en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

何强(1995—),男,四川自贡人,在读硕士研究生,从事油页岩水力压裂缝网表征方面的研究。E-mail:1085980453@qq.com。

通讯作者:

何柏(1988—),男,四川成都人,实验师,博士。E-mail:hebo@scu.edu.cn。

中图分类号:TE357.1

文献标识码:A

文章编号:1009-9603(2021)05-0116-08

DOI:10.13673/j.cnki.cn37-1359/te.2021.05.014

参考文献 1
Advanced Resources International.EIA/ARI world shale gas and shale oil resource assessment[R].Arlington:U.S.Energy Informa⁃ tion Administration,2013.
参考文献 2
胡明,张渝苹,陆廷清,等.渝东北寒武系鲁家坪组泥页岩裂缝特征及其页岩气意义[J].大庆石油地质与开发,2020,39(1):136-143.HU Ming,ZHANG Yuping,LU Tingqing,et al.Fracture character⁃ istics of the mud shale in Cambrian Lujiaping Formation in North⁃ east Chongqing and their shale gas significance[J].Petroleum Ge⁃ ology & Oilfield Development in Daqing,2020,39(1):136-143.
参考文献 3
JAVADPOUR F,MCCLURE M,NARAGHI M E.Slip-corrected liquid permeability and its effect on hydraulic fracturing and fluid loss in shale[J].Fuel,2015,160(15):549-559.
参考文献 4
林会喜,宋明水,王圣柱,等.叠合盆地复杂构造带页岩油资源评价——以准噶尔盆地东南缘博格达地区中二叠统芦草沟组为例[J].油气地质与采收率,2020,27(2):7-17.LIN Huixi,SONG Mingshui,WANG Shengzhu,et al.Shale oil re⁃ source evaluation in complex structural belt of superimposed ba⁃ sin:A case study of middle Permian Lucaogou Formation in Bog⁃ da area,southeast margin of Junggar Basin[J].Petroleum Geology and Recovery Efficiency,2020,27(2):7-17.
参考文献 5
ZHOU Jian,JIN Yan,CHEN Mian.Experimental investigation of hydraulic fracturing in random naturally fractured blocks[J].Inter⁃ national Journal of Rock Mechanics & Mining Sciences,2010,47(7):1 193-1 199.
参考文献 6
ZHOU Jian,CHEN Mian,JIN Yan,et al.Analysis of fracture prop⁃ agation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(7):1 143-1 152.
参考文献 7
孟庆民,张士诚,郭先敏,等.砂砾岩水力裂缝扩展规律初探 [J].石油天然气学报,2010,32(4):119-123.MENG Qingmin,ZHANG Shicheng,GUO Xianmin,et al.A prima⁃ ry investigation on propagation mechanism for hydraulic fractures in glutenite formation[J].Journal of Oil and Gas Technology,2010,32(4):119-123.
参考文献 8
朱艳,李义连,杨森,等.CO2和 N2对页岩气开采效果的影响 [J].油气地质与采收率,2019,26(6):129-135.ZHU Yan,LI Yilian,YANG Sen,et al.Effect of CO2 and N2 on shale gas recovery[J].Petroleum Geology and Recovery Efficien⁃ cy,2019,26(6):129-135.
参考文献 9
MAXWELL S C,URBANCIC T I,STEINSBERGER N,et al.Mi⁃ croseismic imaging of hydraulic fracture complexity in the Barnett shale[C].San Antonio:SPE Technical Conference & Exhibition,2002.
参考文献 10
SUN Zhiyu,HUANG Zhiwen,LIU Changyin,et al.Experimental research on hydraulic fracture initiation and propagation by CT scanning[C].Xi’an:Field Exploration & Development Confer⁃ ence,IET,2016.
参考文献 11
张树翠,孙可明.储层非均质性和各向异性对水力压裂裂纹扩展的影响[J].特种油气藏,2019,26(2):96-100.ZHANG Shucui,SUN Keming.Hydraulic fracturing crack propa⁃ gation under various reservoir heterogeneity and anisotropy[J].Special Oil & Gas Reservoirs,2019,26(2):96-100.
参考文献 12
郭彤楼.页岩气勘探开发中的几个地质问题[J].油气藏评价与开发,2019,9(5):14-19.GUO Tonglou.A few geological issues in shale gas exploration and development[J].Reservoir Evaluation and Development,2019,9(5):14-19.
参考文献 13
GUO Tiankui,ZHANG Shicheng,QU Zhanqing,et al.Experimen⁃ tal study of hydraulic fracturing for shale by stimulated reservoir volume[J].Fuel,2014,128(14):373-380.
参考文献 14
KARPYN Z T,ALAJMI A,RADAELLI F,et al.X-ray CT and hy⁃ draulic evidence for a relationship between fracture conductivity and adjacent matrix porosity[J].Engineering Geology,2009,103(3/4):139-145.
参考文献 15
ZHANG Xinwei,LU Yiyu,TANG Jiren,et al.Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J].Fuel,2016,190(15):370-378.
参考文献 16
HE Jianming,LIN Chong,LI Xiao,et al.Initiation,propagation,closure and morphology of hydraulic fractures in sandstone cores [J].Fuel,2017,208(15):65-70.
参考文献 17
王丹,王维旭,朱炬辉,等.四川盆地中浅层龙马溪组页岩储层改造技术[J].断块油气田,2019,26(3):350-354.WANG Dan,WANG Weixu,ZHU Juhui,et al.Stimulation tech⁃ nology of medium-shallow shale gas in Longmaxi Formation of Si⁃ chuan Basin[J].Fault-Block Oil and Gas Field,2019,26(3):350-354.
参考文献 18
申浩冉,丁文龙,谷阳,等.黔北凤冈地区龙马溪组页岩孔隙结构特征[J].断块油气田,2019,26(4):480-485.SHEN Haoran,DING Wenlong,GU Yang,et al.Pore structure characteristics of Longmaxi Formation shale in Fenggang area,northern Guizhou[J].Fault-Block Oil and Gas Field,2019,26(4):480-485.
参考文献 19
JIANG Changbao,NIU Binwei,YIN Guangzhi,et al.CT-based 3D reconstruction of the geometry and propagation of hydraulic frac⁃ turing in shale[J].Journal of Petroleum Science and Engineering,2019,179:899-911.
参考文献 20
LIU Ping,JU Yang,GAO Feng,et al.CT identification and fractal characterization of 3D propagation and distribution of hydrofrac⁃ turing cracks in low-permeability heterogeneous rocks[J].Journal of Geophysical Research Solid Earth,2018,123(3):2 156-2 173.
参考文献 21
TANG Cheng.Progress in fracture characterization and prediction [J].Science & Technology,2013,31(21):74-79.
参考文献 22
白国平,邱海华,邓舟舟,等.美国页岩油资源分布特征与主控因素研究[J].石油实验地质,2020,42(4):524-532.BAI Guoping,QIU Haihua,DENG Zhouzhou,et al.Distribution and main controls for shale oil resources in USA[J].Petroleum Geology & Experiment,2020,42(4):524-532.
参考文献 23
夏遵义,马海洋,房堃.渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J].石油实验地质,2019,41(1):134-141.XIA Zunyi,MA Haiyang,FANG Kun.Rock mechanical properties and fracability of continental shale in Zhanhua Sag,Bohai Bay Ba⁃ sin[J].Petroleum Geology & Experiment,2019,41(1):134-141.
参考文献 24
SANDERSON D J,NIXON C W.The use of topology in fracture network characterization[J].Journal of Structural Geology,2015,72:55-66.
参考文献 25
CARDONA R,JENNER E,DAVIS T L.Fracture network charac⁃ terization from P-and S-wave data at Weyburn field,Canada[J].SEG Expanded Abstracts,2003,(1):370.
参考文献 26
冯杰,于纪玉.利用CT扫描技术确定土壤大孔隙分形维数[J].灌溉排水学报,2005,24(4):26-28,40.FENG Jie,YU Jiyu.Determination fractal dimension of soil macro⁃ pore using computed tomography[J].Journal of Irrigation and Drainage,2005,24(4):26-28,40.
参考文献 27
杨雷,金之钧.全球页岩油发展及展望[J].中国石油勘探,2019,24(5):553-559.YANG Lei,JIN Zhijun.Global shale oil development and pros⁃ pects[J].China Petroleum Exploration,2019,24(5):553-559.
参考文献 28
LI Tingjie,WANG Yaohui,ZHANG Meiying,et al.Fractal proper⁃ ties of crack in rock and mechanism of rock-burst[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(1):6-10.
参考文献 29
LI Guo,ZHANG Ru,XU Xiaolian,et al.CT image reconstruction of coal rock three-dimensional fractures and body fractal dimen⁃ sion under triaxial compression test[J].Rock & Soil Mechanics,2015,36(6):1 633-1 642.
参考文献 30
MA Tianran,MA Depeng,YANG Yongjie.Fractal characteristics of coal and sandstone failure under different unloading confining pressure tests[J].Advances in Materials Science and Engineering,2020,2020(11):1-11.
参考文献 31
王龙,张金川,唐玄.鄂尔多斯盆地下寺湾—云岩地区长7段页岩气测井评价与分布规律研究[J].中国石油勘探,2019,24(1):129-136.WANG Long,ZHANG Jinchuan,TANG Xuan.Logging evaluation and distribution law of Chang7 shale gas in Xiasiwan-Yunyan ar⁃ ea,Ordos Basin[J].China Petroleum Exploration,2019,24(1):129-136.
参考文献 32
JU Yang,XI Chaodong,ZHAN Yang,et al.Laboratory in situ CT observation of the evolution of 3D fracture networks in coal sub⁃ jected to confining pressures and axial compressive loads:a novel approach[J].Rock Mechanics and Rock Engineering,2018,51(11):3 361-3 375.
参考文献 33
ZHAO Xiaoping,PEI Jianliang,DAI Feng,et al.Fractal descrip⁃ tion of cracks in rock mass[J].Journal of Sichuan University,2014,46(6):95-100.
参考文献 34
ZHAO Peng,XIE Lingzhi,FAN Zhichao,et al.Mutual interference of layer plane and natural fracture in the failure behavior of shale and the mechanism investigation[J].Petroleum Science,2021,18(2):618.
参考文献 35
张士诚,郭天魁,周彤,等.天然页岩压裂裂缝扩展机理试验 [J].石油学报,2014,35(3):496-503,518.ZHANG Shicheng,GUO Tiankui,ZHOU Tong,et al.Fracture propagation mechanism experiment of hydraulic fracturing in nat⁃ ural shale[J].Acta Petrolei Sinica,2014,35(3):496-503,518.
参考文献 36
毛灵涛,连秀云,郝丽娜.基于数字体图像三维裂隙的分形计算及应用[J].中国矿业大学学报,2014,43(6):1 134-1 139.MAO Lingtao,LIAN Xiuyun,HAO Lina.The fractal calculation of 3D cracks based on digital volumetric images and its application [J].Journal of China University of Mining & Technology,2014,43(6):1 134-1 139.
目录contents

    摘要

    通过压裂形成的复杂裂缝网络是提高致密油气藏产能的关键措施。采用真三轴实验系统对鄂尔多斯盆地中生界三叠系延长组油页岩试件进行水力压裂物理模拟实验,并对压裂前后试件的裂缝网络进行三维 CT重构。基于分形理论和数字图像处理技术,对室内水力压裂前后裂缝网络的复杂性进行研究。结果表明,基于立方体覆盖法压裂前后裂缝网络的分形维数变化率为 0.45%~3.64%。分形维数变化率与水平应力比之间始终存在负相关关系。然而,在不同压裂液黏度下,分形维数变化率先增大后减小,在黏度为5.0 mPa·s时分形维数变化率最大。在较低的水平应力比和相对较低的压裂液黏度下,更容易形成复杂的裂缝网络,而过低或过高的压裂液黏度均限制了复杂裂缝网络的形成。

    Abstract

    The complex fracture networks produced by hydraulic fracturing are crucial to the higher gas/oil production ca- pacity from tight reservoirs. In this study,the physical simulation experiments on hydraulic fracturing were conducted by a true triaxial test system with the oil shale samples from the Triassic Yanchang Formation,and 3D CT reconstruction was performed on the fracture networks of the samples before and after fracturing. The complexity of the fracture networks were quantitatively described on the basis of the fractal theory and the digital image processing technology. The results indicate that the change rate of the fractal dimension of fracture networks are 0.45%-3.64% before and after fracturing based on the cube covering method. A negative correlation is always between the change rates of the fractal dimension and the horizontal stress ratio. Moreover,the change rate of the fractal dimension grows first and then declines as the fracturing fluid viscosity varies,and it reaches the maximum at the fluid viscosity of 5.0 mPa·s. A low horizontal stress ratio and a low fluid viscosity can intensify the complicated morphology of fracture networks,while over low or high fracturing fluid viscosity restrains the formation of fracture networks.

  • 全球页岩油地质资源量为 9 368.35×108 t,技术可采资源量为 618.47×108 t,中国页岩油储量丰富,页岩油技术可采资源量为 43.93×108 t,居世界第三位[1]。由于页岩油储层的渗透率极低,需要进行水力压裂以促进岩石破裂形成复杂的裂缝网络,从而提高裂缝导流能力和非常规油气的产量[2-3]

  • 评价裂缝网络的改造效果可通过表征压裂后裂缝网络的复杂性实现。目前在实验室中可用示踪剂、劈裂岩石样品和荧光法获得断裂网络[4-7]。然而,这些方法会对岩石样品造成损伤,在获得裂缝网络的过程中会出现二次裂纹,更重要的是难以获得三维裂缝网络。声发射是获得裂缝网络的无损手段,但难以将离散的声发射点结合起来形成较为精确的裂缝[8-9]。很多学者通过CT扫描技术获得了样品中裂缝和孔隙度的空间几何形状[10-14]。为了研究裂缝的起裂、延伸和闭合[15-16],用显微镜和 CT 扫描仪观察裂缝的形态和内部结构,但这些研究没有进行三维 CT 重构及可视化处理。王丹等基于三维重建技术,研究了地应力和压裂液黏度对水力裂缝传播和分布特征的影响[17-20]。尽管在这些研究中已经进行了裂缝网络的三维重建,但它们主要是以定性的方式进行的。因此,需要引入一种定量表征方法来研究三维裂缝网络的复杂性。

  • 以往研究中定量描述裂缝复杂性的方法包括裂缝密度、拓扑结构和基于波速的各向异性参数和分形理论等[21-26]。分形理论与其他三种方法相比,它不仅反映了裂缝的分布特征,而且定量地描述了裂缝的复杂性。杨雷等基于电镜扫描结果,评价了分形维数、岩石组成与应力状态之间的关系[27-28]。 LI等基于 CT扫描,利用分形理论,表征了煤岩裂缝网络,并讨论了荷载水平对裂缝演化的影响[29-32]。 ZHAO等指出裂隙岩体试件的抗压强度随分形维数的增加而减小[33-35]。但上述研究主要针对单/三轴实验中岩石裂隙的分形维数展开的讨论,而少有针对水力压裂后岩石裂缝网络的分形研究,采用分形理论研究水力压裂后裂缝网络分形特征的研究更少。为此,采用真三轴实验系统对鄂尔多斯盆地中生界三叠系延长组油页岩试件进行水力压裂物理模拟实验,并对压裂前后试件的裂缝网络进行三维 CT 重构。基于分形理论和数字图像处理技术定量地表征了水力压裂前后裂缝网络复杂性,探讨了不同水平应力比和压裂液黏度下压裂前后分形维数变化率,分析了水力压裂后裂缝网络复杂性与分形维数的关系。通过分形维数反映压裂裂缝网络的改造效果,探究能够得到较优压裂效果的实验条件,以期为页岩油储层的水力压裂裂缝网络改造提供依据。

  • 1 实验方法

  • 1.1 油页岩试件制备

  • 实验所用油页岩露头采自鄂尔多斯盆地中生界三叠系延长组长 7 段。除去表面风化层后,油页岩露头经切割及研磨加工成尺寸为 100 mm×100 mm×100 mm 的标准油页岩立方体试件。用垂直于层理表面的金刚石钻头在立方体试件中心钻出一个深度为 50 mm、直径为 12 mm 的井筒(图1),井筒方向均垂直于层理平面。模拟套管采用长度为 50 mm、外径为8 mm、内径为4 mm的高强度钢管。

  • 图1 油页岩试件示意

  • Fig.1 Oil shale samples

  • 1.2 实验设计

  • 油页岩水力压裂实验主要考虑水平应力比和压裂液黏度对油页岩压裂后裂缝网络复杂性的影响。根据鄂尔多斯盆地中生界三叠系延长组主要研究层段地应力资料,模拟目标层埋深约为 1 440 m,忽略地层压力影响。最大竖向主应力约为 40 MPa,最大水平主应力为 25.8~31.5 MPa,最小水平主应力为 22.5~25.8 MPa。为了研究压裂液黏度对水力压裂实验的影响,实验中根据羟丙基胍胶与压裂液黏度的关系,配制了 5 种不同黏度的压裂液。试件A1,A2,A3和A4开展压裂液黏度为17.1 mPa·s 时不同水平应力比条件下裂缝网络的影响实验;试件 A2,A5,A6,A7 和 A8 开展水平应力比为 1.353 时不同压裂液黏度对裂缝网络复杂性的影响(表1)。实验开始前,对井筒施加 0.5 MPa的压力,检查密封是否完整。经以上设计得到的实验参数取值与实际工程中水力压裂参数高度匹配,该实验可对延长组长7段油页岩的水力压裂特性提供基础认识。

  • 1.3 三维CT重构方法

  • 采用 Mimics17.0 对油页岩试件进行三维 CT 重构。为了准确地提取裂缝,需要识别油页岩中的不同组分。

  • 表1 水力压裂实验参数

  • Table1 Experimental parameters of hydraulic fracturing

  • 注:40/32.88/24.3分别为最大竖向主应力、最大水平主应力和最小水平主应力;水平应力比为最大水平主应力与最小水平主应力之比。

  • 利用剖切线测定裂缝、油页岩基质和高密度矿物的灰度。在图2a中天然裂缝、水力裂缝和高密度矿物被剖切线切割,其灰度曲线中存在明显的代表高密度矿物的波峰和代表裂缝的波谷(图2b)。基于油页岩试件中裂缝、基质和高密度矿物三者具有不同灰度的原理,可以分辨出压裂前后CT切片中的裂缝,再结合区域生长、形态膨胀和腐蚀技术重构裂缝网络。通过对比发现,油页岩试件压裂后裂缝与Mimics重构的裂缝网络非常吻合(图3)。说明通过 Mimics 重构获得油页岩试件内部裂隙的空间形态这一方法是可行的,进而能很好地分析油页岩的分形特征。

  • 图2 试件A3扫描切片中不同组分的划分方法

  • Fig.2 Methods for dividing different components in CT slice of Sample A3

  • 图3 三维CT重构的裂缝网络与油页岩试件压裂后裂缝网络对比

  • Fig.3 Comparison between fracture networks of 3D CT reconstruction and those of oil shale specimens after fracturing

  • 2 实验结果及分析

  • 2.1 裂缝网络的分形特征

  • 2.1.1 分形理论及计算方法

  • 分形理论是 1982 年由 Mandelbrot 提出的一门数学分支,主要用来描述自然界不规律的现象。在分形理论中主要是通过分形维数进行度量,在岩石领域中通常采用的是最直观的计盒维数。将分形运用于岩石领域后可以描述岩石的孔隙结构特征或裂缝分布特征。分形理论能够准确地定量反映岩体中裂缝的复杂程度、起伏粗糙程度、方位及张开度等[36]

  • 裂缝网络的数字图像可以采用立方体覆盖法计算其分形维数。裂缝图像(图4a)由一系列像素点组成,每个像素点均有一个相应的灰度。空间被划分为大小为 m ×n ×h 像素点的立方体(图4b)。选取二分法确定小立方体的边长,其计算式为:

  • 图4 三维裂缝图像及其分形计算网格划分

  • Fig.4 Three dimension fracturing image and meshing for fractal calculation

  • δk=1ck-10<klnmin(m,n,h)lnc+1k=0,1,2,3,
    (1)
  • 覆盖裂缝空间所需的小立方体数量(Nk)将随立方体大小而变化。通过图像预处理后得到二值化的裂缝图像。像素值分别为0或1,其值为1表示裂缝。因此,立方体覆盖区域中包含的像素最大值大于 0,可以累积计入覆盖裂缝空间所需的立方体数量。遍历整个裂缝空间,得到等分 c 次后覆盖目标区域的立方体数量。对于任意 c 值,能够计算相应的立方体数量,并得到一系列的数据对(1/ck-1Nk)。在双对数坐标系中,(1/ck-1Nk)表示的直线可以反映分形特征,其斜率为裂缝的分形维数,直线方程为:

  • lnNk=-ln1ck-1D+b
    (2)
  • 2.1.2 典型裂缝的分形特征

  • 为了更好地反映岩体内裂缝网络的复杂性对分形维数计算结果的影响,分别对单一裂缝、平行裂缝、交叉裂缝及混合裂缝的分形维数进行计算。

  • 分形维数计算结果(图5)表明,单一裂缝的分形维数最小,其裂缝几何形态最简单。相反,混合裂缝具有最大的分形维数和最复杂的裂缝形态,裂缝分形维数与复杂性呈正相关。也就是说,裂缝的复杂性越高,裂缝的分形维数越大。因此,分形维数可以定量描述裂缝网络的复杂性。

  • 图5 典型裂缝几何形态及其分形维数

  • Fig.5 Typical geometric forms of factures and their fractal dimensions

  • 2.1.3 水力裂缝网络的分形特征

  • 基于分形计算方法和三维CT重构方法,可以计算出水力压裂前后样品中裂缝的分形维数。根据立方体覆盖法的定义,油页岩试件中裂缝复杂性增加将导致更大的分形维数。由各工况下水力压裂前后的裂缝网络的形态及其分形维数(图6)可见:基于立方体覆盖法的压裂后裂缝网络的分形维数为 1.952 2~2.183 7;压裂前天然裂缝的分形维数为 1.943 4~2.147 3,小于同一试件压裂后裂缝网络的分形维数。各工况下分形维数变化率为 0.45%~3.64%,表明裂缝网络的分形维数增大,压裂后裂缝网络复杂性有所增加。

  • 2.2 水平应力比的影响

  • 分析不同水平应力比下压裂前后裂缝网络的分形维数及其变化率(图7)可知,在不同水平应力比下,压裂后同一试件裂缝的分形维数均有所增大,压裂前后分形维数变化率为 0.45%~2.58%。分形维数变化率与水平应力比之间始终存在负相关关系。当水平应力比小于 1.529 时,分形维数变化率随水平应力比的增加而缓慢下降;当水平应力比大于 1.529 时,分形维数变化率急剧下降。说明当水平应力比增大时,复杂裂缝网络形成难度增大,裂缝网络复杂性增大的程度逐渐减小。

  • 当水平应力比为 1.000 时,分形维数变化率最大,这意味着压裂后形成的裂缝最为发育。在较低的水平应力比条件下,压裂后形成了大量的水力裂缝。这些水力裂缝容易穿过天然裂缝,与天然裂缝共同形成网状裂缝(图8a),并促进天然裂缝的进一步扩展。

  • 与水平应力比为 1.000 的结果相比,水平应力比为 1.353 时分形维数变化率较小,压裂后形成的裂缝相对少一些,存在沿水力裂缝走向的天然裂缝,有利于水力裂缝与天然裂缝连通,促进了单条水力裂缝的形成(图8b)。单条水力裂缝的形成虽然与天然裂缝形成复杂裂缝形态,但是除了形成主水力裂缝外,没有形成其他细小的水力裂缝分支,也没有形成沿天然裂缝和层理面扩展的裂缝,因此裂缝的分形维数变化率随水平应力比的增大而减小。

  • 当水平应力比增加到 1.529和 1.647时,水力裂缝难以发生转向,此时水力裂缝连通更多的天然裂缝和诱导天然裂缝扩展的难度增大,最终重构的裂缝网络也表明此时更趋向于形成垂直于最小水平主应力方向的主水力裂缝(图8c,图8d)。也就是说,当水平应力比相对较低时,压裂后更有利于形成复杂的裂缝网络,而过大的水平应力比更容易导致压裂后形成单条水力裂缝,不利于形成复杂的裂缝网络。

  • 图6 各工况下压裂前后裂缝网络及其分形维数

  • Fig.6 Fracture networks and their fractal dimensions before and after fracturing under different working conditions

  • 图7 水平应力比与分形维数和分形维数变化率的关系

  • Fig.7 Relationship of horizontal stress ratio with fractal dimension and its change rate

  • 2.3 压裂液黏度的影响

  • 分析压裂液黏度与分形维数和分形维数变化率的关系(图9)可知:当压裂液黏度为 1.3~31.6 mPa·s时,分形维数变化率为 1.50%~3.64%。当压裂液黏度小于5.0 mPa·s时,分形维数变化率随黏度的增加而增大;当压裂液黏度为 5.0 mPa·s时,分形维数变化率增至最大值;当压裂液黏度从5.0 mPa·s 增加到17.1 mPa·s时,分形维数变化率呈下降趋势; 当压裂液黏度由 17.1 mPa·s 增至 31.6 mPa·s 时,分形维数变化率呈增加趋势。结果表明,低黏度的压裂液有利于复杂裂缝网络的形成,但过低或过高的压裂液黏度会抑制复杂裂缝网络的形成。

  • 压裂液黏度为 1.3 mPa·s 时的分形维数变化率小于黏度为3.2 mPa·s时的分形维数变化率,这意味着黏度过低会不利于更多新裂缝的形成。压裂液的流量和黏度均会对裂缝形态产生影响[34]。由于压裂液流量相同,所以,压裂液黏度较大时,可以快速增大加压速率,从而诱导水力裂缝的扩展;而压裂液黏度较小时,压裂液的滤失量较大,形成复杂裂缝网络的难度增大。同样的机理可以解释,黏度为 3.2 mPa·s 时分形维数的变化率小于黏度为 5.0 mPa·s时分形维数的变化率。也就是说如果在压裂液黏度处于太低的情况下,相对较大的压裂液黏度对于复杂裂缝网络的形成是更有利的。

  • 图8 不同水平应力比下压裂后的裂缝形态

  • Fig.8 Fracture morphology after fracturing with different horizontal stress ratios

  • 图9 压裂液黏度与分形维数和分形维数变化率的关系

  • Fig.9 Relationship of the fracturing fluid viscosity with fractal dimension and its change rate

  • 当压裂液黏度从 5.0 mPa·s 增加到 17.1 mPa·s 时,由于实验采用的压裂液黏度增大,对比图8c 和图10a 可知,高黏度压裂液抑制了复杂水力裂缝或者天然裂缝的扩展,同时更容易诱导形成单一的水力裂缝,因此分形维数变化率随黏度的增大呈减小趋势。低黏度压裂液会渗入到裂缝中,扩大流体流道,诱导更多分支裂缝的形成。同时,低黏度压裂液更容易进入天然裂缝和层理面,促进了复杂裂缝网络的形成。

  • 由于试件A8的天然裂缝分布集中在试件底部,并且压裂后试件 A8中的水力裂缝从顶部延伸到底部,这种情况会导致分形维数的较大变化(图10b)。因此,导致了黏度为 31.6 mPa·s时分形维数变化率大于黏度为17.1 mPa·s时分形维数变化率。在高黏度压裂液下,更容易形成单一的主水力裂缝,压裂后的裂缝网络复杂性低于在相对较低的黏度下得到的裂缝网络复杂性。

  • 图10 不同压裂液黏度压裂后的裂缝形态

  • Fig.10 Fracture morphology after fracturing with different fluid viscosities

  • 3 结论

  • 通过鄂尔多斯盆地中生界三叠系延长组长7段油页岩水力压裂实验,利用分形理论及三维CT重构技术对裂缝网络复杂性进行研究,发现单一裂缝、交叉裂缝、平行裂缝和混合裂缝的分形维数依次增大,具有较高复杂性的裂缝分形维数更大。压裂前天然裂缝的分形维数均小于压裂后三维水力裂缝网络的分形维数,意味着压裂后裂缝增多,裂缝网络的复杂性有所增加。裂缝网络的分形维数变化率随水平应力比的增大而减小。当水平应力比较大时,压裂后的分形维数变化率较低。反之亦然,在较低的水平应力比时更容易形成复杂的裂缝网络。压裂后裂缝网络的分形维数变化率随压裂液黏度的增大先增大后减小。在黏度为 5.0 mPa·s时分形维数变化率达到最大值。在压裂液黏度相对较低的情况下,压裂形成的裂缝网络更为复杂,而在压裂液黏度太低或太高的情况下裂缝网络更为简单。本文的研究手段较前人对水力裂缝网络的研究而言,实现了对裂缝网络更加直观和定量的描述,并且补充了对延长组长 7 段油页岩水力压裂特征的认识。但本文并未探究水力裂缝网络的扩展过程,可进一步考虑实时 CT扫描下裂缝成像,重构水力压裂过程中裂缝网络的三维形态,探究压裂各阶段裂缝网络的分形维数与裂缝扩展的关系。

  • 符号解释

  • b ——常数,无量纲;

  • c ——图像的等分数,次;

  • D ——分形维数,无量纲;

  • h ——小长方体高度,mm;

  • k ——常数,无量纲;

  • l ——小立方体的边长,mm;

  • m ——小长方体长度,mm;

  • n ——小长方体宽度,mm;

  • Nk ——覆盖裂缝空间所需的小立方体数量,个;

  • xyz ——立方体的长、宽、高3个方向的坐标,mm;

  • δk ——覆盖裂缝空间的小立方体的边长,mm。

  • 参考文献

    • [1] Advanced Resources International.EIA/ARI world shale gas and shale oil resource assessment[R].Arlington:U.S.Energy Informa⁃ tion Administration,2013.

    • [2] 胡明,张渝苹,陆廷清,等.渝东北寒武系鲁家坪组泥页岩裂缝特征及其页岩气意义[J].大庆石油地质与开发,2020,39(1):136-143.HU Ming,ZHANG Yuping,LU Tingqing,et al.Fracture character⁃ istics of the mud shale in Cambrian Lujiaping Formation in North⁃ east Chongqing and their shale gas significance[J].Petroleum Ge⁃ ology & Oilfield Development in Daqing,2020,39(1):136-143.

    • [3] JAVADPOUR F,MCCLURE M,NARAGHI M E.Slip-corrected liquid permeability and its effect on hydraulic fracturing and fluid loss in shale[J].Fuel,2015,160(15):549-559.

    • [4] 林会喜,宋明水,王圣柱,等.叠合盆地复杂构造带页岩油资源评价——以准噶尔盆地东南缘博格达地区中二叠统芦草沟组为例[J].油气地质与采收率,2020,27(2):7-17.LIN Huixi,SONG Mingshui,WANG Shengzhu,et al.Shale oil re⁃ source evaluation in complex structural belt of superimposed ba⁃ sin:A case study of middle Permian Lucaogou Formation in Bog⁃ da area,southeast margin of Junggar Basin[J].Petroleum Geology and Recovery Efficiency,2020,27(2):7-17.

    • [5] ZHOU Jian,JIN Yan,CHEN Mian.Experimental investigation of hydraulic fracturing in random naturally fractured blocks[J].Inter⁃ national Journal of Rock Mechanics & Mining Sciences,2010,47(7):1 193-1 199.

    • [6] ZHOU Jian,CHEN Mian,JIN Yan,et al.Analysis of fracture prop⁃ agation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(7):1 143-1 152.

    • [7] 孟庆民,张士诚,郭先敏,等.砂砾岩水力裂缝扩展规律初探 [J].石油天然气学报,2010,32(4):119-123.MENG Qingmin,ZHANG Shicheng,GUO Xianmin,et al.A prima⁃ ry investigation on propagation mechanism for hydraulic fractures in glutenite formation[J].Journal of Oil and Gas Technology,2010,32(4):119-123.

    • [8] 朱艳,李义连,杨森,等.CO2和 N2对页岩气开采效果的影响 [J].油气地质与采收率,2019,26(6):129-135.ZHU Yan,LI Yilian,YANG Sen,et al.Effect of CO2 and N2 on shale gas recovery[J].Petroleum Geology and Recovery Efficien⁃ cy,2019,26(6):129-135.

    • [9] MAXWELL S C,URBANCIC T I,STEINSBERGER N,et al.Mi⁃ croseismic imaging of hydraulic fracture complexity in the Barnett shale[C].San Antonio:SPE Technical Conference & Exhibition,2002.

    • [10] SUN Zhiyu,HUANG Zhiwen,LIU Changyin,et al.Experimental research on hydraulic fracture initiation and propagation by CT scanning[C].Xi’an:Field Exploration & Development Confer⁃ ence,IET,2016.

    • [11] 张树翠,孙可明.储层非均质性和各向异性对水力压裂裂纹扩展的影响[J].特种油气藏,2019,26(2):96-100.ZHANG Shucui,SUN Keming.Hydraulic fracturing crack propa⁃ gation under various reservoir heterogeneity and anisotropy[J].Special Oil & Gas Reservoirs,2019,26(2):96-100.

    • [12] 郭彤楼.页岩气勘探开发中的几个地质问题[J].油气藏评价与开发,2019,9(5):14-19.GUO Tonglou.A few geological issues in shale gas exploration and development[J].Reservoir Evaluation and Development,2019,9(5):14-19.

    • [13] GUO Tiankui,ZHANG Shicheng,QU Zhanqing,et al.Experimen⁃ tal study of hydraulic fracturing for shale by stimulated reservoir volume[J].Fuel,2014,128(14):373-380.

    • [14] KARPYN Z T,ALAJMI A,RADAELLI F,et al.X-ray CT and hy⁃ draulic evidence for a relationship between fracture conductivity and adjacent matrix porosity[J].Engineering Geology,2009,103(3/4):139-145.

    • [15] ZHANG Xinwei,LU Yiyu,TANG Jiren,et al.Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J].Fuel,2016,190(15):370-378.

    • [16] HE Jianming,LIN Chong,LI Xiao,et al.Initiation,propagation,closure and morphology of hydraulic fractures in sandstone cores [J].Fuel,2017,208(15):65-70.

    • [17] 王丹,王维旭,朱炬辉,等.四川盆地中浅层龙马溪组页岩储层改造技术[J].断块油气田,2019,26(3):350-354.WANG Dan,WANG Weixu,ZHU Juhui,et al.Stimulation tech⁃ nology of medium-shallow shale gas in Longmaxi Formation of Si⁃ chuan Basin[J].Fault-Block Oil and Gas Field,2019,26(3):350-354.

    • [18] 申浩冉,丁文龙,谷阳,等.黔北凤冈地区龙马溪组页岩孔隙结构特征[J].断块油气田,2019,26(4):480-485.SHEN Haoran,DING Wenlong,GU Yang,et al.Pore structure characteristics of Longmaxi Formation shale in Fenggang area,northern Guizhou[J].Fault-Block Oil and Gas Field,2019,26(4):480-485.

    • [19] JIANG Changbao,NIU Binwei,YIN Guangzhi,et al.CT-based 3D reconstruction of the geometry and propagation of hydraulic frac⁃ turing in shale[J].Journal of Petroleum Science and Engineering,2019,179:899-911.

    • [20] LIU Ping,JU Yang,GAO Feng,et al.CT identification and fractal characterization of 3D propagation and distribution of hydrofrac⁃ turing cracks in low-permeability heterogeneous rocks[J].Journal of Geophysical Research Solid Earth,2018,123(3):2 156-2 173.

    • [21] TANG Cheng.Progress in fracture characterization and prediction [J].Science & Technology,2013,31(21):74-79.

    • [22] 白国平,邱海华,邓舟舟,等.美国页岩油资源分布特征与主控因素研究[J].石油实验地质,2020,42(4):524-532.BAI Guoping,QIU Haihua,DENG Zhouzhou,et al.Distribution and main controls for shale oil resources in USA[J].Petroleum Geology & Experiment,2020,42(4):524-532.

    • [23] 夏遵义,马海洋,房堃.渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J].石油实验地质,2019,41(1):134-141.XIA Zunyi,MA Haiyang,FANG Kun.Rock mechanical properties and fracability of continental shale in Zhanhua Sag,Bohai Bay Ba⁃ sin[J].Petroleum Geology & Experiment,2019,41(1):134-141.

    • [24] SANDERSON D J,NIXON C W.The use of topology in fracture network characterization[J].Journal of Structural Geology,2015,72:55-66.

    • [25] CARDONA R,JENNER E,DAVIS T L.Fracture network charac⁃ terization from P-and S-wave data at Weyburn field,Canada[J].SEG Expanded Abstracts,2003,(1):370.

    • [26] 冯杰,于纪玉.利用CT扫描技术确定土壤大孔隙分形维数[J].灌溉排水学报,2005,24(4):26-28,40.FENG Jie,YU Jiyu.Determination fractal dimension of soil macro⁃ pore using computed tomography[J].Journal of Irrigation and Drainage,2005,24(4):26-28,40.

    • [27] 杨雷,金之钧.全球页岩油发展及展望[J].中国石油勘探,2019,24(5):553-559.YANG Lei,JIN Zhijun.Global shale oil development and pros⁃ pects[J].China Petroleum Exploration,2019,24(5):553-559.

    • [28] LI Tingjie,WANG Yaohui,ZHANG Meiying,et al.Fractal proper⁃ ties of crack in rock and mechanism of rock-burst[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(1):6-10.

    • [29] LI Guo,ZHANG Ru,XU Xiaolian,et al.CT image reconstruction of coal rock three-dimensional fractures and body fractal dimen⁃ sion under triaxial compression test[J].Rock & Soil Mechanics,2015,36(6):1 633-1 642.

    • [30] MA Tianran,MA Depeng,YANG Yongjie.Fractal characteristics of coal and sandstone failure under different unloading confining pressure tests[J].Advances in Materials Science and Engineering,2020,2020(11):1-11.

    • [31] 王龙,张金川,唐玄.鄂尔多斯盆地下寺湾—云岩地区长7段页岩气测井评价与分布规律研究[J].中国石油勘探,2019,24(1):129-136.WANG Long,ZHANG Jinchuan,TANG Xuan.Logging evaluation and distribution law of Chang7 shale gas in Xiasiwan-Yunyan ar⁃ ea,Ordos Basin[J].China Petroleum Exploration,2019,24(1):129-136.

    • [32] JU Yang,XI Chaodong,ZHAN Yang,et al.Laboratory in situ CT observation of the evolution of 3D fracture networks in coal sub⁃ jected to confining pressures and axial compressive loads:a novel approach[J].Rock Mechanics and Rock Engineering,2018,51(11):3 361-3 375.

    • [33] ZHAO Xiaoping,PEI Jianliang,DAI Feng,et al.Fractal descrip⁃ tion of cracks in rock mass[J].Journal of Sichuan University,2014,46(6):95-100.

    • [34] ZHAO Peng,XIE Lingzhi,FAN Zhichao,et al.Mutual interference of layer plane and natural fracture in the failure behavior of shale and the mechanism investigation[J].Petroleum Science,2021,18(2):618.

    • [35] 张士诚,郭天魁,周彤,等.天然页岩压裂裂缝扩展机理试验 [J].石油学报,2014,35(3):496-503,518.ZHANG Shicheng,GUO Tiankui,ZHOU Tong,et al.Fracture propagation mechanism experiment of hydraulic fracturing in nat⁃ ural shale[J].Acta Petrolei Sinica,2014,35(3):496-503,518.

    • [36] 毛灵涛,连秀云,郝丽娜.基于数字体图像三维裂隙的分形计算及应用[J].中国矿业大学学报,2014,43(6):1 134-1 139.MAO Lingtao,LIAN Xiuyun,HAO Lina.The fractal calculation of 3D cracks based on digital volumetric images and its application [J].Journal of China University of Mining & Technology,2014,43(6):1 134-1 139.

  • 参考文献

    • [1] Advanced Resources International.EIA/ARI world shale gas and shale oil resource assessment[R].Arlington:U.S.Energy Informa⁃ tion Administration,2013.

    • [2] 胡明,张渝苹,陆廷清,等.渝东北寒武系鲁家坪组泥页岩裂缝特征及其页岩气意义[J].大庆石油地质与开发,2020,39(1):136-143.HU Ming,ZHANG Yuping,LU Tingqing,et al.Fracture character⁃ istics of the mud shale in Cambrian Lujiaping Formation in North⁃ east Chongqing and their shale gas significance[J].Petroleum Ge⁃ ology & Oilfield Development in Daqing,2020,39(1):136-143.

    • [3] JAVADPOUR F,MCCLURE M,NARAGHI M E.Slip-corrected liquid permeability and its effect on hydraulic fracturing and fluid loss in shale[J].Fuel,2015,160(15):549-559.

    • [4] 林会喜,宋明水,王圣柱,等.叠合盆地复杂构造带页岩油资源评价——以准噶尔盆地东南缘博格达地区中二叠统芦草沟组为例[J].油气地质与采收率,2020,27(2):7-17.LIN Huixi,SONG Mingshui,WANG Shengzhu,et al.Shale oil re⁃ source evaluation in complex structural belt of superimposed ba⁃ sin:A case study of middle Permian Lucaogou Formation in Bog⁃ da area,southeast margin of Junggar Basin[J].Petroleum Geology and Recovery Efficiency,2020,27(2):7-17.

    • [5] ZHOU Jian,JIN Yan,CHEN Mian.Experimental investigation of hydraulic fracturing in random naturally fractured blocks[J].Inter⁃ national Journal of Rock Mechanics & Mining Sciences,2010,47(7):1 193-1 199.

    • [6] ZHOU Jian,CHEN Mian,JIN Yan,et al.Analysis of fracture prop⁃ agation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(7):1 143-1 152.

    • [7] 孟庆民,张士诚,郭先敏,等.砂砾岩水力裂缝扩展规律初探 [J].石油天然气学报,2010,32(4):119-123.MENG Qingmin,ZHANG Shicheng,GUO Xianmin,et al.A prima⁃ ry investigation on propagation mechanism for hydraulic fractures in glutenite formation[J].Journal of Oil and Gas Technology,2010,32(4):119-123.

    • [8] 朱艳,李义连,杨森,等.CO2和 N2对页岩气开采效果的影响 [J].油气地质与采收率,2019,26(6):129-135.ZHU Yan,LI Yilian,YANG Sen,et al.Effect of CO2 and N2 on shale gas recovery[J].Petroleum Geology and Recovery Efficien⁃ cy,2019,26(6):129-135.

    • [9] MAXWELL S C,URBANCIC T I,STEINSBERGER N,et al.Mi⁃ croseismic imaging of hydraulic fracture complexity in the Barnett shale[C].San Antonio:SPE Technical Conference & Exhibition,2002.

    • [10] SUN Zhiyu,HUANG Zhiwen,LIU Changyin,et al.Experimental research on hydraulic fracture initiation and propagation by CT scanning[C].Xi’an:Field Exploration & Development Confer⁃ ence,IET,2016.

    • [11] 张树翠,孙可明.储层非均质性和各向异性对水力压裂裂纹扩展的影响[J].特种油气藏,2019,26(2):96-100.ZHANG Shucui,SUN Keming.Hydraulic fracturing crack propa⁃ gation under various reservoir heterogeneity and anisotropy[J].Special Oil & Gas Reservoirs,2019,26(2):96-100.

    • [12] 郭彤楼.页岩气勘探开发中的几个地质问题[J].油气藏评价与开发,2019,9(5):14-19.GUO Tonglou.A few geological issues in shale gas exploration and development[J].Reservoir Evaluation and Development,2019,9(5):14-19.

    • [13] GUO Tiankui,ZHANG Shicheng,QU Zhanqing,et al.Experimen⁃ tal study of hydraulic fracturing for shale by stimulated reservoir volume[J].Fuel,2014,128(14):373-380.

    • [14] KARPYN Z T,ALAJMI A,RADAELLI F,et al.X-ray CT and hy⁃ draulic evidence for a relationship between fracture conductivity and adjacent matrix porosity[J].Engineering Geology,2009,103(3/4):139-145.

    • [15] ZHANG Xinwei,LU Yiyu,TANG Jiren,et al.Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J].Fuel,2016,190(15):370-378.

    • [16] HE Jianming,LIN Chong,LI Xiao,et al.Initiation,propagation,closure and morphology of hydraulic fractures in sandstone cores [J].Fuel,2017,208(15):65-70.

    • [17] 王丹,王维旭,朱炬辉,等.四川盆地中浅层龙马溪组页岩储层改造技术[J].断块油气田,2019,26(3):350-354.WANG Dan,WANG Weixu,ZHU Juhui,et al.Stimulation tech⁃ nology of medium-shallow shale gas in Longmaxi Formation of Si⁃ chuan Basin[J].Fault-Block Oil and Gas Field,2019,26(3):350-354.

    • [18] 申浩冉,丁文龙,谷阳,等.黔北凤冈地区龙马溪组页岩孔隙结构特征[J].断块油气田,2019,26(4):480-485.SHEN Haoran,DING Wenlong,GU Yang,et al.Pore structure characteristics of Longmaxi Formation shale in Fenggang area,northern Guizhou[J].Fault-Block Oil and Gas Field,2019,26(4):480-485.

    • [19] JIANG Changbao,NIU Binwei,YIN Guangzhi,et al.CT-based 3D reconstruction of the geometry and propagation of hydraulic frac⁃ turing in shale[J].Journal of Petroleum Science and Engineering,2019,179:899-911.

    • [20] LIU Ping,JU Yang,GAO Feng,et al.CT identification and fractal characterization of 3D propagation and distribution of hydrofrac⁃ turing cracks in low-permeability heterogeneous rocks[J].Journal of Geophysical Research Solid Earth,2018,123(3):2 156-2 173.

    • [21] TANG Cheng.Progress in fracture characterization and prediction [J].Science & Technology,2013,31(21):74-79.

    • [22] 白国平,邱海华,邓舟舟,等.美国页岩油资源分布特征与主控因素研究[J].石油实验地质,2020,42(4):524-532.BAI Guoping,QIU Haihua,DENG Zhouzhou,et al.Distribution and main controls for shale oil resources in USA[J].Petroleum Geology & Experiment,2020,42(4):524-532.

    • [23] 夏遵义,马海洋,房堃.渤海湾盆地沾化凹陷陆相页岩储层岩石力学特征及可压裂性研究[J].石油实验地质,2019,41(1):134-141.XIA Zunyi,MA Haiyang,FANG Kun.Rock mechanical properties and fracability of continental shale in Zhanhua Sag,Bohai Bay Ba⁃ sin[J].Petroleum Geology & Experiment,2019,41(1):134-141.

    • [24] SANDERSON D J,NIXON C W.The use of topology in fracture network characterization[J].Journal of Structural Geology,2015,72:55-66.

    • [25] CARDONA R,JENNER E,DAVIS T L.Fracture network charac⁃ terization from P-and S-wave data at Weyburn field,Canada[J].SEG Expanded Abstracts,2003,(1):370.

    • [26] 冯杰,于纪玉.利用CT扫描技术确定土壤大孔隙分形维数[J].灌溉排水学报,2005,24(4):26-28,40.FENG Jie,YU Jiyu.Determination fractal dimension of soil macro⁃ pore using computed tomography[J].Journal of Irrigation and Drainage,2005,24(4):26-28,40.

    • [27] 杨雷,金之钧.全球页岩油发展及展望[J].中国石油勘探,2019,24(5):553-559.YANG Lei,JIN Zhijun.Global shale oil development and pros⁃ pects[J].China Petroleum Exploration,2019,24(5):553-559.

    • [28] LI Tingjie,WANG Yaohui,ZHANG Meiying,et al.Fractal proper⁃ ties of crack in rock and mechanism of rock-burst[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(1):6-10.

    • [29] LI Guo,ZHANG Ru,XU Xiaolian,et al.CT image reconstruction of coal rock three-dimensional fractures and body fractal dimen⁃ sion under triaxial compression test[J].Rock & Soil Mechanics,2015,36(6):1 633-1 642.

    • [30] MA Tianran,MA Depeng,YANG Yongjie.Fractal characteristics of coal and sandstone failure under different unloading confining pressure tests[J].Advances in Materials Science and Engineering,2020,2020(11):1-11.

    • [31] 王龙,张金川,唐玄.鄂尔多斯盆地下寺湾—云岩地区长7段页岩气测井评价与分布规律研究[J].中国石油勘探,2019,24(1):129-136.WANG Long,ZHANG Jinchuan,TANG Xuan.Logging evaluation and distribution law of Chang7 shale gas in Xiasiwan-Yunyan ar⁃ ea,Ordos Basin[J].China Petroleum Exploration,2019,24(1):129-136.

    • [32] JU Yang,XI Chaodong,ZHAN Yang,et al.Laboratory in situ CT observation of the evolution of 3D fracture networks in coal sub⁃ jected to confining pressures and axial compressive loads:a novel approach[J].Rock Mechanics and Rock Engineering,2018,51(11):3 361-3 375.

    • [33] ZHAO Xiaoping,PEI Jianliang,DAI Feng,et al.Fractal descrip⁃ tion of cracks in rock mass[J].Journal of Sichuan University,2014,46(6):95-100.

    • [34] ZHAO Peng,XIE Lingzhi,FAN Zhichao,et al.Mutual interference of layer plane and natural fracture in the failure behavior of shale and the mechanism investigation[J].Petroleum Science,2021,18(2):618.

    • [35] 张士诚,郭天魁,周彤,等.天然页岩压裂裂缝扩展机理试验 [J].石油学报,2014,35(3):496-503,518.ZHANG Shicheng,GUO Tiankui,ZHOU Tong,et al.Fracture propagation mechanism experiment of hydraulic fracturing in nat⁃ ural shale[J].Acta Petrolei Sinica,2014,35(3):496-503,518.

    • [36] 毛灵涛,连秀云,郝丽娜.基于数字体图像三维裂隙的分形计算及应用[J].中国矿业大学学报,2014,43(6):1 134-1 139.MAO Lingtao,LIAN Xiuyun,HAO Lina.The fractal calculation of 3D cracks based on digital volumetric images and its application [J].Journal of China University of Mining & Technology,2014,43(6):1 134-1 139.