
参考文献 9
LAGER A,WEBB K J,BLACK C J J,et al.Low salinity oil recov⁃ ery-An experimental investigation[J].Petrophysics,2008,49(1):28-35.
参考文献 10
LIGTHELM D J,GRONSVELD J,HOFMAN J,et al.Novel water⁃ flooding strategy by manipulation of injection brine composition [R].SPE 119835,2009.
参考文献 11
TANG G Q,MORROW N R.Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recov⁃ ery[J].Journal of Petroleum Science and Engineering,1999,24(2):99-111.
参考文献 12
MCGUIRE P,CHATHAM J R,PASKVAN F K,et al.Low salinity oil recovery:an exciting new EOR opportunity for Alaska’s North Slope[R].SPE 93903,2005.
参考文献 13
TETTEH J T,RANKEY E,BARATI R.Low salinity waterflooding effect:Crude oil/brine interaction as a recovery mechanism in car⁃ bonate rock[C].Riode Janeiro:Offshore Technology Conference,OTC-28023-MS,2017.
参考文献 14
MAHZARI P,SOHRABI M.Crude oil/Brine interaction and spon⁃taneous formation of micro-dispersion in low salinity water injec⁃ tion[R].SPE 169081,2014.
参考文献 15
BIDHENDI M M,GARCIA-OLVERA G,MORIN B,et al.Interfa⁃ cial viscoelasticity of crude oil/brine:An alterative enhanced-oilrecovery mechanism in smart waterflooding[J].SPE Journal,2018,23(3):803-818.
参考文献 16
GARCIA-OLVERA G,ALVARADO V.Interfacial rheological in⁃ sights of sulfate-enriched smart-water at low and high-salinity in carbonates[J].Fuel,2017,207(6):402-412.
参考文献 17
LASHKARBOLOOKI M,RIAZI M,AYATOLLAHI S,et al.Syner⁃ gy effects of ions,resin,and asphaltene on interfacial tension of acidic crude oil and low-high salinity brines[J].Fuel,2015,165(10):75-85.
参考文献 18
LASHKARBOLOOKI M,AYATOLLAHI S.Effects of asphaltene,resin and crude oil type on the interfacial tension of crude oil/brine solution[J].Fuel,2018,223(3):261-267.
参考文献 19
LASHKARBOLOOKI M,AYATOLLAHI S,RIAZI M.The impacts of aqueous ions on interfacial tension and wettability of an as⁃ phaltenic-acidic crude oil reservoir during smart water injection [J].Journal of Chemical & Engineering Data,2014,59(11):3 624-3 634.
参考文献 20
YOUSEF A A,AL-SALAH A,AL-JAWFI M.Smart water flood⁃ ing for carbonate reservoirs:salinity and role of ions[R].SPE 141082,2011.
参考文献 21
TAHA Moustafa Okasha,ABDULJALIL Alshiwaish.Effect of brine salinity on interfacial tension in Arab-D carbonate reser⁃ voir,Saudi Arabia[R].SPE 119600-MS,2009.
参考文献 22
XU W.Experimental investigation of dynamic interfacial interac⁃ tions at reservoir conditions[D].Louisiana:Louisiana State Uni⁃ versity,2005:39-42.
参考文献 23
ISAACS E,SMOLEK K.Interfacial tension behavior of Athabasca bitumen/aqueous surfactant systems[J].Canadian Journal of Chemical Engineering,1983,61(2):233-240.
参考文献 24
MOEINI F,HEMMATI-SARAPARDEH H,GHAZANFARI M H,et al.Toward mechanistic understanding of heavy crude oil/brin⁃ einterfacial tension:the roles of salinity,temperature and pressure [J].Fluid Phase Equilibrium,2014,375(4):191-200.
参考文献 25
VIJAPURAPU C,RAO D.Compositional effects of fluid on spread⁃ ing,adhesion and wettability in porous media[J].Colloids and Sur⁃ faces A:Physicochemical and Engineering Aspects,2004,241(1/3):335-342.
参考文献 26
KAKATI A,SANGWAI J S.Effect of monovalent and divalent salts on the interfacial tension of pure hydrocarbon-brine systems relevant for low salinity water flooding[J].Journal of Petroleum Science and Engineering,2017,157(8):1 106-1 114.
参考文献 27
MORADI M,ALVARADO V.Influence of aqueous-phase ionic strength and composition on the dynamics of water-crude oil inter⁃ facial film formation[J].Energy & Fuels,2016,30(11):9 170-9 180.
参考文献 28
GHORBANIZADEH S,ROSTAMI B.Surface and interfacial ten⁃ sion behavior of salt water containing dissolved amphiphilic com⁃ pounds of crude oil:The role of single-salt ionic composition[J].Energy & Fuels,2017,31(9):9 117-9 124.
参考文献 29
ROTENBERG Y,BORUVKA L,NEUMANN A W.Determination of surface tension and contact angle from the shapes of axisymmet⁃ ricfluid interfaces[J].Journal of Colloid and Interface Science,1983,93(1):169-183.
参考文献 30
STAUFFER C E.The measurement of surface tension by the pen⁃ dent drop technique[J].Journal of Physical Chemistry,1965,69(6):1 933-1 938.
参考文献 31
ADAMSON A W.Physical chemistry of surfaces[M].4th edition.New York:Wiley,1990:31-33.
目录contents

    摘要

    针对当前水驱中的油水相互作用的研究较少且已有结论存在争议,主要体现在关键离子对油水相互作用影响规律尚未统一。将岩心驱替实验和界面张力测定实验相结合来研究智能水驱中油水作用规律与机理。实验结果表明:油水相互作用在智能水驱中发挥着重要作用,调整注入水的离子组成可以有效影响采收率。Mg2+ 和Ca2+ 能够有效提高岩心驱替效率,Mg2+ 作用效果强于Ca2+ ,二者存在最优浓度。SO4 2- 对提高采收率无积极作用。界面张力测定实验结果:溶液中不同离子对油水界面特征的影响存在较大差异,作用强度依次为 Mg2+ >Ca2+ >Na+ 。随着溶液中Na+ ,Ca2+ 和Mg2+ 质量浓度的增加,油水界面张力先减小后增大、界面弛豫时间先缩短后延长,存在促进界面张力最低、界面弛豫时间最短的最优浓度;SO4 2- 能有效抑制Na+ ,Mg2+ 和Ca2+ 对油水界面特征的影响,提高油水界面张力达到最低的最优离子浓度、延长油水界面体系达到平衡的时间。

    Abstract

    The oil-water interaction in water-flooding is scarcely studied and the existing conclusions are controversial, which is mainly reflected in a lack of a unified conclusions of potential determining ions on oil-water interaction. Experi- ments on coreflooding and interfacial tension measurement were combined to study the oil-water interaction law and mecha- nism in smart water-flooding. The results show that oil-water interaction plays an important role in smart water-flooding, and adjusting the ion composition of the injected water can considerably influence recovery factors. Mg2+ and Ca2+ can effec- tively improve coreflooding efficiency,of which Mg2+ performs better, and they both have optimal concentrations. SO4 2- has no positive effect on enhencing recovery factors. According to interfacial tension measurement,the effects of ions in the so- lution on the characteristics of the oil-water interface vary enormously in the intensity order of Mg2+ > Ca2+ > Na+ . As the concentrations of Na+ ,Ca2+ ,and Mg2+ increase,the oil-water interfacial tension goes down first and up then,and the interfa- cial relaxation time first shortens and then lengthens. There are optimal concentrations that lead to the lowest interfacial ten- sion and the shortest interfacial relaxation time. SO4 2- can effectively inhibit the influence of Na+ ,Mg2+ ,and Ca2+ on the char- acteristics of the oil-water interface,increase optimal ion concentrations corresponding to the lowest oil-water interfacial tension,and extend the time for the oil-water interface system to reach equilibrium.

  • 智能水驱是指根据油藏储层、原油实际情况通过有针对性地调整注入水的离子组成来有效改变油-水-岩之间的相互作用,进而实现提高采收率的一种新型技术[1-2]。由于其特有的经济性、环境友好性以及高效性[3],近年来引起中外广泛的关注,并逐步开展了大量的室内实验和矿场试验[4-5]。截至目前,智能水驱机理研究多围绕润湿性改变[6-8],提出了多离子交换[9]、双电子层膨胀[10]、矿物溶解[11]、PH 效应[12] 等一系列机理。随着研究深入,TETTEH 等通过实验发现智能水驱可以在不考虑润湿性改变的条件下有效提高油藏采收率,即油水相互作用在智能水驱中同样发挥重要作用[13-16]

  • 针对智能水驱中油水相互作用的相关研究较少并且多数已有的研究直接通过界面张力测定结果分析作用机理[17-19],所得结论并不能很好的反映工程实际情况。此外,由于已有界面张力测定实验的对象、方法以及时间的不同导致得出的实验结论存在较大差异,主要表现为:①水溶液中离子浓度对油水界面张力的影响存在争议。YOUSEF等界面张力测定实验发现增加水溶液中离子浓度会引起界面张力的上升[20-21]。而 XU 等实验发现增加水溶液中离子浓度造成油水界面张力降低[22-23]。此外, MOEINI 等研究发现随着溶液中离子浓度的增大,油水界面张力先减小后增加,即存在能够使得界面张力达到最低的最优离子浓度[24-26]。很明显,水溶液中离子浓度对油水界面张力的影响规律尚未统一,一定程度上影响智能水驱研究与应用的发展。 ②水溶液中离子类型对油水界面张力的影响研究相对较少。目前研究多只局限于单独分析Na+,Mg2+ 与 Ca2+ 等某一类离子的作用效果[27-29],但是实际地层水中除了上述阳离子,还存在 SO4 2-,PO4 3- 等多种关键阴离子,阴阳离子之间的相互影响不可忽略。因此,针对上述问题,笔者将岩心驱替实验和界面张力测定实验相结合,系统地探究智能水驱中油水相互作用规律与机理,主要分析2个问题:①智能水驱中油水相互作用对采收率的影响规律。②阳离子 (Na+,Mg2+ 与 Ca2+)类型及浓度对油水界面张力的影响以及阳离子与 SO4 2- 相互作用对油水界面张力的影响规律,以期为智能水驱配方设计提供理论支撑。

  • 1 实验样品与方法

  • 1.1 实验样品

  • 实验用试剂  实验中用到 MgCl2,CaCl2,NaCl, KCl,NaHCO3,Na2SO4,CaSO4,MgSO4和 CaCO3等试剂均为上海阿拉丁生化科技股份有限公司生产的分析纯,实验用水为超纯水,(25.0±0.1)℃时表面张力为71.70 mN/m,电阻率为18.2 MΩ·cm。

  • 实验用岩心  实验研究主要分析油水相互作用对采收率的影响,不考虑润湿性的作用,因此选用高度均质的人工碳酸盐岩岩心。X射线衍射结果显示,岩心矿物中方解石含量为 97.41%,白云石含量为 2.39%,石英含量为 0.2%,其岩心物性参数(表1)测试结果表明,实验用岩心属于低渗透范围,物性较差,孔隙度与气测渗透率低,束缚水饱和度高。

  • 表1 驱替用岩心物性参数

  • Table1 Physical parameters of cores for flooding

  • 实验用原油  实验用油为某油田地面原油。原油经 7 500 r/min 离心 5 h 后过滤去除包含的地层水和固体颗粒,测得20℃条件下相关参数,其中,原油黏度、密度分别利用 Haake 流变仪和 Anton Paar 密度仪测得。原油酸值则由Metrohm自动电位滴定仪测定。将原油按照四组分分离法分离得到饱和烃、芳香烃、胶质和沥青质的相对含量分别为 40.59%,30.30%,20.25%,4.26%,损失量为 4.60%。其中,原油黏度为 305.0 mPa·s,密度为 0.87 g/cm3,酸值为0.46 mgKOH/g。

  • 原油具有一定的历史效应,流变性会因受热历史、剪切历史的差异而呈现不同的特征。为了保证实验油样初始状态一致,提高实验的可比性,实验之前将油样进行统一的预处理。实验油样先放入烘箱内 65℃加热 6 h,超声震荡 12 h 混匀再将均匀油样密封于玻璃容器中置于 65℃的水浴中恒温 2 h,随后关闭水浴,自然冷却至室温待用。

  • 实验用水溶液  为研究水溶液中离子类型及浓度对油水相互作用的影响,实验中用到一系列不同离子组成的水溶液(表2)。此外,研究中还用到一系列不同浓度的 NaCl,MgCl2,Na2SO4,CaSO4 和 MgSO4等溶液。上述溶液制备过程为:首先,称量定量化学试剂置于超纯水中;其次,以5 000 r/min速度搅拌 1 h 确保溶质溶解均匀并与 CO2达到平衡;最后,水溶液通过 1 μm 的过滤膜过滤、待用。溶液即用即配,尽量避免空气中杂质影响。

  • 表2 实验用水溶液组成

  • Table2 Solution composition in experiment

  • 1.2 实验方法

  • 1.2.1 岩心驱替实验

  • 实验装置如图1所示,首先,将实验用岩心置于恒温箱中 70℃烘干,首次烘干 48 h,而后每烘干 8 h 后冷却称重,前后3次重量差在10 mg以内即可获取洁净岩心;然后,在岩心中通入空气将内部松散颗粒排出,称量干重;将岩心置于抽滤瓶中抽真空24 h 并饱和地层水,称量湿重,根据质量差计算孔隙体积;将饱和地层水后的岩心置于岩心夹持器中以 2.00 mL/min 速度饱和原油 10 PV,计量产出水量及束缚水饱和度;岩心不经过老化,直接利用水溶液进行驱替,驱替速度稳定在 1.50 mL/min,实时记录产油量。待岩心出口端压力稳定并且含水率高达 98% 后,更换不同离子组成水溶液并继续进行驱替,驱替速度稳定在 1.5 mL/min,实时记录产油量。上述所有岩心驱替实验温度稳定在30℃。

  • 图1 岩心驱替装置示意

  • Fig.1 Schematic diagram of core flooding device

  • 1.2.2 界面张力测定实验

  • 利用悬滴法测定油水界面张力的实验步骤(图2):首先,利用石油醚清洗实验容器,真空干燥,而后将配制好的水溶液置于其中形成水环境;循环水浴将实验容器内水溶液恒温在30℃;注射器探针没于水溶液中,15 μL原油悬挂于探针前端,CCD相机实时捕捉油滴形态并计算界面张力,测量时间为70 min。每组实验进行 3 次,计算油水界面张力平均值。悬滴法计算界面张力公式[30-31] 为:

  • γ=Δρgde2H
    (1)
  • 图2 界面张力测试装置示意

  • Fig.2 Schematic diagram of interfacial tension measurement device

  • 悬滴形态系数计算公式为:

  • S=dsde
    (2)
  • H=βdeb2
    (3)
  • 其中:

  • β=Δρgb2γ
    (4)
  • b=2γΔp
    (5)
  • 2 实验结果与分析

  • 2.1 岩心驱替实验结果

  • 低矿化度驱替  由地层水和不同稀释倍数地层水连续驱替的采收率变化(图3a)可知:油水相互作用对采收率有影响,体现在调整注入水矿化度可以实现采收率的提高。3组岩心地层水驱替采收率分别为 43.01%,42.68% 和 42.80%,平均值约为 42.83%,转注不同稀释倍数的地层水(FW-10,FW-20 和 FW-30),采收率最终分别稳定在 44.35%, 44.70%和44.46%,即FW-10,FW-20和FW-30提高采收率分别为 1.34%,2.02% 和 1.66%。随着注入水矿化度的不断降低,采收率增加量先增加后减少, FW-20提高采收率效果最明显,继续稀释注入水对采收率提高有负面作用。

  • 不同Mg2+ 浓度水溶液驱替  基于最优注入水矿化度,调整其中 Mg2+ 浓度分别为 2 倍、3 倍和 4 倍。由不同 Mg2+ 浓度水溶液连续驱替的采收率变化(图3b)可知:注入水中离子组成对采收率有重要影响,改变注入水中 Mg2+ 浓度可以较大程度的影响采收率。地层水驱替条件下采收率分别为 44.17%, 44.09% 和 44.00%,转注不同 Mg2+ 浓度的水溶液 (FW-20-2Mg2+,FW-20-3Mg2+ 和 FW-20-4Mg2+)后,采收率分别稳定在 46.53%,46.81% 和 46.43%,即 FW-20-2Mg2+,FW-20-3Mg2+ 和 FW-20-4Mg2+ 提高采收率分别为 2.36%,2.72% 和 2.43%。随着注入水中 Mg2+ 浓度的不断增加,采收率增加量先增加后减小,FW-20-2Mg2+ 提高采收率效果最明显,继续增加或者减少注入水中Mg2+ 浓度对采收率提高有负面作用。

  • 不同Ca2+ 浓度水溶液驱替  基于最优注入水矿化度,调整其中Ca2+ 浓度分别为2倍、3倍和4倍。由不同Ca2+ 浓度水溶液连续驱替的采收率变化(图3c) 可知:改变注入水中 Ca2+ 浓度可以较大程度的影响采收率。地层水驱替条件下采收率分别为44.08%, 44.12% 和 44.15%,转注不同 Ca2+ 浓度的水溶液 (FW-20-2Ca2+、FW-20-3Ca2+ 和 FW-20-4Ca2+)采收率分别为 46.25%,46.63% 和 46.40%,即 FW-20-2Ca2+,FW-20-3Ca2+ 和 FW-20-4Ca2+ 提高采收率分别为 2.17%,2.51% 和 2.25%。随着注入水中 Ca2+ 浓度的不断增加,采收率增加量先增加后减小,FW-20-3Ca2+ 提高采收率效果最明显,继续增加或者减少注入水中Ca2+ 浓度对采收率提高有负面作用。

  • 图3 不同水溶液驱替的采收率变化

  • Fig.3 Variations in recovery factors of different solution flooding

  • 不同 SO4 2- 浓度水溶液驱替  基于最优注入水矿化度,调整其中SO4 2- 浓度分别为2倍、3倍和4倍。由不同SO4 2- 浓度水溶液连续驱替的采收率变化(图3d)可知:注入水中SO4 2- 浓度对采收率无明显影响。地层水驱替条件下采收率分别为44.16%,44.18%和 44.24%,转注不同 SO4 2-浓度的水溶液(FW-20-2SO4 2-,FW-20-3SO4 2- 和FW-20-4SO4 2-)采收率分别稳定在 44.20%,44.24% 和 44.31%,即 FW-20-2SO4 2-,FW-20-3SO4 2- 和 FW-20-4SO4 2- 提高采收率分别为0.04%,0.06%和0.07%。随着注入水中SO4 2- 浓度的不断增加,采收率基本保持稳定,未出现明显采收率提高现象。即在仅考虑油水相互作用(忽略润湿性改变)条件下,SO4 2- 对提高采收率无积极作用。

  • 由不同注入水条件下采收率对比可知:油水相互作用在智能水驱中发挥重要作用,调整注入水中离子组成可以有效影响采收率。其中,随着注入水矿化度的降低,采收率增加量先增加后减少,存在最优矿化度使得提高采收率效果最显著。Mg2+ 和 Ca2+ 能够有效提高岩心驱替效率,Mg2+ 作用效果强于 Ca2+ ,二者存在最优浓度,过量或者不足均不利于采收率的提高。SO4 2- 对提高采收率无积极作用。注入水中离子组成的改变造成注入水物理化学性质的改变,直接改变油水界面特征、油水相互作用,进而直接影响采收率。

  • 注入水中包含多种阳离子、阴离子,并且离子之间存在相互影响,因此研究结果难以准确说明每种离子所发挥作用以及离子之间相互作用规律。为了解决上述问题,需要开展单因素实验总结、对比各种离子作用规律以及离子之间影响规律。

  • 2.2 界面张力测定实验结果

  • 阳离子对界面张力的影响  由油水界面张力和界面弛豫时间随水溶液中 NaCl,MgCl2和 CaCl2浓度变化规律(图4)可知:水溶液中离子类型及浓度对油水界面特征均存在明显影响。水溶液中离子类型对油水界面特征作用强度依次为 Mg2+ > Ca2+ > Na+。其中,MgCl2溶液与原油之间界面张力最低、界面弛豫时间最短(图4d)。NaCl 溶液与原油之间界面张力最高并且界面弛豫时间最长。当水溶液中NaCl,MgCl2 和 CaCl2 浓度分别为 171.11,10.50 和 22.53 mmol/L 时,油水界面张力对应持续下降至 17.370,13.395 和 14.491 mN/m,界面弛豫时间持续缩短至45.0,18.3和27.7 min。继续增加离子浓度造成界面张力的上升和界面弛豫时间的延长。

  • 图4 不同浓度NaCl,MgCl2和CaCl2溶液与原油的界面张力和界面弛豫时间

  • Fig.4 Interfacial tension and interfacial relaxation time of crude oil with different solutions

  • SO4 2- 与阳离子对界面张力的影响  由油水界面张力和界面弛豫时间随水溶液中 Na2SO4,MgSO4 和CaSO4浓度变化规律(图5)可知:水溶液中离子类型及浓度对油水界面特征存在明显影响。首先,水溶液中离子类型对油水界面特征有重要作用。Mg⁃ SO4溶液与原油界面张力和界面弛豫时间远小于 CaSO4和 Na2SO4溶液。与含 Cl-溶液相统一,含 SO4 2- 溶液中离子作用强度依次为 Mg2+ > Ca2+ > Na+。其次,随着水溶液中 Na2SO4 和 MgSO4 浓度分别增加至 128.33 和 15.75 mmol/L,油水界面张力分别降低至 17.510 和 13.325 mN/m,界面弛豫时间分别缩短至 47.2 和 20.4 min。继续增加水溶液中 Na2SO4和 Mg⁃ SO4浓度造成界面张力的上升和界面弛豫时间的延长。 CaSO4 微溶于水,在可溶解范围内(≤18.04 mmol/L),油水界面张力随着CaSO4浓度增加而逐渐降低,部分验证MgSO4和Na2SO4实验结果。

  • SO4 2-作用效果由不同浓度 NaCl,MgCl2,Ca⁃ Cl2,Na2SO4,MgSO4和 CaSO4溶液与原油界面张力及界面弛豫时间对比(图6)可知:SO4 2- 的存在抑制了 Na+,Mg2+ 和 Ca2+ 对油水界面特征的影响,主要体现在:①SO4 2- 的存在一定程度上提高了 Na+,Mg2+ 和 Ca2+ 溶液达到最低界面张力、最长弛豫时间所需的离子浓度,即增加了最优浓度。②SO4 2- 的存在一定程度上延长了 Na+,Mg2+ 和 Ca2+ 溶液与原油达到界面平衡所需要的时间。

  • 3 结论

  • 通过将岩心驱替实验和界面张力测定实验相结合,系统地研究智能水驱中油水相互作用作用规律与机理。研究结果表明:①油水相互作用在智能水驱中发挥重要作用,调整注入水中离子组成可以有效影响采收率。其中,随着注入水矿化度的降低,采收率增量先增加后减少,存在最优矿化度使得提高采收率效果最显著。Mg2+ 和 Ca2+ 能够有效提高岩心驱替效率,Mg2+ 作用效果强于 Ca2+ ,二者存在最优浓度,过量或者不足均不利于采收率的提高。 SO4 2- 对提高采收率无积极作用。②水溶液中离子类型及浓度对于油水界面特征具有重要影响。水溶液中阳离子作用强度依次为 Mg2+ > Ca2+ > Na+,Mg2+ 对应最低界面张力和最短弛豫时间。随着溶液中 Na+ ,Ca2+ 和Mg2+ 浓度的增加,油水界面张力先减小后增大、油水界面弛豫时间先缩短后延长,存在最优浓度使得界面张力最低、弛豫时间最短。③SO4 2- 有效抑制 Na+,Mg2+ 和 Ca2+ 对油水界面特征的影响,提高油水界面张力达到最低的最优离子浓度,延长油水界面达平衡所需要的弛豫时间。

  • 图5 不同浓度Na2SO4,MgSO4和CaSO4溶液与原油的界面张力和界面弛豫时间

  • Fig.5 Interfacial tension and interfacial relaxation time of crude oil with different solutions

  • 图6 不同浓度Cl-和SO4 2- 溶液与原油的界面张力及界面弛豫时间对比

  • Fig.6 Comparison of interfacial tension and interfacial relaxation time of crude oil with Cl- and SO4 2- solutions at different concentrations

  • 符号解释

  • b ——曲率半径,cm;

  • d e——悬滴最大直径,cm;

  • d s ——离顶点d e处悬滴截面的直径,cm;

  • g ——重力加速度,cm/s2,取值为980;

  • H ——与悬滴形状因子S有关的修正后的形状因子;

  • S——悬滴形状因子;

  • β——与重力加速度、界面张力相接触的 2 种流体密度差和曲率半径有关的量;

  • γ——界面张力,mN/m;

  • Δp ——界面内外压差,MPa;

  • Δρ——两相密度差,g/cm3

  • 参考文献

    • [1] HAO J S,MOHAMMADKHANI S,SHAHVERDI H,et al.Mecha⁃ nisms of smart waterflooding in carbonate oil reservoirs-A review [J].Journal of Petroleum Science and Engineering,2019,179(4):276-291.

    • [2] WEI B,LU L M,LI Q Z,et al.Mechanistic study of oil/brine/solid interfacial behaviors during low-salinity waterflooding using visu⁃ al and quantitative methods[J].Energy & Fuels,2017,31(6):6 615-6 624.

    • [3] SKRETTINGLAND K,HOLT T,TWEHEYO M,et al.Snorre lowsalinity-water injection-core flooding experiments and singlewell field pilot[J].SPE Reservoir Evaluation & Engineering,2011,14(2):182-192.

    • [4] SECCOMBE J,LAGER A,JERAULD G,et al.Demonstration of low-salinity EOR at interwell scale,Endicott Field,Alaska[R].SPE 129692,2010.

    • [5] MAHANI H,SOROP T,LIGTHELM D J,et al.Analysis of field re⁃ sponses to low-salinity waterflooding in secondary and tertiary mode in Syria[R].SPE 142960,2011.

    • [6] LIU F L,WANG M R.Review of low salinity waterflooding mecha⁃ nisms:Wettability alteration and its impact on oil recovery[J].Fu⁃ el,2020,267(1):1-14.

    • [7] KASMAEI K A,RAO D N.Is wettability alteration the main cause for enhanced recovery in low-salinity waterflooding?[J].SPE Res⁃ ervoir Evaluation & Engineering,2015,18(2):228-235.

    • [8] LAGER A,WEBB K J,COLLINS I R,et al.LoSalTM enhanced oil recovery:Evidence of enhanced oil recovery at the reservoir scale [R].SPE 113976,2008.

    • [9] LAGER A,WEBB K J,BLACK C J J,et al.Low salinity oil recov⁃ ery-An experimental investigation[J].Petrophysics,2008,49(1):28-35.

    • [10] LIGTHELM D J,GRONSVELD J,HOFMAN J,et al.Novel water⁃ flooding strategy by manipulation of injection brine composition [R].SPE 119835,2009.

    • [11] TANG G Q,MORROW N R.Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recov⁃ ery[J].Journal of Petroleum Science and Engineering,1999,24(2):99-111.

    • [12] MCGUIRE P,CHATHAM J R,PASKVAN F K,et al.Low salinity oil recovery:an exciting new EOR opportunity for Alaska’s North Slope[R].SPE 93903,2005.

    • [13] TETTEH J T,RANKEY E,BARATI R.Low salinity waterflooding effect:Crude oil/brine interaction as a recovery mechanism in car⁃ bonate rock[C].Riode Janeiro:Offshore Technology Conference,OTC-28023-MS,2017.

    • [14] MAHZARI P,SOHRABI M.Crude oil/Brine interaction and spon⁃taneous formation of micro-dispersion in low salinity water injec⁃ tion[R].SPE 169081,2014.

    • [15] BIDHENDI M M,GARCIA-OLVERA G,MORIN B,et al.Interfa⁃ cial viscoelasticity of crude oil/brine:An alterative enhanced-oilrecovery mechanism in smart waterflooding[J].SPE Journal,2018,23(3):803-818.

    • [16] GARCIA-OLVERA G,ALVARADO V.Interfacial rheological in⁃ sights of sulfate-enriched smart-water at low and high-salinity in carbonates[J].Fuel,2017,207(6):402-412.

    • [17] LASHKARBOLOOKI M,RIAZI M,AYATOLLAHI S,et al.Syner⁃ gy effects of ions,resin,and asphaltene on interfacial tension of acidic crude oil and low-high salinity brines[J].Fuel,2015,165(10):75-85.

    • [18] LASHKARBOLOOKI M,AYATOLLAHI S.Effects of asphaltene,resin and crude oil type on the interfacial tension of crude oil/brine solution[J].Fuel,2018,223(3):261-267.

    • [19] LASHKARBOLOOKI M,AYATOLLAHI S,RIAZI M.The impacts of aqueous ions on interfacial tension and wettability of an as⁃ phaltenic-acidic crude oil reservoir during smart water injection [J].Journal of Chemical & Engineering Data,2014,59(11):3 624-3 634.

    • [20] YOUSEF A A,AL-SALAH A,AL-JAWFI M.Smart water flood⁃ ing for carbonate reservoirs:salinity and role of ions[R].SPE 141082,2011.

    • [21] TAHA Moustafa Okasha,ABDULJALIL Alshiwaish.Effect of brine salinity on interfacial tension in Arab-D carbonate reser⁃ voir,Saudi Arabia[R].SPE 119600-MS,2009.

    • [22] XU W.Experimental investigation of dynamic interfacial interac⁃ tions at reservoir conditions[D].Louisiana:Louisiana State Uni⁃ versity,2005:39-42.

    • [23] ISAACS E,SMOLEK K.Interfacial tension behavior of Athabasca bitumen/aqueous surfactant systems[J].Canadian Journal of Chemical Engineering,1983,61(2):233-240.

    • [24] MOEINI F,HEMMATI-SARAPARDEH H,GHAZANFARI M H,et al.Toward mechanistic understanding of heavy crude oil/brin⁃ einterfacial tension:the roles of salinity,temperature and pressure [J].Fluid Phase Equilibrium,2014,375(4):191-200.

    • [25] VIJAPURAPU C,RAO D.Compositional effects of fluid on spread⁃ ing,adhesion and wettability in porous media[J].Colloids and Sur⁃ faces A:Physicochemical and Engineering Aspects,2004,241(1/3):335-342.

    • [26] KAKATI A,SANGWAI J S.Effect of monovalent and divalent salts on the interfacial tension of pure hydrocarbon-brine systems relevant for low salinity water flooding[J].Journal of Petroleum Science and Engineering,2017,157(8):1 106-1 114.

    • [27] MORADI M,ALVARADO V.Influence of aqueous-phase ionic strength and composition on the dynamics of water-crude oil inter⁃ facial film formation[J].Energy & Fuels,2016,30(11):9 170-9 180.

    • [28] GHORBANIZADEH S,ROSTAMI B.Surface and interfacial ten⁃ sion behavior of salt water containing dissolved amphiphilic com⁃ pounds of crude oil:The role of single-salt ionic composition[J].Energy & Fuels,2017,31(9):9 117-9 124.

    • [29] ROTENBERG Y,BORUVKA L,NEUMANN A W.Determination of surface tension and contact angle from the shapes of axisymmet⁃ ricfluid interfaces[J].Journal of Colloid and Interface Science,1983,93(1):169-183.

    • [30] STAUFFER C E.The measurement of surface tension by the pen⁃ dent drop technique[J].Journal of Physical Chemistry,1965,69(6):1 933-1 938.

    • [31] ADAMSON A W.Physical chemistry of surfaces[M].4th edition.New York:Wiley,1990:31-33.

  • 参考文献

    • [1] HAO J S,MOHAMMADKHANI S,SHAHVERDI H,et al.Mecha⁃ nisms of smart waterflooding in carbonate oil reservoirs-A review [J].Journal of Petroleum Science and Engineering,2019,179(4):276-291.

    • [2] WEI B,LU L M,LI Q Z,et al.Mechanistic study of oil/brine/solid interfacial behaviors during low-salinity waterflooding using visu⁃ al and quantitative methods[J].Energy & Fuels,2017,31(6):6 615-6 624.

    • [3] SKRETTINGLAND K,HOLT T,TWEHEYO M,et al.Snorre lowsalinity-water injection-core flooding experiments and singlewell field pilot[J].SPE Reservoir Evaluation & Engineering,2011,14(2):182-192.

    • [4] SECCOMBE J,LAGER A,JERAULD G,et al.Demonstration of low-salinity EOR at interwell scale,Endicott Field,Alaska[R].SPE 129692,2010.

    • [5] MAHANI H,SOROP T,LIGTHELM D J,et al.Analysis of field re⁃ sponses to low-salinity waterflooding in secondary and tertiary mode in Syria[R].SPE 142960,2011.

    • [6] LIU F L,WANG M R.Review of low salinity waterflooding mecha⁃ nisms:Wettability alteration and its impact on oil recovery[J].Fu⁃ el,2020,267(1):1-14.

    • [7] KASMAEI K A,RAO D N.Is wettability alteration the main cause for enhanced recovery in low-salinity waterflooding?[J].SPE Res⁃ ervoir Evaluation & Engineering,2015,18(2):228-235.

    • [8] LAGER A,WEBB K J,COLLINS I R,et al.LoSalTM enhanced oil recovery:Evidence of enhanced oil recovery at the reservoir scale [R].SPE 113976,2008.

    • [9] LAGER A,WEBB K J,BLACK C J J,et al.Low salinity oil recov⁃ ery-An experimental investigation[J].Petrophysics,2008,49(1):28-35.

    • [10] LIGTHELM D J,GRONSVELD J,HOFMAN J,et al.Novel water⁃ flooding strategy by manipulation of injection brine composition [R].SPE 119835,2009.

    • [11] TANG G Q,MORROW N R.Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recov⁃ ery[J].Journal of Petroleum Science and Engineering,1999,24(2):99-111.

    • [12] MCGUIRE P,CHATHAM J R,PASKVAN F K,et al.Low salinity oil recovery:an exciting new EOR opportunity for Alaska’s North Slope[R].SPE 93903,2005.

    • [13] TETTEH J T,RANKEY E,BARATI R.Low salinity waterflooding effect:Crude oil/brine interaction as a recovery mechanism in car⁃ bonate rock[C].Riode Janeiro:Offshore Technology Conference,OTC-28023-MS,2017.

    • [14] MAHZARI P,SOHRABI M.Crude oil/Brine interaction and spon⁃taneous formation of micro-dispersion in low salinity water injec⁃ tion[R].SPE 169081,2014.

    • [15] BIDHENDI M M,GARCIA-OLVERA G,MORIN B,et al.Interfa⁃ cial viscoelasticity of crude oil/brine:An alterative enhanced-oilrecovery mechanism in smart waterflooding[J].SPE Journal,2018,23(3):803-818.

    • [16] GARCIA-OLVERA G,ALVARADO V.Interfacial rheological in⁃ sights of sulfate-enriched smart-water at low and high-salinity in carbonates[J].Fuel,2017,207(6):402-412.

    • [17] LASHKARBOLOOKI M,RIAZI M,AYATOLLAHI S,et al.Syner⁃ gy effects of ions,resin,and asphaltene on interfacial tension of acidic crude oil and low-high salinity brines[J].Fuel,2015,165(10):75-85.

    • [18] LASHKARBOLOOKI M,AYATOLLAHI S.Effects of asphaltene,resin and crude oil type on the interfacial tension of crude oil/brine solution[J].Fuel,2018,223(3):261-267.

    • [19] LASHKARBOLOOKI M,AYATOLLAHI S,RIAZI M.The impacts of aqueous ions on interfacial tension and wettability of an as⁃ phaltenic-acidic crude oil reservoir during smart water injection [J].Journal of Chemical & Engineering Data,2014,59(11):3 624-3 634.

    • [20] YOUSEF A A,AL-SALAH A,AL-JAWFI M.Smart water flood⁃ ing for carbonate reservoirs:salinity and role of ions[R].SPE 141082,2011.

    • [21] TAHA Moustafa Okasha,ABDULJALIL Alshiwaish.Effect of brine salinity on interfacial tension in Arab-D carbonate reser⁃ voir,Saudi Arabia[R].SPE 119600-MS,2009.

    • [22] XU W.Experimental investigation of dynamic interfacial interac⁃ tions at reservoir conditions[D].Louisiana:Louisiana State Uni⁃ versity,2005:39-42.

    • [23] ISAACS E,SMOLEK K.Interfacial tension behavior of Athabasca bitumen/aqueous surfactant systems[J].Canadian Journal of Chemical Engineering,1983,61(2):233-240.

    • [24] MOEINI F,HEMMATI-SARAPARDEH H,GHAZANFARI M H,et al.Toward mechanistic understanding of heavy crude oil/brin⁃ einterfacial tension:the roles of salinity,temperature and pressure [J].Fluid Phase Equilibrium,2014,375(4):191-200.

    • [25] VIJAPURAPU C,RAO D.Compositional effects of fluid on spread⁃ ing,adhesion and wettability in porous media[J].Colloids and Sur⁃ faces A:Physicochemical and Engineering Aspects,2004,241(1/3):335-342.

    • [26] KAKATI A,SANGWAI J S.Effect of monovalent and divalent salts on the interfacial tension of pure hydrocarbon-brine systems relevant for low salinity water flooding[J].Journal of Petroleum Science and Engineering,2017,157(8):1 106-1 114.

    • [27] MORADI M,ALVARADO V.Influence of aqueous-phase ionic strength and composition on the dynamics of water-crude oil inter⁃ facial film formation[J].Energy & Fuels,2016,30(11):9 170-9 180.

    • [28] GHORBANIZADEH S,ROSTAMI B.Surface and interfacial ten⁃ sion behavior of salt water containing dissolved amphiphilic com⁃ pounds of crude oil:The role of single-salt ionic composition[J].Energy & Fuels,2017,31(9):9 117-9 124.

    • [29] ROTENBERG Y,BORUVKA L,NEUMANN A W.Determination of surface tension and contact angle from the shapes of axisymmet⁃ ricfluid interfaces[J].Journal of Colloid and Interface Science,1983,93(1):169-183.

    • [30] STAUFFER C E.The measurement of surface tension by the pen⁃ dent drop technique[J].Journal of Physical Chemistry,1965,69(6):1 933-1 938.

    • [31] ADAMSON A W.Physical chemistry of surfaces[M].4th edition.New York:Wiley,1990:31-33.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告