-
西昌地区位于四川盆地西南部,区域上与四川盆地均属于康滇南北构造带。从西昌地区构造组成上看,由于其恰好位于扬子准地台的西部边界,造成盆地内部以四开断层为界分为2个具有不同基底性质的次级构造单元,即西部以康滇台隆为基础演化而来的米市盆地和东部以上扬子台坳为基础形成的碧鸡山-宁南盆地。野外露头和二维、三维地震剖面揭示,米市盆地内部短轴方向上以向斜构造为特征,东高西低,长轴方向上以南北向线性构造为主,且伴有多条深大断裂。由于位于两大构造单元的转换边界,米市盆地成为转换构造边界研究的理想场所。关于盆地的构造研究有 2 种主流观点:①在来自西北方向青藏高原的挤压应力作用下,受盆地西侧康滇地轴影响,形成了向南的走滑样式[1-3]。②具有与四川盆地相似的大地构造背景[4-8],以挤压构造变形为典型特征[9-13]。针对目前存在的分歧,笔者以盆地内部构造解析为基础,基于构造平衡剖面反演和砂箱构造模拟实验正演相结合的手段,明确盆地构造特征与构造成因。该研究有助于米市盆地未来油气勘探的深化与拓展,同时也丰富了板块间盆地构造理论体系。
-
1 区域地质概况
-
西昌地区西以安宁河断裂为界,东以峨边断裂为界,南界为则木河断层,北至大渡河。米市盆地呈南北向菱形展布,盆地内部发育近南北走向的黑水河断层、四开断层和北西—南东向的则木河断层、安宁河断裂[14-18] (图1a),为西昌地区的次级盆地。研究区除缺失石炭系、泥盆系外,其他各时代地层均发育。震旦系是该区最老的盖层,是一套海相碳酸盐岩为主的沉积,分布广泛而稳定,厚度为 700~1 200 m,受早期桐湾运动影响,与上覆寒武系呈平行不整合接触。下古生界较发育,厚度为 1 400~2 500 m,奥陶纪至晚志留世,盆地西北部持续抬升导致西部缺失上志留统。晚志留世末期,强烈的加里东运动使研究区整体抬升导致缺失石炭系和泥盆系。二叠纪海侵广泛,东部地层较西部更为发育,厚度为250~350 m;晚二叠世玄武岩沿四开断层喷溢,厚度为 200~700 m。三叠纪盆地西侧继续隆升为剥蚀区,中—下三叠统普遍缺失,东部继续沉降。上三叠统于全盆地均有出露,下古生界之上为陆相碎屑岩沉积,厚度为 500~1 000 m。侏罗系、白垩系及古近系为陆相红色碎屑岩,分布较广,沉积厚度较大,约为 3 000~4 000 m。新近系为断陷沉积,分布零星,与下伏不同时代地层呈不整合接触关系(图1b)。盆地内东、西部地层展布差异较大,自东向西逐渐缺失二叠系及志留系,奥陶系尖灭于三叠系之下,与三叠系白果湾组呈不整合接触,整体具有盖层东厚西薄、东部地层较为完整的特征[19-20]。盆地南、北部地层展布差异主要在于北部二叠系峨眉山玄武岩发育更少。
-
2 构造特征
-
2.1 断层发育特征
-
盆地内发育多条近南北向逆冲断层(表1),东部的四开断层与四开-2 断层分别为研究区内Ⅰ和 Ⅱ级断层,作为盆地的边界。基于峨眉山玄武岩沿四开断层侵入地层可以确定该断层在早二叠世就已经切割至基底,是盆地的基底断层。四开断层以西的黑水河断层为Ⅱ级主干断层,依据切割深度较大且倾角和断距与四开断层相似,分析可能也是早期发育的古断层,二者均为基底卷入的厚皮构造。黑水河-2断层为黑水河断层派生出的Ⅲ级断层,于地表出露不连续。盆地中部断层发育较少,且基本未切穿基底。盆地西部的米市断层为Ⅱ级主干断层,断层倾角较小,下部切割至灯影组,并沿其内部灯影组与基底的薄弱面滑动,形成典型的薄皮构造。派生出的米市-2断层、米市-3断层,仅在七坝 1井周缘可见。喜德断层为盆地北部的Ⅱ级主干断层,仅控制北部喜德背斜形成。则木河断层由盆地边缘的安宁河断裂派生,主控南部构造的Ⅰ级主干断层。
-
2.2 褶皱发育特征
-
盆地内构造走向基本为南北向,不同部位的褶皱构造变形存在较大差异(图2)。盆地北部为“两背斜夹一向斜”的结构,拖木沟背斜和七里坝背斜逐渐合并为一个背斜,即受喜德断层控制的喜德背斜,构造样式为断弯-断滑褶皱组合(AA’剖面),由北向南逐渐由断弯转变为断滑褶皱,沉积盖层在基底之上发生滑脱[21-22]。盆地中部为“三背斜夹两向斜”的构造格局,东侧的罗木大山背斜西翼极陡,受黑水河断层及盆地的边界断层(四开断层)控制,形成基底卷入厚皮推覆构造样式;向西为七里坝背斜 (BB’剖面),主要表现为两翼较陡,转折端开阔平缓,背斜主要受米市断层控制,断层断坡斜截地层,断坪与断面上、下盘地层基本平行,为较典型的断层弯曲褶皱样式,受东西向应力后翼形成基底卷入的厚皮构造;最西侧的拖木沟背斜隆升幅度最小。向盆地南部,逐渐演化为“两背斜夹一向斜”,其中拖木沟背斜为盆地中部拖木沟背斜向南的延伸,受则木河断层控制形成断弯-断滑褶皱组合的构造样式(CC’剖面);而中部的罗木大山背斜与七里坝背斜在此合并为七里坝背斜。
-
图1 米市盆地区域构造位置及地层综合柱状图
-
Fig.1 Tectonic location and comprehensive stratigraphic column in Mishi Basin
-
图2 米市盆地典型构造地震剖面
-
Fig.2 Seismic profiles of typical structures in Mishi Basin
-
2.3 构造演化过程
-
基于不整合面发育特征和构造演化剖面,结合文献资料[13-15] 与野外露头,恢复了米市盆地的构造演化过程,将其划分为3期构造演化阶段。
-
被动大陆边缘稳定克拉通盆地发展阶段(Z—O) 震旦系灯影组沉积时期,研究区主要为海相白云岩沉积,岩性岩相均一,构造变化平缓。寒武纪—奥陶纪(图3),西昌-喜德所处的区域为稳定的被动大陆边缘,具稳定的补偿性沉积沉降特征,岩性和地层厚度变化较小。
-
隆升剥蚀阶段(S—P) 晚志留世盆地西侧康滇古陆全面抬升,志留纪末期的加里东运动使研究区大面积抬升剥蚀。泥盆纪至早二叠世,盆地处于相对稳定的隆升剥蚀时期,四开断层以西抬升剥蚀,缺失泥盆系、石炭系(图3)。从地层结构上来看,志留系向西减薄,二叠系底面有较明显的削截现象,这些都表明加里东-海西运动使得盆地表现为西高东低的古构造特征,但构造幅度不大,古地貌差异也不大。四开断层为海西期受滇青藏洋板块挤压远程效应而发育的张性古断层,其附近盆地东缘的普格 1 井二叠系见峨眉山玄武岩[23] (图4,图5)。受海西运动影响,盆地掀斜后遭受整体剥蚀,发育三叠系不整合面,部分古生界向西逐渐缺失(图3)。
-
图3 米市盆地构造演化示意
-
Fig.3 Tectonic evolution process in Mishi Basin
-
挤压隆升盆地变形改造阶段(T—现今) 受印支—燕山运动影响盆地雏形已形成,晚三叠世、侏罗纪和白垩纪沉积了巨厚的沉积盖层。新生代初期,西昌地区范围逐渐缩小。始新世末期以来,由于印度板块与欧亚板块碰撞,盆地发生褶皱变形,受断裂挤压转换改造,进入强烈的隆升剥蚀阶段(图3)。
-
3 构造演化模拟
-
3.1 模型设计
-
盆地整体构造变形过程虽已明确,但在挤压隆升过程中次级逆冲断层的演化序列仍旧存疑,为此开展砂箱物理模拟实验。基于实际地层展布,设计出盆地在遭受强烈挤压变形前的地层等比例模型 (图6)。地层特征和地震剖面资料解释表明,印支运动后没有经过大规模的地层剥蚀,沉积了侏罗系—白垩系,三叠系沉积前盆地内地层整体呈现掀斜的状态。按照构造物理模拟实验的几何相似性原则,设计模型时,将三叠系以下的地层铺成倾斜状态,而二叠系与三叠系之间由印支运动剥蚀产生的不整合面处设计为1~1.5 mm厚的玻璃珠,设置为滑脱带,三叠系至白垩系则铺为水平。通过野外露头观察及地震剖面解释,盆地内地层岩性变化不大,所以每个地层均以石英砂作为模型,以 1∶10 万作为比例尺,即模型中1 cm代表自然界1 km厚度的地层,最终模型高度为 6 cm,长度为 60 cm。层间铺设彩色石英砂作为标志层,便于实验过程中对构造变形的监测。
-
基于砂箱物理模型和实际自然界原型之间的相似性原理,砂箱物理模型模拟褶皱冲断带-前陆盆地系统地壳浅表构造变形过程,须遵循摩尔-库伦破裂准则[24-27]。石英砂普遍具有近似线性的摩尔-库伦破裂变形行为和近似为 0 的内聚力值(20~100 Pa),能够有效模拟 0~10 km 地壳浅表构造变形过程。笔者设计砂箱物理模拟实验用的石英砂材料普遍具有中等磨圆和较好分选性,粒度范围为 0.2~0.4 mm,平均密度为 1.55 g/m3,内摩擦角和摩擦系数分别为29°~31°和0.58;同时实验过程中还使用玻璃珠代表自然界泥岩(志留系龙马溪组泥岩等),符合构造物理模拟实验中运动学参数[28-33]。
-
图4 连井地震响应特征
-
Fig.4 Seismic response characteristics of well ties
-
图5 普格1井峨眉山玄武岩岩屑薄片镜下特征
-
Fig.5 Microscopic characteristics of thin sections of Emeishan basalt debris from Well Puge1
-
图6 地层等比例模型
-
Fig.6 Scale stratigraphic model
-
3.2 模拟结果
-
运用地层等比例模型模拟结果表明:缩短率为 2.5%,缩短量为 15 mm 时,四开断层雏形出现(图7b)。缩短率为5%,缩短量为30 mm时,砂箱物质于活动端一侧发生缩短变形并形成四开断层,断距为 4.08~4.90 m,为逆冲断层(图7c),在挤压过程中,上部地层突破了砂体表面,而下部地层应力集中,发生构造缩短增厚变形,弥补了部分断距,所以砂体上部地层断距更大。缩短率为 14%,缩短量为 84 mm 时,活动端一侧快速隆升,形成箱式背斜与第 2 条逆冲断层四开-2 断层(图7d),断距为 2.84~3.08 m。缩短率为 20%,缩短量为 120 mm 时,背斜继续隆升,应力再向前端传导形成黑水河断层(图7e),断距为2.71~4.22 m。在之后的缩短变形中,并未向前继续形成逆冲断层,靠近活动端的背斜隆升不明显。缩短率为 23%,缩短量为 138 mm 时,应力传播至砂体中部,在志留系的削截点附近形成米市断层 (图7f),断距为1.08~2.21 m。
-
图7 米市盆地地层等比例模型模拟构造演化及示意
-
Fig.7 Tectonic evolution simulation of Mishi Basin by scale stratigraphic model and its schematic diagram
-
将实验结果与研究区演化过程中时间上的相似性进行对比后可看出:图7b—7c为四开断层雏形出现到形成,缩短率为 5%,对应演化过程中的三叠系沉积前,构造运动对应为海西运动。图7d 中 F2 断层形成时的缩短率为 14%,对应演化过程中的四开-2断层。图7d至图7e之间较长时间内没有新的断层出现,只发生地层变形,对应演化过程中的三叠纪—白垩纪。图7e—7f 中,黑水河断层、米市断层相继形成,对应盆地进入挤压隆升、变形改造阶段,断层的形成时间明显加快。
-
4 构造成因分析
-
海西运动晚期,扬子古板块受滇青藏洋板块向北东方向、太平洋板块向西北方向的推挤下,最大主应力为北西—南东方向,并传递至研究区范围内,形成多条北东—南西向张性断裂和近南北向的四开断层,且喷发大量玄武岩。印支期—燕山期,随着两大板块的继续挤压,松潘-甘孜边缘海逐渐关闭(图8a),并转化为山系。
-
喜马拉雅运动早中期,太平洋板块依旧向东亚大陆俯冲产生侧压力,使扬子古板块向松潘-甘孜山系腹地俯冲,研究区内最大主应力转变为近东西向。随着松潘-甘孜造山带及锦屏山造山带的形成 (图8b),区域内断层调整为近南北向,米市盆地进入前陆盆地的挤压隆升发育阶段,整体向西逆冲,形成多条逆冲断层,出现基本的构造雏形。
-
喜马拉雅运动至今,“川滇菱形块体”的形成及向东南方向运动使研究区内最大主应力为北西— 南东向,盆地进入调整改造阶段(图8c),继承之前的断裂及构造并发育更多的近南北向逆冲断层,演变成为现今米市盆地的构造格局。
-
5 结论
-
米市盆地构造基本为南北向,黑水河断层以东至四开断层东部为基底卷入的厚皮推覆构造,黑水河断层以西形成的背斜断弯构造都是较为完整的紧闭褶皱;盆地内部多为基底卷入与断弯褶皱的组合样式,而靠近盆地西缘多为断弯-断滑褶皱样式,形成了东部的构造和断层发育程度远胜于西部的格局。
-
图8 米市盆地区域构造应力场
-
Fig.8 Regional tectonic stress field in Mishi Basin
-
盆地构造演化划分为 3 个阶段:①被动大陆边缘稳定克拉通盆地发展阶段,震旦纪至奥陶纪盆地内盖层平缓沉积,厚度变化不大。②隆升剥蚀阶段,志留纪末期至二叠纪,古生界遭受大面积剥蚀,形成了西薄东厚的沉积盖层格局。③挤压隆升盆地变形改造阶段,三叠纪至白垩纪盆地内沉积巨厚盖层,受板块持续挤压及周缘造山带影响,新生代盆地进入快速隆升变形改造阶段。
-
米市盆地受到区域构造应力场影响,呈现不同的构造特征。盆地于海西期—燕山期受滇青藏洋板块及太平洋板块持续挤压下,最大主应力为北西—南东向,内部出现张性古断裂;喜马拉雅运动早中幕受松潘-甘孜造山带影响,最大主应力调整为近东西向,盆地内出现基本的构造雏形;喜马拉雅运动晚幕,最大主应力调整为北西—南东向,盆地内构造继承性发育,形成现今面貌。通过对米市盆地构造及演化特征的研究,对其构造解析和进一步的演化分析奠定了坚实的理论基础。
-
参考文献
-
[1] 王运生,李云岗.西昌盆地的形成与演化[J].成都理工学院学报,1996,23(1):85-90.WANG Yunsheng,LI Yungang.Formation and evolution of the Xichang Basin[J].Journal of Chengdu Institute of Technology,1996,23(1):85-90.
-
[2] 覃建雄,夏竹,张长俊,等.西昌复合盆地层序充填序列与沉积动力演化初探[J].古地理学报,2001,3(4):45-55.QIN Jianxiong,XIA Zhu,ZHANG Changjun,et al.Sequence fill⁃ ing succession and sedimentary dynamic evolution of the Xichang Compound Basin[J].Journal of Palaeogeography,2001,3(4):45-55.
-
[3] 覃建雄,夏竹,田景春.西昌复合盆地层序界面研究及意义[J].地球学报,2003,24(2):143-150.QIN Jianxiong,XIA Zhu,TIAN Jingchun.The sequence strati⁃ graphic boundary in Xichang composite basin and its significance [J].Acta Geoscientia Sinica,2003,24(2):143-150.
-
[4] 刘丽华,徐强,范明祥.西昌盆地构造特征和含油气条件分析 [J].天然气工业,2003,23(5):34-38.LIU Lihua,XU Qiang,FAN Mingxiang.Structural features and oil-gas bearing conditions in Xichang Basin[J].Natural Gas In⁃ dustry,2003,23(5):34-38.
-
[5] 刘树根,罗志立,戴苏兰,等.龙门山冲断带的隆升和川西前陆盆地的沉降[J].地质学报,1995,69(3):205-214.LIU Shugen,LUO Zhili,DAI Sulan,et al.The uplift of the Long⁃ menshan thrust belt and subsidence of the Western Sichuan fore⁃ land basin[J].Acta Geologica Sinica,1995,69(3):205-214.
-
[6] 刘树根,李国蓉,郑荣才.西昌盆地油气保存条件研究[J].成都理工大学学报:自然科学版,2004,31(6):575-581.LIU Shugen,LI Guorong,ZHENG Rongcai.Study on petroleum maintenance condition in Xichang basin,China[J].Journal of Chengdu University of Technology:Science & Technology Edi⁃ tion,2004,31(6):575-581.
-
[7] 伏明珠,覃建雄.四川西昌盆地沉积演化史研究[J].四川地质学报,2011,31(1):1-5.FU Mingzhu,QIN Jianxiong.Study of sedimentary evolution of the Xichang Basin[J].Acta Geologica Sichuan,2011,31(1):1-5.
-
[8] 孙玮,刘树根,曹俊兴,等.四川叠合盆地西部中北段深层-超深层海相大型气田形成条件分析[J].岩石学报,2017,33(4):1 171-1 188.SUN Wei,LIU Shugen,CAO Junxing,et al.Analysis on the forma⁃ tion conditions of large-scale marine deep and super-deep strata gas fields in the middle-northern segments of western Sichuan Su⁃ perimposed Basin,China[J].Acta Petrologica Sinica,2017,33(4):1 171-1 188.
-
[9] 宋玉光,赵路子,贾国相,等.西昌盆地七里坝构造油气化探异常特征及构造含油气评价[J].矿产与地质,1998,12(4):60-65.SONG Yuguang,ZHAO Luzi,JIA Guoxiang,et al.Features and geochemical anomalies of oil-gas in Qiliba structure of Xichang Basin and the evaluation of oil-gas storage[J].Mineral Resources and Geology,1998,12(4):60-65.
-
[10] 邵红君,许智雄,徐宏远,等.西昌盆地喜德构造奥陶系大箐组油气前景分析[J].山东化工,2019,48(12):109-111.SHAO Hongjun,XU Zhixiong,XU Hongyuan,et al.Hydrocarbon potential analysis of Ordovician Daqing formation in Xide struc⁃ ture of Xichang Basin[J].Shandong Chemical Industry,2019,48(12):109-111.
-
[11] 何登发,SUPPE J,贾承造.断层相关褶皱理论与应用研究新进展[J].地学前缘,2005,12(4):353-364.HE Dengfa,SUPPE J,JIA Chengzao.New advances in theory and application of fault-related folding[J].Earth Science Frontiers,2005,12(4):353-364.
-
[12] 贾东,李一泉,王毛毛,等.断层相关褶皱的三维构造几何学分析:以川西三维地震工区为例[J].岩石学报,2011,27(3):732-740.JIA Dong,LI Yiquan,WANG Maomao,et al.Three-dimensional structural geometry of fault-related folds:Examples from 3-D seismic explored blocks in the western Sichuan Province,China [J].Acta Petrologica Sinica,2011,27(3):732-740.
-
[13] 谢窦克.康滇地轴的地质构造史[J].地质学报,1959,39(2):213-228.XIE Duke.On the tectonic history of the Kam-Yunnan axis[J].Acta Geologica Sinica,1959,39(2):213-228.
-
[14] 李春昱“.康滇地轴”地质构造发展历史的初步研究[J].地质学报,1963,43(3):214-229.LI Chunyu.A preliminary study of the tectonic development of the “Kang-Dian axis”(Kam-Yunnan axis)[J].Acta Geologica Sini⁃ ca,1963,43(3):214-229.
-
[15] 肖荣吾.康滇大陆古裂谷带特征及其演化[J].云南地质,1988,7(3):229-244.XIAO Rongwu.The character and evolution of continental pa⁃ leorift zone in Xikang-Yunnan(Kang-Dian)[J].Geology of Yun⁃ nan,1988,7(3):229-244.
-
[16] 李兴唐,古迅.攀西裂谷及邻区构造应力场演化与叠加断裂作用[J].地质科学,1988,23(1):25-37.LI Xingtang,GU Xun.Evolution of tectonic stress field in Panxi rift and adjacent area with reference to superimposition faulting [J].Scientia Geologica Sinica,1988,23(1):25-37.
-
[17] 罗一月,魏明基,马光中.浅析康滇地轴构造运动与铀成矿的关系[J].铀矿地质,1998,14(2):72-81.LUO Yiyue,WEI Mingji,MA Guangzhong.Preliminary analysis on tectonic movement and uranium metallogeny in Kang-Dian the Earth’s axis[J].Uranium Geology,1998,14(2):72-81.
-
[18] 王生伟,廖震文,孙晓明,等.康滇地区燕山期岩石圈演化—— 来自东川基性岩脉SHIRMP锆石 U-Pb 年龄和地球化学制约 [J].地质学报,2014,88(3):299-317.WANG Shengwei,LIAO Zhenwen,SUN Xiaoming,et al.The Yan⁃ shanian lithospheric evolution in Kangdian area:Restriction from SHRIMP zircons U-Pb age and geochemistry of mafic dykes in Dongchuan,Yunan Province,SW China[J].Acta Geologica Sini⁃ ca,2014,88(3):299-317.
-
[19] 漆家福,杨桥,童亨茂,等.构造因素对半地堑盆地的层序充填的影响[J].地球科学——中国地质大学学报,1997,22(6):603-608.QI Jiafu,YANG Qiao,Tong Hengmao,et al.Sequence construc⁃ tion response to tectonic process in extensional half-graben basin [J].Earth Science-Journal of China University of Geosciences,1997,22(6):603-608.
-
[20] 朱战军,周建勋.基底收缩对斜向挤压盆地构造格局影响的实验研究[J].大地构造与成矿学,2003,27(4):390-394.ZHU Zhanjun,ZHOU Jianxun.Experimental study on influence of substrate contraction on structural patterns of oblique compres⁃ sional basin[J].Geotectonica et Metallogenia,2003,27(4):390-394.
-
[21] HARDING T P,LOWELL J D.Structural styles,their plate-tecton⁃ ic habitats,and hydrocarbon traps in petroleum provinces[J].The American Association of Petroleum Geologists Bulletin,1979,63(7):1 016-1 058.
-
[22] VANN I R,GRAHAM R H,HAYWARD A B.The structure of mountain fronts[J].Journal of Structural Geology,1986,8(3/4):215-227.
-
[23] 罗志立.扬子古板块的形成及其对中国南方地壳发展的影响 [J].地质科学,1979,14(2):127-138.LUO Zhili.On the occurrence of Yangze old plate and its influ⁃ ence on the evolution of lithosphere in the southern part of China [J].Scientia Geologica Sinica,1979,14(2):127-138.
-
[24] 邓宾,黄瑞,马华灵,等“.从源到汇”:褶皱冲断带-前陆盆地系统砂箱物理模型浅表作用研究[J].大地构造与成矿,2018,42(3):431-444.DENG Bin,HUANG Rui,MA Hualing,et al“.Source to sink”:A review of tectonics-erosion-sedimentation interactions in the ana⁃ logue experiments of accretionary wedge[J].Geotectonica et Metallogenia,2018,42(3):431-444.
-
[25] 邓宾,赵高平,万元博,等.褶皱冲断带构造砂箱物理模型研究进展[J].大地构造与成矿学,2016,40(3):446-464.DENG Bin,ZHAO Gaoping,WAN Yuanbo,et al.A review of tec⁃ tonic sandbox modeling of fold-and-thrust belt[J].Geotectonica et Metallogenia,2016,40(3):446-464.
-
[26] 赵高平.四川盆地南缘大凉山地区构造特征研究[D].成都:成都理工大学,2016.ZHAO Gaoping.Structure character research of the Daliang moun⁃ tain in the southern margin of Sichuan basin[D].Chengdu:Cheng⁃ du University of Technology,2016.
-
[27] 袁月,孙玮,刘树根,等.龙门山南段前缘构造砂箱变形模拟实验[J].科学技术与工程,2018,18(19):9-19.YUAN Yue,SUN Wei,LIU Shugen,et al.Structural sandbox de⁃ formation simulation experiments of front area of the southern sec⁃ tion of Longmen mountain[J].Science Technology and Engineer⁃ ing,2018,18(19):9-19.
-
[28] 林畅松.盆地沉积动力学:研究现状与未来发展趋势[J].石油与天然气地质,2019,40(4):685-700.LIN Changsong.Sedimentary dynamics of basin:Status and trend [J].Oil & Gas Geology,2019,40(4):685-700.
-
[29] 赵利,廖宗廷,徐旭辉,等.陆内山前冲断结构分带的构造物理模拟实验[J].石油实验地质,2019,41(6):871-878,884.ZHAO Li,LIAO Zongting,XU Xuhui,et al.Physical modeling of thrusting structure zonation in front of an intracontinental orogen [J].Petroleum Geology & Experiment,2019,41(6):871-878,884.
-
[30] 程燕君,吴智平,张杰.济阳坳陷长堤地区走滑构造特征及对油气聚集的控制作用[J].油气地质与采收率,2020,27(2):35-42.CHENG Yanjun,WU Zhiping,ZHANG Jie.Characteristics of strike-slip faults and its control on hydrocarbon accumulation in Changdi area of Jiyang Depression[J].Petroleum Geology and Re⁃ covery Efficiency,2020,27(2):35-42.
-
[31] 王洪宇,陈沫,孟令东.塔木察格盆地反向断层与反转断层控藏机理[J].油气地质与采收率,2020,27(2):72-79.WANG Hongyu,CHEN Mo,MENG Lingdong.Controlling mecha⁃ nism of antithetic fault and reverse fault on hydrocarbon accumu⁃ lations in Tamtsag Basin[J].Petroleum Geology and Recovery Ef⁃ ficiency,2020,27(2):72-79.
-
[32] 刘逸盛,刘月田,张琪琛,等.厚层碳酸盐岩油藏宏观物理模拟实验研究[J].油气地质与采收率,2020,27(4):117-125.LIU Yisheng,LIU Yuetian,ZHANG Qichen,et al.Large-scale physical simulation experimental study on thick carbonate reser⁃ voirs[J].Petroleum Geology and Recovery Efficiency,2020,27(4):117-125.
-
[33] 邱贻博,贾光华,刘晓峰,等.东营凹陷古近系构造转换及其对盆地控制作用[J].中国石油勘探,2020,25(6):50-57.QIU Yibo,JIA Guanghua,LIU Xiaofeng,et al.Structural transfor⁃ mation in Paleogene and its controlling effect in Dongying sag[J].China Petroleum Exploration,2020,25(6):50-57.
-
摘要
米市盆地位于扬子板块与松潘-甘孜造山带交界处,基于反演与正演相结合的手段,研究了其构造特征及成因。米市盆地受海西运动影响,构造变形以张性断层为主;印支期扬子板块向松潘-甘孜造山带俯冲,使盆地构造变形转变为挤压隆升为主,部分三叠系遭受剥蚀;燕山期盆地周缘持续隆升,内部构造则继承性发育;喜马拉雅期进入快速挤压隆升阶段,盆地的典型构造特征为逆冲断层及与断层相关褶皱,且盆地内部构造变形存在差异,东部以基底卷入型控盆断层约束下的断弯变形为主,西缘以次级断层控制下的断层滑脱变形为典型特征。盆地内部的断层发育模式为由盆地东部向西部逐渐扩展。在成因上,自海西期至印支期受到滇青藏洋板块及太平洋板块持续挤压,盆地内部形成最早的四开断层;燕山期盆地雏形出现,以七里坝地区为沉积中心沉积了巨厚的侏罗系、白垩系地层,盆地周缘持续隆升;喜马拉雅期受松潘-甘孜造山带及锦屏山造山带挤压后,形成了以逆冲断层及与断层相关褶皱共存的盆地构造格局。
Abstract
Mishi Basin is located at the junction of the Yangtze Plate and Songpan-Ganzi orogenic belt. Its tectonic charac- teristics and genesis were studied with the combination of inversion and forward modeling. Affected by the Hercynian move- ment,the tectonic deformation in the basin was dominated by extensional faults. The Yangtze Plate subducted into Song- pan-Ganzi orogenic belt in the Indosinian period,thus the tectonic deformation was dominated by compression and uplift in the basin and the part of the Triassic was denudated. The periphery in the basin continued to uplift in the Yanshanian peri- od,while the internal structure was inherited. The basin entered a stage of rapid compression and uplift in Himalayan peri- od. The typical tectonic characteristics were thrust faults and fault-related folds,and the internal tectonic deformation var- ied in the basin. The fault-bend deformation constrained by the basement-involved basin-controlling fault was dominant in the east,and the fault detachment deformation controlled by secondary faults was the typical feature in the western margin. The fault development pattern in the basin gradually expanded from the east in the basin to the west. In terms of genesis, from the Hercynian period to the Indosinian period,the basin was continuously compressed by the Yunnan-Qinghai-Tibet oceanic plate and the Pacific Plate,and the earliest Sikai fault was formed inside the basin. The basin appeared in its em-bryonic form in the Yanshanian period,and the extremely thick Jurassic and Cretaceous were deposited with Qiliba area as the center,with the periphery in the basin continuing to uplift. The basin was compressed by Songpan-Ganzi orogenic belt and Jinpingshan orogenic belt,thus the tectonic pattern in the basin with the coexistence of thrust faults and fault-related folds was formed in the Himalayan period.