-
油气藏流体类型识别的方法较多,孙志道在国外研究的基础上,基于中国的生产实践,利用井流物数据系统总结出了 4 种相态研究方法和 18 种经验统计方法进行油气藏类型判别[1-4],应用最为广泛。朱化蜀在中外井流物相态特征分析的理论方法研究的基础上,开展利用现场取样数据回归流体高压物性参数经验关系式的方法研究和油气藏流体高压物性参数预测方法的一系列研究[5]。彭永灿等从相态、物性、组成等方面对石西油田石炭系原油类型进行综合研究,判断油气藏类型,为准确判定油藏流体类型提供了可借鉴的方法[6]。常涧峰等利用经验统计方法和流体相态分析方法对埕北古7 潜山太古界油气藏流体类型进行识别,具有很好的一致性[7]。王军委对油气藏流体相态数据现场应用进行研究,但仅限于开发生产方面的应用[8]。谭忠健等利用相态分析判别法和烃组成组合参数经验判别法对渤海油田渤中凹陷复杂储层油气藏流体类型进行识别[9-11],都具有很好的效果。以上方法主要基于井流物数据分析或取样数据,并不适用于海上井场随钻油气藏流体类型识别。
-
M构造处于渤中凹陷西南环,位于渤中西南洼、渤中南洼和渤中主洼之间的近南北向构造脊上,整体为多个具有背斜、断鼻形态的复杂断块圈闭[12-15]。太古界变质岩潜山长期遭受风化、淋滤、剥蚀,发育大量的构造缝、溶蚀孔洞等,纵向差异大[16-17],PVT 样品分析表明潜山地层流体以凝析气为主[18]。裂缝型潜山地层油气藏流体类型比较复杂[19-20],为此,笔者针对渤中凹陷西南环 M构造太古界潜山,建立一套潜山油气藏流体类型随钻快速识别方法,应用效果良好。
-
1 油气藏流体类型井场数据适应性分析
-
常见的18种经验统计方法中,四组合参数判别法和 φ1参数判别法这 2 种方法参数多,且绝大多数数据井场能够获取,优选这 2 种方法在 M 构造进行随钻识别研究。其中四组合参数判别法是根据C2 + , C2/C3,100C2/(C3+C4),100C2 + /C1四组合参数的范围判断油气藏流体类型[1-2];φ1 参数判别法(φ1=C2 /C3+ (C1+C2+C3+C4)/C5 +)是根据 φ1参数的范围判断油气藏流体类型(表1)[1,3]。
-
1.1 随钻气测数据标准化处理
-
由于现场环境、工程、人为等因素不同,对随钻气测数据都会造成不同的影响,为了便于分析对比,首先整理井场随钻气测数据,应用标准化处理方法对数据进行无量纲、标准化预处理[21];笔者采用的归一标准化方法是各组分数据除以全烃乘以 100,以 M-2Sa井为例,随钻气测数据与标准化处理数据对比见表2。
-
1.2 随钻气测数据应用效果分析
-
基于 M-2Sa 井标准化随钻气测数据对四组合参数判别法及 φ1参数判别法识别油气藏流体类型进行适应性分析。3 875~3 900 m 井段四组合参数值有3个点位于带油环凝析气藏或凝析气顶油藏正方形内,识别为带油环凝析气藏或凝析气顶油藏 (图1);φ1值为 66.11,识别为过渡带,无油环或带小的轻质油环凝析气藏;M-2Sa 井潜山测试流体 PVT 相态分析为凝析气藏,在地层条件下地层流体是气相[22-31] (图2),2 种方法识别结果不一致,且与 PVT 相态分析结果不一致。3 900~4 000 m 井段四组合参数判别为带油环凝析气藏或凝析气顶油藏(图1),φ1值为 32.11,识别为带油环凝析气藏,2种方法识别结果基本一致,但与 PVT 相态分析结论不一致。4 000~4 100 和 4 100~4 200 m 井段四组合参数判别为带油环凝析气藏或凝析气顶油藏(图1),φ1 值分别为61.96和71.04,识别为过渡带,无油环或带小的轻质油环凝析气藏,2种方法识别结果不一致,且与 PVT相态分析结果不一致。整体而言,基于标准化随钻气测数据利用四组合参数判别法及 φ1参数判别法识别油气藏流体类型效果一般。
-
1.3 井场测试组分数据应用效果分析
-
基于 M-1 井、M-2 井、M-2Sa 井、M-4 井、M-11 井(4 578.64~5 500.00 m 井段)、M-13 井及 M-15 井井场测试组分数据对四组合参数判别法及 φ1参数判别法识别油气藏流体类型进行适应性分析,7 口井四组合参数判别法均识别为无油环气藏或凝析气藏(图3),对应的 φ1 值为 97.09,101.05,105.17,107.38,136.58,144.42,95.62,均识别为无油环凝析气藏,与 PVT相态分析结论一致。表明基于井场测试组分数据利用该组合方法能有效识别研究区潜山储层油气藏类型。
-
图1 基于M-2Sa井标准化随钻气测数据的四组合参数判别结果
-
Fig.1 Four combined parameters based discriminant results according to standardized gas logging-while-drilling data in Well M-2Sa
-
图2 M-2Sa井测试流体P-T相图
-
Fig.2 P-T phase diagram of test fluid in Well M-2Sa
-
2 油气藏流体类型随钻识别方法
-
以钻井液为载体的井场气测录井能采集到实时数据进行随钻流体评价[32],然而随钻气测数据使用四组合参数判别法及 φ1参数判别法难以准确进行油气藏流体类型随钻识别。井场测试组分数据虽然能有效使用该组合方法判别油气藏类型,但是不具备实时随钻识别的数据基础,一方面井场测试组分数据仅在测试期间采集,在钻进期间无法获取;另一方面海洋石油测试高成本决定了海上仅有少部分井的部分井段进行测试作业[33]。
-
海上井场随钻气测数据及井场测试组分数据均采用统一的 Reserval 气体采集系统获取,使用井场测试组分数据判别油气藏流体类型准确度高主要是由于其直接从产层中通过管柱进入Reserval气体采集系统分析获取,而随钻气测数据必须以钻井液为载体进入 Reserval 气体采集系统,不确定性和影响因素更多。对随钻气测数据通过标准化处理尽可能消除影响因素后,尝试建立标准化随钻气测数据与井场测试组分数据之间的拟合关系,然后利用拟合数据进行油气藏流体类型判别,以提高油气藏流体类型判别的准确性。
-
图3 7口井井场测试组分数据的四组合参数判别结果
-
Fig.3 Four combined parameters based discriminant results of test gas component from 7 well sites
-
选取研究区M-1井、M-2井、M-2Sa井、M-4井、 M-11 井(4 578.64~5 500.00 m 井段)、M-13 井和 M15 井测试井段井场测试组分数据以及相对应井段的标准化随钻气测数据,进行多元线性回归拟合,拟合关系(图4)及拟合公式为:
-
图4 渤中凹陷西南环M构造井场测试组分数据-标准化随钻气测数据拟合关系
-
Fig.4 Fitting relationship between test gas component and standardized gas logging-while-drilling data of M structure at southwest margin of Bozhong Sag
-
3 应用分析
-
以 M-11 井太古界潜山 4 578.64~4 817.00 m 井段为例,对其标准化随钻气测数据进行拟合(表3),并以拟合数据为基础,利用四组合参数判别法,对该储层进行油气藏流体类型识别,表明为无油环气藏或凝析气藏(图5)。
-
基于 M-11 井 4 578.64~4 817.00 m 井段拟合数据,利用 φ1参数判别法对该储层进行油气藏流体类型识别,计算φ1值为156.767,属于无油环凝析气藏,与四组合参数判别法结论一致,与 PVT相态分析结论也一致(图6)。
-
以 M-7井、M-10井、M-12井及 M-14井潜山储层为例,对标准化随钻气测数据进行拟合(表4),并以拟合数据为基础,利用四组合参数判别法进行油气藏流体类型识别,均为无油环凝析气藏或凝析气藏(图7)。
-
图5 M-11井4 578.64~4 817.00 m井段拟合数据四组合参数判别结果
-
Fig.5 Four combined parameters based discriminant results of fitting data from 4 578.64-4 817.00 m section in Well M-11
-
图6 M-11井4 578.64~4 817.00 m井段地层流体P-T相图
-
Fig.6 P-T phase diagram of formation fluid from 4 578.64-4 817.00 m section in Well M-11
-
基于M-7,M-10,M-12及M-14井拟合数据,利用 φ1参数判别法进行油气藏流体类型识别,计算 φ1 值分别为 101.78,125.16,94.00,83.06,均属于无油环凝析气藏。
-
标准化随钻气测数据经过拟合公式校正后,利用四组合参数法与 φ1参数判别法判别油气藏流体类型一致。
-
截止到 2021 年 4 月,研究区内潜山共有 7 口井进行生产,7 口开发井地面凝析油密度为 0.798~0.807 g/cm3,与探井 M-4 井(0.799 g/cm3)基本一致,没有黑油的性质,黑油的密度一般为 0.820 g/cm3 以上[23-24];而且开发井 A6 井的地露压差为 3.75 MPa,深度为4 551 m(垂深),一般无油环凝析气藏具有一定的地露压差,带油环凝析气藏地层压力为露点压力,其地露压差会变低到 0 [19]。目前生产动态数据表明研究区潜山油气藏流体类型为无油环凝析气藏。
-
截止到 2021年 4月,研究区内完钻并完成数据处理探井共 18 口,其中 2 口井太古界测试为干层,选取其他16口井中已测试7口井近350条数据进行标准化处理并建立拟合公式,拟合优度R2 大部分在 0.95 之上,吻合程度较高,用 5 口井进行验证,应用效果良好,与区域认识一致,随着后续勘探开发工作的深入,数据点不断增加,拟合公式随时更新,以确保整个研究区的更高适用性。
-
4 结论
-
对于渤中凹陷西南环 M 构造太古界潜山油气藏,基于标准化随钻气测数据的四组合参数判别法与 φ1参数判别法识别油气藏流体类型结论一致性不高,与相态分析结论也不完全一致,不能有效识别油气藏流体类型;基于井场测试组分数据的四组合参数判别法及 φ1参数判别法识别油气藏流体类型与相态分析结论一致,能有效识别油气藏流体类型。建立了适于研究区的井场测试组分数据与标准化随钻气测数据之间的拟合关系,基于拟合数据的判别结论一致性高,能基本实现基于经验方法的潜山油气藏流体类型随钻快速识别。识别结果表明,渤中凹陷西南环 M构造太古界潜山油气藏流体以无油环凝析气藏为主。
-
图7 4口井拟合数据四组合参数判别结果
-
Fig.7 Four combined parameters based discriminant results of fitting data in 4 wells
-
符号解释
-
C1标——甲烷标准化随钻气测数据,%;
-
C2标——乙烷标准化随钻气测数据,%;
-
C3标——丙烷标准化随钻气测数据,%;
-
C4标——丁烷标准化随钻气测数据,%;
-
C5标——戊烷标准化随钻气测数据,%;
-
C1拟——甲烷多元线性回归拟合值,%;
-
C2拟——乙烷多元线性回归拟合值,%;
-
C3拟——丙烷多元线性回归拟合值,%;
-
iC4拟——异丁烷多元线性回归拟合值,%;
-
iC5拟——异戊烷多元线性回归拟合值,%;
-
nC4拟——正丁烷多元线性回归拟合值,%;
-
nC5拟——正戊烷多元线性回归拟合值,%;
-
p C——临界压力,MPa;
-
p m——临界凝析压力,MPa;
-
p R——地层压力,MPa;
-
T C——临界温度,℃;
-
T m——临界凝析温度,℃;
-
T R——地层温度,℃。
-
参考文献
-
[1] 孙志道.油气藏流体类型判别方法[J].石油勘探与开发,1996,23(1):69-75,106.SUN Zhidao.Methods for determining the type of different oil and gas reservoirs fluid[J].Petroleum Exploration and Development,1996,23(1):69-75,106.
-
[2] СТРАСЕЛЬСКИЙ В И.Прогнозирование типов залежей по углеводородному составу козффициенту газоносности[J].Сбор.Науч,1979.
-
[3] ЖЕРТОВ.Разработка и эксплуатация нефтегазоконденсатных месторождений[M].Москва,1989.
-
[4] 中国石油天然气总公司开发生产部.挥发油油田开发译文集 [C].北京:石油工业出版社,1990.Development and Production Department of PetroChina.Transla⁃ tion proceeding of development for volatile oil reservoirs[C].Bei⁃ jing:Petroleum Industry Press,1990.
-
[5] 朱化蜀.油气藏流体高压物性参数及相态特征预测方法研究 [D].成都:西南石油大学,2006.ZHU Huashu.Study on high pressure physical parameters and phase state characteristics of reservoir fluids[D].Chengdu:South⁃ west Petroleum University,2006.
-
[6] 彭永灿,刘建,张大勇,等.油藏流体类型的研究——以石西油田石炭系油藏为例[J].石油天然气学报,2011,33(4):43-46.PENG Yongcan,LIU Jian,ZHANG Dayong,et al.Research on res⁃ ervoir fluid type-by taking Carboniferous reservoirs in Shixi oil⁃ field for example[J].Journal of Oil and Gas Technology,2011,33(4):43-46.
-
[7] 常涧峰,徐耀东,田同辉,等.埕北古7潜山太古界油气藏流体类型识别[J].油气地质与采收率,2012,19(4):21-23.CHANG Jianfeng,XU Yaodong,TIAN Tonghui,et al.Reservoir fluid type identification for Archaeozoic reservoir in Chengbeigu7 buried hills[J].Petroleum Geology and Recovery Efficiency,2012,19(4):21-23.
-
[8] 王军委.油气藏流体相态数据现场应用方法研究[J].复杂油气藏,2018,11(3):60-62,80.WANG Junwei.Study on field application method of PVT data for reservoir fluids[J].Complex Hydrocarbon Reservoirs,2018,11(3):60-62,80.
-
[9] 谭忠健,胡云,张国强,等.渤中19-6构造复杂储层流体评价及产能预测[J].石油钻采工艺,2018,40(6):764-774.TAN Zhongjian,HU Yun,ZHANG Guoqiang,et al.Fluid evalua⁃ tion and productivity prediction on complex reservoirs in Bo⁃ zhong19-6 structure[J].Oil Drilling & Production Technology,2018,40(6):764-774.
-
[10] 李鸿儒,胡云,张志虎,等.渤中构造复杂砂砾岩储层油气藏流体类型识别[J].石油钻采工艺,2018,40(S1):41-43.LI Hongru,HU Yun,ZHANG Zhihu,et al.Reservoir fluid type identification in the complex glutenite reservoir in BZ structure [J].Oil Drilling & Production Technology,2018,40(S1):41-43.
-
[11] 肖胜东.渤海湾盆地渤中凹陷凝析气藏相态识别及其成因机制[D].西安:西北大学,2019.XIAO Shengdong.Phase identification and genetic mechanism of condensate gas reservoirs in the Bozhong depression,Bohai Bay Basin[D].Xi’an:Northwest University,2019.
-
[12] 薛永安,李慧勇.渤海海域深层太古界变质岩潜山大型凝析气田的发现及其地质意义[J].中国海上油气,2018,30(3):1-9.XUE Yong’an,LI Huiyong.Large condensate gas field in deep Ar⁃ chean metamorphic buried hill in Bohai sea:discovery and geolog⁃ ical significance[J].China Offshore Oil and Gas,2018,30(3):1-9.
-
[13] 薛永安,柴永波,周园园.近期渤海海域油气勘探的新突破[J].中国海上油气,2015,27(1):1-9.XUE Yong’an,CHAI Yongbo,ZHOU Yuanyuan.Recent new breakthroughs in hydrocarbon exploration in Bohai sea[J].China Offshore Oil and Gas,2015,27(1):1-9.
-
[14] 龚再升.中国近海含油气盆地新构造运动与油气成藏[J].地球科学——中国地质大学学报,2004,29(5):513-517.GONG Zaisheng.Neotectonics and petroleum accumulation in off⁃ shore Chinese basins[J].Earth Science-Journal of China Univer⁃ sity of Geosciences,2004,29(5):513-517.
-
[15] 龚再升.继续勘探中国近海盆地花岗岩储层油气藏[J].中国海上油气,2010,22(4):213-220.GONG Zaisheng.Continued exploration of granitic-reservoir hy⁃ drocarbon accumulations in China offshore basins[J].China Off⁃ shore Oil and Gas,2010,22(4):213-220.
-
[16] 徐长贵,杜晓峰,刘晓健,等.渤海海域太古界深埋变质岩潜山优质储集层形成机制与油气勘探意义[J].石油与天然气地质,2020,41(2):235-247,294.XU Changgui,DU Xiaofeng,LIU Xiaojian,et al.Formation mecha⁃ nism of high-quality deep buried-hill reservoir of Archaean meta⁃ morphic rocks and its significance in petroleum exploration in Bo⁃ hai Sea area[J].Oil & Gas Geology,2020,41(2):235-247,294.
-
[17] 叶涛,牛成民,王清斌,等.渤海湾盆地大型基岩潜山储层特征及其控制因素——以渤中 19-6 凝析气田为例[J].地质学报,2021,95(6):1 889-1 902.YE Tao,NIU Chengmin,WANG Qingbin,et al.Characteristics and controlling factors of large bedrock buried-hill reservoirs in the Bohai Bay basin-a case study of the BZ19-6 condensate field [J].Acta Geologica Sinica,2021,95(6):1 889-1 902.
-
[18] 胡安文,牛成民,王德英,等.渤海湾盆地渤中凹陷渤中19-6构造凝析油气特征与形成机制[J].石油学报,2020,41(4):403-411.HU Anwen,NIU Chengmin,WANG Deying,et al.The characteris⁃ tics and formation mechanism of condensate oil and gas in Bo⁃ zhong19-6 structure,Bozhong sag,Bohai Bay Basin[J].Acta Petrolei Sinica,2020,41(4):403-411.
-
[19] 丁志文,陈方方,谢恩,等.塔中M区奥陶系碳酸盐岩凝析气藏综合分类及开发技术对策[J].油气地质与采收率,2017,24(5):84-92.DING Zhiwen,CHEN Fangfang,XIE En,et al.Comprehensive classification and development strategies of Ordovician carbonate condensate gas reservoirs in Tazhong M area[J].Petroleum Geolo⁃ gy and Recovery Efficiency,2017,24(5):84-92.
-
[20] 李龙,张新涛,张震,等.渤海海域渤中西洼断裂控藏作用定量分析——以曹妃甸 12-6 油田为例[J].油气地质与采收率,2018,25(3):20-28.LI Long,ZHANG Xintao,ZHANG Zhen,et al.Quantitative analy⁃ sis of control of faults on hydrocarbon accumulation in the west of Bozhong Subsag of Bohai Sea:A case study of CFD 12-6 Oilfield [J].Petroleum Geology and Recovery Efficiency,2018,25(3):20-28.
-
[21] 赵洪权.气测录井资料环境影响因素分析及校正方法[J].大庆石油地质与开发,2005,24(增刊):32-34.ZHAO Hongquan.Environment-affecting factors and correction method for gas logging data[J].Petroleum Geology & Oilfield De⁃ velopment in Daqing,2005,24(Supplement):32-34.
-
[22] 李士伦,张正卿,冉新权,等.注气提高石油采收率技术[M].成都:四川科学技术出版社,2001:144-153.LI Shilun,ZHANG Zhengqing,RAN Xinquan,et al.Enhanced oil recovery by gas injection[M].Chengdu:Sichuan Science and Technology Press,2001:144-153.
-
[23] 秦积舜,李爱芬.油层物理学[M].东营:石油大学出版社,2003:16-17.QIN Jishun,LI Aifen.Reservoir physics[M].Dongying:Press of University of Petroleum,China,2003:16-17.
-
[24] 孙志道,胡永乐,李云娟,等.凝析气藏早期开发气藏工程研究 [M]北京:石油工业出版社,2003:96-112.SUN Zhidao,HU Yongle,LI Yunjuan,et al.Gas reservoir engi⁃ neering study on early development of condensate gas reservoirs [M].Beijing:Petroleum Industry Press,2003:96-112.
-
[25] 李广月,郭平,林春明.不同类型凝析气藏在低渗多孔介质中的相态及采收率研究[J].石油学报,2006,27(1):73-76. LI Guangyue,GUO Ping,LIN Chunming.Phase state and recovery of different condensate gas reservoir in tight porous media[J].Ac⁃ ta Petrolei Sinica,2006,27(1):73-76.
-
[26] 赵伦,赵晓亮,宋珩,等.凝析气顶油藏气顶气窜研究——以让纳若尔Γ北油藏为例[J].油气地质与采收率,2010,17(4):77-79.ZHAO Lun,ZHAO Xiaoliang,SONG Heng,et al.Gas break⁃ through research of condensate gas-cap reservoir-case of Zanaro Γ reservoir[J].Petroleum Geology and Recovery Efficiency,2010,17(4):77-79.
-
[27] STANDING M B.Volumetric and phase behavior of oilfield hydro⁃ carbon systems[M].Dallas:Millet Print Inc.,1977:81.
-
[28] MOSES P L.Engineering applications of phase behavior of crude oil and condensate systems[J].Journal of Petroleum Technology,1986,38(7):715-723.
-
[29] 周立宏,王鑫,付立新,等.黄骅坳陷乌马营潜山二叠系砂岩凝析气藏的发现及其地质意义[J].中国石油勘探,2019,24(4):431-438.ZHOU Lihong,WANG Xin,FU Lixin,et al.Discovery and geologi⁃ cal significance of the Permian sandstone condensate gas reser⁃ voir in Wumaying buried hill,Huanghua depression[J].China Pe⁃ troleum Exploration,2019,24(4):431-438.
-
[30] 孙博文,郭平,伍轶鸣,等.基于交替条件期望变换的凝析气藏露点压力预测模型[J].油气藏评价与开发,2020,10(4):107-112.SUN Bowen,GUO Ping,WU Yiming,et al.Dew point pressure prediction model of condensate gas reservoir based on alternating conditional expectation transform[J].Reservoir Evaluation and Development,2020,10(4):107-112.
-
[31] 冯强汉,邓宝康,杨映洲,等.致密砂岩凝析气藏反凝析伤害评价及解除方法[J].大庆石油地质与开发,2020,39(2):139-146.FENG Qianghan,DENG Baokang,YANG Yingzhou,et al.Evalua⁃ tions and removing methods of the retrograde condensate damage for the gas condensate reservoirs in the tight sandstone[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2020,39(2):139-146.
-
[32] 谭忠健,吴立伟,郭明宇,等.基于烃组分分析的渤海油田录井储层流体性质解释新方法[J].中国海上油气,2016,28(3):37-43.TAN Zhongjian,WU Liwei,GUO Mingyu,et al.A new method of mud logging reservoir fluid property interpretation in Bohai oil⁃ fields based on hydrocarbon components analysis[J].China Off⁃ shore Oil and Gas,2016,28(3):37-43.
-
[33] 谢玉洪.中国海油近海油气勘探实践与思考[J].中国海上油气,2020,32(2):1-13.XIE Yuhong.Practices and thoughts of CNOOC offshore oil and gas exploration[J].China Offshore Oil and Gas,2020,32(2):1-13.
-
摘要
油气藏流体类型是勘探阶段产能评价及储量规模落实、开发阶段开发方案制定的关键影响因素,井场随钻快速识别油气藏流体类型能进一步加快勘探开发节奏,具有重要的意义。渤中凹陷西南环M构造太古界潜山油气藏流体类型比较复杂,结合PVT相态分析结果,从油气藏流体类型识别常用方法中优选出四组合参数判别法及φ1参数判别法在研究区进行随钻识别研究。结果表明,基于标准化随钻气测数据利用四组合参数判别法及φ1参数判别法对研究区太古界潜山油气藏流体类型识别一致性不高,而基于井场测试组分数据识别一致性高、效果好。建立适于研究区的井场测试组分数据与标准化随钻气测数据之间的拟合关系,实现了潜山油气藏流体类型随钻快速识别,在渤中凹陷西南环M构造太古界潜山应用效果良好。
Abstract
The reservoir fluid type is a key factor to evaluating productivity and identifying reserves scale during explora- tion and making development plans during production. Fast identification of reservoir fluid types while drilling can acceler- ate exploration and production. The fluid types of the Archaeozoic buried hill reservoir of M structure at the southwest mar- gin of Bozhong Sag,Bohai Sea,East China are complex. According to the pressure-volume-temperature(PVT)phase analy- sis,four combined parameters based discriminant analysis and φ1 parameter based discriminant analysis were employed in identifying reservoir fluid types while drilling in the study area. The study demonstrates that the two methods based on stan- dardized gas logging-while-drilling data witness poor consistency among the identified reservoir fluid types in the study ar- ea,while those relying on the test gas component from the well site obtain consistent and positive results. A model is built for the fitting relationship between the test gas component from the well site and standardized gas logging-while-drilling da- ta,realizing the fast identification of fluid types in the buried hill reservoir while drilling and successful applications in the Archaeozoic buried hill reservoir of M structure at the southwest margin of Bozhong Sag.