-
进入特高含水期油藏的剩余油分布更加复杂、剩余油富集区减小,在特高含水和低油价双重压力下,仍以投资新井来实现变流线调整的方式难以持续,依靠常规的调整挖潜措施改善开发效果的难度加大。为进一步提高特高含水期油藏水驱采收率,改善平面、纵向动用差异,学者们在矢量开发调整、变流线调整、细分层系、层系重组等方面开展了大量研究[1-4]。在特高含水期,利用多层系油藏现有井网进行变流线调整,实现低油价下老油田效益开发,是特高含水期油藏延长经济寿命期的关键[5]。胜利油区孤岛油田西区北 Ng3-4 区块 1976 年开始实施反九点井网两层系合采,1990年后整体加密为正对行列井网,经过 40 多年的开发,目前已进入特高含水后期开发阶段[6]。为此,该区块开展层系井网互换试验,通过转变层系的井网,改变液流方向,扩大波及体积,互换后取得一定的开发效果,但单井效果差异较大[7-8]。大庆油区从井网开发现状、存在问题及油层动用状况等方面,开展了杏四—六北区块一次加密井网 2 套层系(萨尔图、葡 14 及以下油层)互换可行性研究[9],但未开展层系互换后油井见效差异的研究。为此,笔者从注采系统控制油藏耗水率的角度,开展变流线致效机制研究,分析油井不同见效特征的原因,结合井网与剩余油的配置关系,总结提炼出4种见效模式,为同类油藏变流线调整提供指导。
-
1 地质概况及开发现状
-
胜利油区孤岛油田西区北是以新近系馆陶组疏松砂岩为储层的大型披覆背斜构造整装普通稠油油藏,其主要地质特征包括:①储层物性较好,属于高孔高渗透油藏,但非均质性较强。②纵向上含油小层多,井段长,主力层砂体厚度大,延伸距离远,非主力层砂体发育零散(图1)。③上层系 Ng3、下层系 Ng4均发育一套厚油层,Ng35 和 Ng44 砂体厚度平均为10~12 m,平均有效厚度为9 m。④层系间隔层发育稳定,平均厚度为3.4 m,上、下层系仅在试验区东部存在连通区,占全区面积的7%。
-
主要开发现状为:①上、下层系井网长期未调整,注采流线固定。研究区 1990 年细分为 Ng3 和 Ng4 共 2 套开发层系。②上、下层系井网注采流线差异较大、角度较大。上层系采用北偏西 30°行列井网,下层系采用北偏东 10°行列井网,2 套层系井网夹角为40°(图2)。③上、下层系动用状况及剩余油分布存在较大差异。受储层物性及非均质性的影响,油藏层系间注采状况以及主力层与非主力层的采出状况均差异较大[10-13]。
-
研究区剩余油总体呈普遍分布、局部富集[14] 的特点。受沉积相和注采流线等因素影响,由2012年以来剩余油新井饱和度统计得知,平面上剩余油饱和度差异大,水井排及主流线剩余油饱和度相对较低(30%~40%),油井排及断层边部剩余油饱和度高 (40%~50%);不同层系同一井点处于不同流线部位,剩余油饱和度差异也较大。以孤岛西 5-斜检 131 取心井为例,该井位于上层系非主流线位置的剩余油饱和度为 41%,位于下层系主流线上的剩余油饱和度仅为25.2%。低剩余油饱和度主流线区域表现为明显的高耗水特征,注水利用率低。
-
2 层系井网互换变流线调整技术
-
层系井网互换变流线调整技术是针对纵向多层系油藏流线固定、不同层系间井网形式交错及动用状况差异大的问题,考虑充分利用老井,以提高油藏采收率和延长油藏经济寿命期为目标,通过层系井网互换变流线、侧钻避高耗水层带、注采结构调整,改变液流方向,抑制高耗水层带,实现多层系油藏井网综合利用变流线而采用的调整技术。
-
图1 孤岛油田西区北Ng3-4油藏剖面(EW向)
-
Fig.1 Profile of Ng3-4 reservoir in north of west area of Gudao Oilfield(east-west direction)
-
图2 孤岛油田西区北Ng3-4层系叠合井网
-
Fig.2 Superimposed well pattern of Ng3-4 strata in north of west area of Gudao Oilfield
-
层系井网互换方式、流线转变角度、油井相对位移等因素影响着变流线调整的效果,通过建立孤岛油田西区北典型正对行列式井网,研究层系井网互换方式(图3)、流线转变角度及油井相对位移对变流线调整效果的影响,建立变流线技术政策界限图版(图4)。研究结果表明:在层系井网互换调整过程中,油水井同时实施及先水井后油井效果均较好,且层系井网互换后流线转变角度约为 50°、油井相对位移大于半个注采井距能获得较好的变流线调整效果。
-
图3 不同层系井网互换方式的含水率变化
-
Fig.3 Water cut variation curves of different layer and well pattern interchange modes in different strata
-
图4 变流线技术政策界限图版
-
Fig.4 Boundary chart of technology policy on variable streamlines
-
3 油井致效机制
-
冯其红等基于流线模型引入瞬时流场潜力系数评价流场调整效果[14],但未能反映出转流线对抑制油藏耗水率的影响。而特高含水后期油藏高饱和度剩余油富集区域规模越来越小,油藏发育明显的高耗水层带,影响转流线后的油井效果的主要致效原因是注采系统对高耗水区域的控制程度。分别选取驱替压力梯度和水油渗流速度比作为特高含水期油藏转流线调整开发效果评价的判识参数。采用Tanimoto系数法求解2个判识参数场间的向量相似度,来衡量驱替压力梯度参数场和水油渗流速度比参数场间的匹配性关系,通过匹配性评价参数可判断转流线效果。其中,驱替压力梯度参数场,由达西公式推导可得 i方向的驱替压力梯度表达式为:
-
同理,得到 j 和 k 方向的驱替压力梯度表达式为:
-
则任意网格驱替压力梯度表达式为:
-
其中:
-
水油渗流速度比参数场的计算式为:
-
将驱替压力梯度参数场及水油渗流速度比参数场处理成向量,采用 Tanimoto 系数法计算其相似度,其表达式为:
-
引入耗水控制指数表征注采系统抑制高耗水层带的程度,其表达式为:
-
该方法计算的耗水控制指数范围为[0,1],耗水控制指数越趋向于1,表明当前注采政策越合理,油藏耗水率越低。
-
4 油井见效模式
-
孤岛油田西区北 Ng3-4 实施层系井网互换调整后,日增油量为39.8 t/d,含水率下降2.4%,运行成本降低 183 元/t,整体调整效果显著,但单井效果相差较大。井网互换后油井耗水控制指数统计结果 (图5)表明,互换后油井所在注采单元耗水控制指数差异较大,反映变流线调整后井网对高耗水层带的控制程度差异大,导致变流线调整后油井的见效特征不同。
-
图5 井网互换后油井耗水控制指数统计
-
Fig.5 Statistics of water consumption control indexes in oil wells after layer and well pattern interchange
-
孤岛油田层系井网互换方案制定和实施的根本目的是通过层系井网互换调整油井附近流场,从而改善油井的生产效果,并能达到快速见效[15-19]。但通过油井开发动态分析可知,层系井网互换后的见效状况并不一致,耗水控制指数高的井区井网对剩余油控制程度高,高耗水层带不发育或得到有效抑制,转流线见效快。研究将层系井网互换后油井见效模式归纳为即时见效型、滞后见效型、反复见效型和无效型共4种类型。
-
即时见效型 即时见效模式的油井一般位于该层系原注采分流线附近,其周围有大量剩余油,进而使得互换后该井的耗水率降低,开发效果得到有效改善。井网互换前,油井西 6-121 位于下层系井网中,水井西5-142和西5-12驱替原油分别流向油井西 6-12 和西 6-11,该注采方向高耗水层带不发育,计算耗水控制指数,选取注采井连线及油井排间半个注采井距控制的长方形区域,该注采单元耗水控制指数为 0.87,油井西 6-121 位于油水井排注采分流线上,使得该处大量剩余油未得到有效驱替;当下层系井网换到上层系后,参照油井西6-12,油井西 6-121 相对位移为半个注采井距,流线转变角度为42°,且该井位于剩余油富集区域,水井西6-132 和西 5-122 与油井西 6-121 存在直接的注采对应关系,油井西6-121处于注采主流线上,可使油井西6-121附近大量剩余油被水井西6-132和西5-12 驱替,剩余油得到有效的动用,油井西6-121立即出现增油降水现象(图6)。
-
图6 井网互换前后油井西6-121井位
-
Fig.6 Location map of Well X6-121 before and after layer and well pattern interchange
-
滞后见效型 滞后见效型为层系井网互换后油井产量未立即上升,而是过一段时间后出现明显的增油降水状况,存在效果改善滞后现象。该现象的油井一般是互换后油井井点附近强水淹、剩余油赋存量较少,而新建立的注采关系井间存在剩余油富集区。通过注水井一段时间的驱替,剩余油到达油井井底开始见效,因此存在一定程度的滞后。井网互换前油井西 8-101 处于下层系,油井西 8-101 附近存在明显的未得到有效动用的剩余油,当下层系井网互换到上层系后,油井西 8-101 附近的注采对应关系较少,只有水井西 8-132和西 7-122,新注采井网条件下注采单元耗水控制指数为 0.76,油井附近的原油未得到及时的驱替,存在滞后现象(图7)。
-
图7 井网互换前后油井西8-101井位
-
Fig.7 Location map of Well X8-101 before and after layer and well pattern interchange
-
反复见效型 反复见效型为进行层系井网互换后油井产量出现反复波动的现象且多向注采对应。各注采连线上剩余油驱替至油井井底的时间不同,导致油井产油量和含水率出现反复波动。
-
层系井网互换前油井西 5-141 处于下层系,且处于水井排水井之间,水井西5-142和西5-13驱替原油至油井西 6-12,使油井西 5-141处于注采分流线上,且处于水井排一侧,所以该油井处存在高饱和度剩余油区域,但剩余油富集较少,当下层系井网互换至上层系后,注采单元耗水控制指数为0.69,由于油井西 5-141 处存在剩余油,因此水井西 6-141和西6-132注水可使部分剩余油采出,但由于剩余油较少,所以产量下降迅速。相比滞后见效型,反复见效型见效期存在明显的分段特征(图8)。
-
无效型 无效型为井网互换后油井的产油含水效果没有改善。出现无效型模式的油井往往是由于油井互换后所在层位剩余油较少,水淹严重,或互换后受储层非均质性、油水井工作制度等的影响未建立起有效的注采驱替关系。
-
井网互换前油井西 4-141 处于下层系,水井西3-151 和西 3-142 驱替原油至油井西 4-15,而油井西4-141正处于水井西3-142与油井西4-15注采主流线上,使油井西4-141附近原油驱替充分,井区高耗水层带发育,互换层系后,注采单元耗水控制指数仅为0.29,井区注入水低效循环,调整效果差。该类油井可通过老井侧钻等方式避开高耗水区域改善开发效果(图9)。
-
图8 井网互换前后油井西5-141井位
-
Fig.8 Location map of Well X5-141 before and after layer and well pattern interchange
-
总体来看,原注采井对各注采单元的动用情况直接影响该油井附近的剩余油分布,进而影响互换井初期的生产情况。若层系井网互换后油井位于原注采分流线上,则该油井附近剩余油较富集,动用状况较好,该油井为即时见效型或滞后见效型; 若互换后的油井位于原注采主流线上,则该油井附近剩余油较少,驱替状况较差,该油井为无效型。
-
5 结论
-
对孤岛油田西区北层系井网互换调整后的油井开发特征进行了研究和分类,基于油井见效程度将油井见效分为即时见效型、滞后见效型、反复见效型和无效型共 4 种类型,进而对油井出现不同见效模式的致效机制进行了研究。通过选取驱替压力梯度和水油渗流速度比 2 个判识参数场,利用 Tanimoto 系数法求解 2 个参数场间的向量相似度,引入耗水控制指数评价层系井网互换后注采井网对高耗水层带的控制作用。揭示了层系井网互换后油井致效的根本原因。
-
图9 井网互换前后油井西4-141井位
-
Fig.9 Location map of Well X4-141 before and after layer and well pattern interchange
-
综合油井见效模式及致效机制,对油田进行层系井网调整的建议有:①进行井网调整时,油井调整至注采分流线,以提高注采井网对剩余油的控制程度。②油井调整到注采主流线等高耗水区域附近,应通过老井侧钻、堵水调剖等方式改善转流线效果。
-
符号解释
-
A ——网格体截面积,m2;
-
B o——原油体积系数,无因次;
-
i ——三维坐标x方向;
-
j ——三维坐标y方向;
-
k ——三维坐标z方向;
-
K ——渗透率,mD;
-
K o——油相有效渗透率,mD;
-
K ro——油相相对渗透率,无因次;
-
K w——水相有效渗透率,mD;
-
L ——网格体长度,m;
-
M ——流度系数,m/(mPa∙s);
-
∇p ——任意网格 i,j,k 方向叠加后的驱替压力梯度,10-1 MPa/m;
-
pi ——网格i方向压力,10-1 MPa;
-
∇pi,∇pj,∇pk ——i,j,k方向的驱替压力梯度,10-1 MPa/m;
-
Qi,Qj,Qk ——i,j,k方向的油相渗流速度,m3 /d;
-
R ——水油渗流速度比,无因次;
-
Ri ——网格i方向水油渗流速度比,无因次;
-
T ——Tanimoto系数,无因次;
-
TRANi,TRANj,TRANk ——i,j,k 方向传导率,10 mPa·s· m3 /(MPa·d-1);
-
v w——水相渗流速度,m3 /d;
-
v o——油相渗流速度,m3 /d;
-
μo——油相黏度,mPa∙s;
-
μw——水相黏度,mPa∙s。
-
参考文献
-
[1] 刘丽杰.胜坨油田特高含水后期矢量开发调整模式及应用[J].油气地质与采收率,2016,23(3):111-115.LIU Lijie.Vector development adjustment modes and its applica⁃ tion in late extra-high water cut stage of Shengtuo oilfield[J].Pe⁃ troleum Geology and Recovery Efficiency,2016,23(3):111-115.
-
[2] 柏明星,张志超,李岩,等.砂岩油田高含水后期变流线精细调整研究[J].特种油气藏,2017,24(2):86-88,164.BAI Mingxing,ZHANG Zhichao,LI Yan,et al.Study on precise flooding direction adjustment of sandstone oilfields in the late stage with high water cut[J].Special Oil & Gas Reservoirs,2017,24(2):86-88,164.
-
[3] 高聚同.孤东二区Ng5细分变流线井网调整技术研究[J].西南石油大学学报:自然科学版,2015,37(3):122-128.GAO Jutong.Adjustment technology of well pattern in Gudong No.2 block Ng5 based on segmentation variable streamline meth⁃ od[J].Journal of Southwest Petroleum University:Science & Technology Edition,2015,37(3):122-128.
-
[4] 闫丽萍.大庆油田北二东区块层系重组调整方法[J].大庆石油地质与开发,2013,32(1):101-104.YAN Liping.Recombining and adjusting methods of the series of strata in east Bei’er block of Daqing Oilfield[J].Petroleum Geolo⁃ gy & Oilfield Development in Daqing,2013,32(1):101-104.
-
[5] 崔传智,张涛,黄迎松,等.高含水期整装油藏剩余油分布及层井网互换可行性研究[C].西安:油气田勘探与开发国际会议,2019.CUI Chuanzhi,ZHANG Tao,HUANG Yingsong,et al.Study on the distribution of remaining oil and the feasibility of layer well pattern exchange in high water cut stage of integrated reservoir [C].Xi’an:International Field Exploration and Development Con⁃ ference,2019.
-
[6] 王端平.对胜利油区提高原油采收率潜力及转变开发方式的思考[J].油气地质与采收率,2014,21(4):1-4.WANG Duanping.Some thoughts about potential of oil recovery ef⁃ ficiency and development model transition in Shengli district[J].Petroleum Geology and Recovery Efficiency,2014,21(4):1-4.
-
[7] 王相,何岩峰,冯其红,等.基于均衡驱替理念的非均质油藏井组设计方法[J].常州大学学报:自然科学版,2018,30(6):41-46.WANG Xiang,HE Yanfeng,FENG Qihong,et al.A well pattern design method for heterogeneous reservoir based on the concept of equilibrium displacement[J].Journal of Changzhou University:Natural Science Edition,2018,30(6):41-46.
-
[8] LEI Q,WENG D,LUO J,et al.Achievements and future work of oil and gas production engineering of CNPC[J].Petroleum Explo⁃ ration and Development,2019,46(1):145-152.
-
[9] 李雪松.杏四~六面积北区块一次加密井网层系互换可行性研究[J].油气藏评价与开发,2011,1(6):35-39.LI Xuesong.Research on the feasibility of layer system exchange of the primary infill well pattern in the north of the Xing4-6 block [J].Reservoir Evaluation and Development,2011,1(6):35-39.
-
[10] 冯其红,王波,王相,等.多层非均质油藏开发指标预测方法 [J].特种油气藏,2014,21(4):85-88.FENG Qihong,WANG Bo,WANG Xiang,et al.Prediction ap⁃ proach of development indices of multi-layer heterogeneous reser⁃ voir[J].Special Oil & Gas Reservoirs,2014,21(4):85-88.
-
[11] MAZZLAN K A,CHIA M P C,TAMIN M,et al.Mature field revi⁃ talisation:an integrated,rapid,collaborative approach for candi⁃ date selection and reservoir optimization[C].Beijing:11st Interna⁃ tional Petroleum Technology Conference,2019.
-
[12] 屈亚光,丁祖鹏,潘彩霞,等.厚油层层内夹层分布对水驱效果影响的物理实验研究[J].油气地质与采收率,2014,21(3):105-107,110.QU Yaguang,DING Zupeng,PAN Caixia,et al.Physical experi⁃ ment on distribution of interlayers impact on water flooding recov⁃ ery efficiency[J].Petroleum Geology and Recovery Efficiency,2014,21(3):105-107,110.
-
[13] JIA Hu,DENG Lihui.Water flooding flowing area identification for oil reservoirs based on the method of streamline clustering arti⁃ ficial intelligence[J].Petroleum Exploration and Development,2018,45(2):328-335.
-
[14] 冯其红,李闪闪,黄迎松,等.基于瞬时流场潜力系数的水驱开发效果评价方法[J].油气地质与采收率,2020,27(4):79-84.FENG Qihong,LI Shanshan,HUANG Yingsong,et al.Evaluation method of water flooding development effect based on instanta⁃ neous flow field potential coefficient[J].Petroleum Geology and Recovery Efficiency,2020,27(4):79-84.
-
[15] 李振泉,郭长春,王军,等.特高含水期油藏剩余油分布新认识——以孤岛油田中一区Ng上3砂组为例[J].油气地质与采收率,2019,26(6):19-27.LI Zhenquan,GUO Changchun,WANG Jun,et al.New under⁃ standing of remaining oil distribution in oil reservoirs at extrahigh water-cut stage:A case of Upper Ng3 sand group in Zhongyi area,Gudao Oilfield[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(6):19-27.
-
[16] WANG Xiang,HAYNES R D,HE Yanfeng,et al.Well control op⁃ timization using derivative-free algorithms and a multiscale ap⁃ proach[J].Computers & Chemical Engineering,2019,123(4):12-33.
-
[17] 朱圣举,刘萍,柳良仁.低渗透油藏正方形反九点井网见效见水关系研究[J].特种油气藏,2013,20(3):79-81.ZHU Shengju,LIU Ping,LIU Liangren.Study on the relationship between flood response and water breakthrough in the square in⁃ vert nine-spot well pattern of low permeability reservoirs[J].Spe⁃ cial Oil & Gas Reservoirs,2013,20(3):79-81.
-
[18] 李育.松545井区长6油藏油田注水见效分析[C].成都:2017 油气田勘探与开发国际会议,2017:1 981-1 986.LI Yu.Analysis of water injection effectiveness of Chang6 reser⁃ voir oil field in Song 545 well block[C].Chengdu:2017 Interna⁃ tional Conference on Oil and Gas Field Exploration and Develop⁃ ment,2017:1 981-1 986.
-
[19] ALVARADO V,MANRIQUE E.Enhanced oil recovery:An up⁃ date review[J].Energies,2010,3(9):1 529-1 575.
-
摘要
孤岛油田西区北Ng3-4开展层系井网互换先导试验,通过层系井网互换,改变液流方向,提高波及体积,互换后该区块取得了较好的开发调整效果,但单井实施效果差异较大。采用Tanimoto系数法求解驱替压力梯度和水油渗流速度比2个判识参数场间的向量相似度,引入耗水控制指数评价参数评价变流线致效机制。结合油井见效规律,将油井见效特征归纳为4种模式:即时见效型、滞后见效性、反复见效型和无效型。致效机制研究结果表明,油井互换后所处流线部位及井区油水分布,直接影响互换后油井对现层系的剩余油动用状况及高耗水层带的控制程度,进而影响互换后油井的生产效果。
Abstract
A pilot test of the layer and well pattern interchange was carried out in Ng3-4 strata in the north of the west area of Gudao Oilfield. The layer and well pattern interchange altered the fluid flow direction and increased the swept volume. After the layer and well pattern interchange,the marked results of development and adjustment were achieved in the block, but the results varied greatly between individual wells. The Tanimoto coefficient was used to calculate the vector similarity between the fields of two discriminant parameters,i.e. the displacement pressure gradient and the water-oil seepage veloci- ty ratio,and the water consumption control index was introduced to evaluate the response mechanism of the variable stream- line. According to the response characteristics of oil wells,the responses were summarized into immediate response,de- layed response,repeated response and no response. The research results of the response mechanism demonstrate that the streamline position of the existing strata where oil wells are located in and the differential distribution of oil and water in the well area directly affect the production status of remaining oil and the control degree of the high water consumption zones through the oil wells after the layer and well pattern interchange. As a result,the production of the oil wells is influenced af- ter the layer and well pattern interchange.