en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

郑文龙(1988—),男,山东潍坊人,工程师,硕士,从事相态试验分析及气驱提高采收率相关工作。E-mail:zhengwenlong.slyt@sinopec.com。

中图分类号:TE357.45

文献标识码:A

文章编号:1009-9603(2021)05-0131-06

DOI:10.13673/j.cnki.cn37-1359/te.2021.05.016

参考文献 1
陈志豪,郝永卯,季迎春,等.CO2-原油混相带形成机理与表征方法[J].油气地质与采收率,2020,27(1):57-61.CHEN Zhihao,HAO Yongmao,JI Yingchun,et al.Formation mechanism and characterization method of CO2-crude oil misci⁃ ble zone[J].Petroleum Geology and Recovery Efficiency,2020,27(1):57-61.
参考文献 2
张海龙.CO2混相驱提高石油采收率实践与认识[J].大庆石油地质与开发,2020,39(2):114-119.ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO2 miscible flooding[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(2):114-119.
参考文献 3
李承龙.特低渗透油藏二氧化碳驱气窜影响因素及规律[J].特种油气藏,2018,25(3):82-86.LI Chenglong.Gas channeling influencing factors and patterns of CO2-flooding in ultra-low permeability oil reservoir[J].Special Oil & Gas Reservoirs,2018,25(3):82-86.
参考文献 4
刘笑春,黎晓茸,杨飞涛,等.长庆姬塬油田黄3区 CO2驱对采出原油物性影响[J].油气藏评价与开发,2019,9(3):36-40.LIU Xiaochun,LI Xiaorong,YANG Feitao,et al.Effect of CO2 flooding on physical properties of produced crude oil in Huang3 block of Changqing Oilfield[J].Reservoir Evaluation and Devel⁃ opment,2019,9(3):36-40.
参考文献 5
蒋永平.CO2复合驱油分子动力学模拟及微观机理研究[J].石油实验地质,2019,41(2):274-279.JIANG Yongping.Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding[J].Petroleum Geology & Experiment,2019,41(2):274-279.
参考文献 6
叶航,刘琦,彭勃,等.纳米颗粒抑制 CO2驱过程中沥青质沉积的研究进展[J].油气地质与采收率,2020,27(5):86-96.YE Hang,LIU Qi,PENG Bo,et al.Inhibition of nanoparticles on asphaltene deposition during CO2 flooding:A review[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(5):86-96.
参考文献 7
李闽,孙雷,李士伦,等.沥青沉积机理与模拟方法[J].西南石油学院学报,2000,22(1):9-11,15.LI Min,SUN Lei,LI Shilun,et al.Mechanism and modeling tech⁃ nique of asphtene precipitation[J].Journal of Southwest Petro⁃ leum Institute,2000,22(1):9-11,15.
参考文献 8
张旭东,陈科,何伟,等.渤海西部海域某区块油田注水过程储层伤害机理[J].中国石油勘探,2016,21(4):121-126.ZHANG Xudong,CHEN Ke,HE Wei,et al.Reservoir damage mechanism during water flooding of oilfield in a block,western Bohai Sea[J].China Petroleum Exploration,2016,21(4):121-126.
参考文献 9
陈龙龙,余华贵,汤瑞佳,等.沥青质沉积对轻质油藏 CO2驱的影响[J].油田化学,2017,34(1):87-91.CHEN Longlong,YU Huagui,TANG Ruijia,et al.Effect of as⁃ phalt deposition on CO2 flooding in light oil reservoir[J].Oilfield Chemistry,2017,34(1):87-91.
参考文献 10
乞照,安锴胜,王筱晔,等.CO2驱沥青质沉积对致密储层的伤害机理——以鄂尔多斯盆地延长组长8储层为例[J].断块油气田,2020,27(3):350-354.QI Zhao,AN Kaisheng,WANG Xiaoye,et al.Damage mechanism of asphaltene deposition to tight reservoir during CO2 flooding:taking Chang8 reservoir of Yanchang Formation in Ordos Basin as an example[J].Fault-Block Oil and Gas Field,2020,27(3):350-354.
参考文献 11
黄磊,沈平平,贾英,等.CO2注入过程中沥青质沉淀预测[J].石油勘探与开发,2010,37(3):349-353.HUANG Lei,SHEN Pingping,JIA Ying,et al.Prediction of as⁃ phaltene precipitation during CO2 injection[J].Petroleum Explo⁃ ration and Development,2010,37(3):349-353.
参考文献 12
李兆敏,王美佳,武守亚,等.CO2驱油过程中原油胶质对沥青质沉积的影响[J].油田化学,2019,36(4):651-656.LI Zhaomin,WANG Meijia,WU Shouya,et al.Effect of colloidal concentration on asphaltene deposition during CO2 flooding[J].Oilfield Chemistry,2019,36(4):651-656.
参考文献 13
王丽,卜祥福,伍锐东.CO2混相驱提高原油采收率的研究现状及发展前景[J].石油化工应用,2010,29(2):4-7.WANG Li,BU Xiangfu,WU Ruidong.Research status and devel⁃ opment prospects of CO2 miscible flooding enhanced oil recovery [J].Petrochemical Industry Application,2010,29(2):4-7.
参考文献 14
FOTLAND P,ANFINDSEN H,FADNES F H.Detection of asphal⁃ tene precipitation and amounts precipitated by measurement of electrical conductivity[J].Fluid Phase Equilibria,1993,82:157-164.
参考文献 15
HAMMAMI A,PHELPS C H,MONGER-MCCLURE T,et al.As⁃phaltene precipitation from live oils:An experimental investiga⁃ tion of onset conditions and reversibility[J].Energy & Fuels,2000,14(1):14-18.
参考文献 16
雷浩.低渗储层CO2驱油过程中沉淀规律及防治对策研究[D].北京:中国石油大学(北京),2017.LEI Hao.Deposition mechanisms and reservoir protection counter⁃ measures of a low-permeability formation in CO2 flooding process [D].Beijing:China University of Petroleum(Beijing),2017.
参考文献 17
CARRIER H,PLANTIER F,DARIDON J L,et al.Acoustic meth⁃ od for measuring asphaltene flocculation in crude oils[J].Journal of Petroleum Science and Engineering,2000,27(3/4):111-117.
参考文献 18
ZHOU Y,SARMA H K.Asphaltene precipitation behavior during gas injection in a UAE carbonate reservoir and a faster experimen⁃ tal strategy to predict asphaltene onset pressure[C].Zahran:Abu Dhabi International Petroleum Conference and Exhibition,Society of Petroleum Engineers,2012.
参考文献 19
MOUSAVI-DEHGHANI S A,RIAZI M R,VAFAIE-SEFTI M,et al.An analysis of methods for determination of onsets of asphal⁃ tene phase separations[J].Journal of Petroleum Science and Engi⁃ neering,2004,42(2/4):145-156.
参考文献 20
张钧溢,赵凤兰,侯吉瑞,等.CO2驱替过程中沥青质沉积及其对原油采收率的影响[J].特种油气藏,2012,19(2):107-109.ZHANG Junyi,ZHAO Fenglan,HOU Jirui,et al.Asphaltene depo⁃ sition and its impact on oil recovery during CO2 flooding[J].Spe⁃ cial Oil & Gas Reservoirs,2012,19(2):107-109.
参考文献 21
钱坤,杨胜来,董俊昌,等.高压注烃类气体过程中沥青质初始沉淀压力试验研究[J].石油钻探技术,2015,43(2):116-119.QIAN Kun,YANG Shenglai,DONG Junchang,et al.A study of as⁃ phaltene onset pressure during high-pressure gas injection[J].Pe⁃ troleum Drilling Techniques,2015,43(2):116-119.
参考文献 22
陈香润,李洪建,郭伦文,等.有机固相沉积对储层的损害[J].重庆科技学院学报:自然科学版,2010,12(4):4-6,29.CHEN Xiangrun,LI Hongjian,GUO Lunwen,et al.Reservoir dam⁃ age caused by organic solid precipitation[J].Journal of Chongq⁃ ing University of Science and Technology:Natural Sciences Edi⁃ tion,2010,12(4):4-6,29.
参考文献 23
周星泽.低渗透油藏 CO2驱沥青质沉积分布规律研究[D].北京:中国石油大学(北京),2017.ZHOU Xingze.Investigation of the asphaltene deposition distribu⁃ tion in CO2 flooding of low permeability reservoir[D].Beijing:China University of Petroleum(Beijing),2017.
参考文献 24
孙业恒.沥青质伤害油藏数值模拟研究[J].油气地质与采收率,2011,18(2):65-68.SUN Yeheng.Numerical simulation on reservoir damage by as⁃ phaltene[J].Petroleum Geology and Recovery Efficiency,2011,18(2):65-68.
目录contents

    摘要

    低渗透油藏在进行CO2驱开发过程中面临着固相沉积储层伤害问题,但目前的测量方法无法直观精确地对固相沉积进行定量表征,通过建立一种全新的微观可视化固相沉积实验方法,开展不同开发方式的固相沉积对比实验,并深入开展不同 CO2注入量和注入压力条件的固相沉积实验。结果表明:固相沉积主要以胶质、沥青质为主; CO2驱固相沉积存在特定的门限压力,沉积区域主要位于混相区,沉积规律呈现缓慢增加、快速上升、逐渐放缓的变化趋势,且固相沉积的析出和溶解过程一定程度上是可逆的;根据实验成果进一步提出CO2驱开发注入压力水平应低于固相沉积的门限压力,从而有效抑制固相沉积的发生,减少CO2驱开发固相沉积储层伤害的程度。通过矿场实际应用发现,应用实验成果后可有效降低储层伤害程度,提高油田可持续开采的潜力。

    Abstract

    During CO2 flooding in low permeability reservoirs,solid-phase deposition may damage the reservoirs. The cur- rent measurement methods cannot quantitatively characterize the solid-phase deposition in a direct and accurate manner. With this regard,a new microscopic visualized experimental method for solid-phase deposition was proposed for compara- tive analysis of solid-phase deposition between different development modes,and the experiment was performed on solidphase deposition with different CO2 injection rates and injection pressure levels. The results show that the solid-phase de- position is mainly composed of colloid and asphaltene. Specific threshold pressure is observed in the solid-phase deposi- tion of CO2 flooding,and the deposition area is mainly located in the miscible area. The deposition law shows a trend of slowly increasing,rapidly rising,and gradually slowing down,and the precipitation and dissolution process of solid-phase deposition is reversible to a certain extent. According to the experimental results,the injection pressure level for CO2 flood- ing should be lower than the threshold pressure of solid-phase deposition to inhibit it significantly and reduce the damage of solid-phase deposition to the reservoirs during CO2 flooding. The field applications of experimental results effectively re- duce the damage to the reservoirs and increase the potential for sustainable development of the oilfield.

  • CO2驱是提高低渗透油藏采收率的有效技术,在中国矿场应用规模日益扩大[1]。CO2驱过程中,CO2与原油之间通过萃取和凝析作用可实现多次接触混溶,同时使原油膨胀、降黏,从而大幅度提高采收率[2-5]。CO2溶于原油过程中,CO2分子会与包裹在沥青质表面的胶质争夺空间位置,导致稳定沥青质的胶质从沥青质表面脱离,进而使沥青质等固相颗粒沉积[6-7]。由于低渗透储层孔喉细小、渗透率低,析出的固相颗粒沉积于孔隙内壁将会引起孔喉变窄、渗透率下降,造成储层伤害。同时固相沉积还可能发生在生产井筒中,造成井筒堵塞,导致油井停产,严重影响油田正常生产[8-11]。研究表明,沥青质等固相颗粒在油相中主要经历析出、絮凝与沉积3个过程,其中析出是由于体系温度、压力或组成变化,导致沥青质聚集,形成更大的絮凝物,当絮凝物体积达到一定程度后就会发生沉积[12-13]。对沥青质沉积的实验研究主要包括沥青质的初始沉淀点和沉积量的测试。初始沉淀点方面,FOTLAND 等提出了使用电导率法测量沥青质初始沉积点的方法[14],该方法不适用于沥青质含量较低的情况; HAMMAMI等利用光散射技术研究了活油系统中的沥青质沉淀变化[15-16],但是对于不同的样品透光强度相差量级较大,有一定的适用性限制;CARRIER 等通过声共振技术研究了降压过程中活油系统的沥青质析出压力[17],但是未能测得沥青质沉积的下包络线;ZHOU 等利用高压显微镜研究不同的注气情况对沥青质初始沉淀压力的影响[18],但是分子直径只有聚集达到 0.2~0.5 μm 才能被显微镜看到; MOUSAVI-DEHGHANI 等利用界面张力法测量沥青质初始沉积问题[19],但是对于低沥青质含量的原油并没有明显的界面张力突变。对沥青质沉积量的测量相对于初始沉积点测量的不确定性更大,主要的实验方法包括静态沉淀、驱替过滤以及间接法等[20-22],其测量精度均不太理想。为此,笔者针对低渗透油藏 CO2驱开发过程中的固相沉积问题,提出了全新的微观可视化固相沉积实验方法,并开展了一系列固相沉积室内模拟实验,明确了 CO2驱固相沉积的条件、区域和规律,进一步提出了相应的固相沉积预防措施。

  • 1 实验器材与方法

  • 1.1 实验器材

  • 实验用油取自胜利油田高 899 区块、樊 124 区块和樊 142区块,原油物性参数见表1。实验用 CO2 为纯度99.9%的工业气。

  • 实验装置为法国 ST 公司生产的高温高压可视固相沉积装置(图1),主要包括增压泵、分析筒、玻璃视窗和摄像系统,其温度上限达200℃,压力上限达100 MPa,显微镜放大倍数最高达400倍。设备内部安装有 2 个分析筒,通过底部一条带有蓝宝石玻璃视窗的管线连接在一起,当原油在流经玻璃视窗的过程中,利用下方的高倍显微镜可以观察和测量固相沉积的变化,通过可视化操作界面和数据处理软件,得到固相沉积含量(析出沉积颗粒占观察视窗的面积百分比)和沉积颗粒直径。

  • 表1 原油物性参数

  • Table1 Physical parameters of crude oil

  • 图1 高温高压可视固相沉积装置

  • Fig.1 High-temperature high-pressure visualized solid-phase deposition device

  • 1.2 实验步骤

  • 实验选取高 899区块模拟低渗透油藏注 CO2开发过程,测定CO2注入量、压力变化对原油流动过程中固相沉积规律的影响。实验步骤主要包括:①将 2个分析筒、玻璃视窗和连接管线抽真空,然后注入一定体积的地层原油,设定恒温箱温度为地层温度 (129.0℃),通过 2 台增压泵分别控制 2 个分析筒活塞的上、下移动,进而调节分析筒内部原油的压力到预定压力(15~44 MPa)。②通过控制 2 个分析筒内活塞的上、下移动,使得原油在各测试压力和温度条件下,经由玻璃视窗往复流动,同时利用摄像系统监测原油流动过程中固相沉积过程。③向3份地层原油中分别注入足量地层水、N2和CO2,充分溶解饱和后排出多余的注入介质,监测不同注入条件下的固相颗粒的沉积过程。④向分析筒内部注入一定量的 CO2,模拟低渗透油藏注 CO2开发过程,监测不同压力(15~44 MPa)和不同CO2注入量条件下,原油在经由玻璃视窗流动过程中固相颗粒的沉积过程。⑤分别向高 899 区块、樊 124 区块、樊 142 区块的原油中连续注入CO2,进行CO2驱固相沉积门限压力与最小混相压力对比实验。

  • 2 实验结果分析

  • 2.1 固相沉积特征

  • 形态特征  通过实验发现,固相沉积均呈现无光泽的深褐色或黑色(图2),但形状和直径存在一定的差异。在原始地层条件下,固相沉积直径为0.1~1 μm,外观呈现球状(图2a);在原始地层压力为 35 MPa 条件下注入足量 CO2充分饱和后,固相沉积的形状由球状小颗粒逐渐聚集增大,呈现絮凝状(图2b),直径为 1~4 μm;继续注入 CO2并在原始地层压力为42 MPa条件下完全溶解后,固相沉积的聚集情况更加显著,出现较大的无规则团块状固相沉积 (图2c),直径为 4~10 μm。在沉积过程中,固相沉积直径越大越容易附着在观察视窗内,流动能力越差,在生产过程中更容易滞留在地层或者井筒内,造成储层伤害或井筒堵塞。

  • 组成特征  固相沉积颗粒是一类大分子混合物的统称。将分析筒内原始地层油样静置 24 h后,分别取分析筒顶部和底部的样品进行沥青质、胶质含量的测定,结果表明,分析筒顶部和底部样品的沥青质、胶质含量,分别为 2.34% 和 16.71%;在地层条件下注入足量CO2并充分饱和,静置24 h后,分析筒顶部的沥青质、胶质含量分别为 1.52% 和 11.55%,分析筒底部的沥青质、胶质含量分别为 3.91% 和 22.46%。分析筒底部的沥青质、胶质含量明显高于分析筒顶部,而且与原始地层油样相比,顶部的沥青质、胶质含量降低,底部的沥青质、胶质含量增高。因此,在注入CO2后原油中的沥青质、胶质等固相沉积颗粒发生了聚集,并在重力作用下沉积于分析筒底部,是固相沉积的主要组成部分,且具有一定的重力沉降能力。

  • 2.2 CO2驱开发固相沉积规律

  • 不同开发方式  模拟地层能量衰竭、补充地层能量的过程,在地层压力为15 MPa时分别向原油中注入地层水、N2和CO2,直至压力提升至原始地层压力(42 MPa),模拟不同开发方式地层能量补充过程。结果表明,不同开发方式固相沉积程度差异显著。其中注入地层水后,地层水无法剥离沥青质表面的胶质成分,未造成明显的聚集沉积现象,固相沉积含量由 2.0% 小幅增至 2.1%;注入 N2后造成了部分胶质的剥离和沥青质的聚集析出,固相沉积含量由2.0%增至4.6%;而注入的CO2分子会争夺包裹在沥青质表面的胶质空间位置,造成大量胶质脱离沥青质表面,导致沥青质等固相颗粒的聚集沉积,固相沉积含量由 2.0% 大幅增至 16.7%。因此,注气开发会促进固相沉积的发生,相较于水驱和 N2驱, CO2驱对固相沉积含量的影响尤为显著。

  • 不同 CO2注入量  向高 899 区块地层原油中连续注入 CO2(表2),在 CO2注入的开始阶段(注入压力低于33.95 MPa)固相沉积含量与未注CO2的地层原油相当,并没有发生明显的固相沉积变化,此时注入的 CO2没有引发进一步固相沉积。继续注入 CO2并充分饱和,当注入压力超过 33.95 MPa,原油中CO2溶解的摩尔分数超过0.68时,CO2对固相沉积的影响开始显现,随着胶质的剥离,大量的固相沉积颗粒聚集,固相沉积含量明显增多[23]。因此,CO2 驱开发对固相沉积的影响存在特定的压力条件,将 CO2驱引发固相沉积的特定压力称为 CO2驱开发固相沉积的门限压力,高899区块的门限压力为33.95 MPa。由于高 899 区块的最小混相压力为 30.87 MPa,CO2驱影响固相沉积的门限压力高于最小混相压力,因此CO2驱固相沉积主要发生在混相区,且在CO2驱开发的初期,从注入井周围随着混相区的推进沉积区域逐渐增大,甚至可能波及整个 CO2混相区域。

  • 图2 不同条件下固相沉积可视图

  • Fig.2 Visualization of solid-phase deposition under different conditions

  • 表2 不同CO2注入量固相沉积实验

  • Table2 Solid-phase deposition experiment at different CO2 injection rates

  • 不同 CO2注入压力  向高 899 区块地层原油中注入 CO2,测量并绘制 7个不同注入压力条件下(注入压力为 32~44 MPa)的固相沉积含量曲线(图3),发现 CO2驱开发注入压力水平越高,固相沉积的程度越严重,从原始地层条件下的固相沉积含量2.0% 增至16.7%,整体呈现缓慢增加、快速上升和逐渐放缓 3 个阶段。从固相沉积门限压力到注入压力为 38 MPa 处于缓慢增加阶段,此时注入的 CO2剥离附着在沥青质表面的胶质的能力开始显现,固相沉积含量逐渐增加;注入压力为38~41 MPa时固相沉积含量处于快速上升阶段,此时注入的 CO2会大量剥离胶质,沥青质快速聚集絮凝沉淀;注入压力超过 41 MPa 后固相沉积含量上升逐渐放缓,此时的胶质、沥青质聚集沉积逐渐达到最大量,在注入压力为 44 MPa 时,CO2对固相沉积的影响最大。为了研究生产井周围原油采出过程中CO2脱出后固相沉积规律,在固相沉积含量达到最大值后进行降压脱气实验,随压力降低CO2不断从原油中析出,固相沉积含量逐渐减少,最终在31 MPa左右全部溶解在原油中。通过溶解曲线可以发现,与 CO2的注入过程相比较,降压脱气固相沉积的溶解过程相对滞后,CO2 驱开发固相沉积的析出和溶解过程一定程度上是可逆的。

  • 图3 CO2驱不同注入压力条件下的固相沉积含量曲线

  • Fig.3 Curves of solid-phase deposition content of CO2 flooding at different injection pressure levels

  • 2.3 CO2驱固相沉积抑制措施

  • 为研究 CO2驱开发固相沉积的抑制措施,进行了樊 124区块、高 899区块和樊 142区块 3个不同区块固相沉积门限压力与最小混相压力的对比实验。结果表明,樊 124 区块的固相沉积门限压力(29.08 MPa)高于本区块最小混相压力(25.90 MPa),高899 区块的固相沉积门限压力(33.95 MPa)高于本区块最小混相压力(30.87 MPa),樊 142区块的固相沉积门限压力(34.62 MPa)也高于本区块最小混相压力 (31.65 MPa),3 个区块 CO2驱引发固相沉积的区域均位于混相区。因此在胜利油区低渗透油藏的混相驱开发过程中,建议 CO2驱开发压力水平应保持低于固相沉积门限压力,从而有效抑制固相沉积程度,减少CO2驱开发固相沉积对储层的伤害。

  • 3 应用分析

  • 胜利油区高 899 区块原始地层压力为 41.80 MPa,截至2018年10月已降至31.10 MPa,地层能量衰竭明显,为保证区块良好的开发效果,亟待开展 CO2驱提升开发效果。

  • 考虑 CO2 注入能力以及高 899 区块的油藏条件,开发方案中选择了 1.3 倍最小混相压力(40.13 MPa)进行CO2驱开发作业。但考虑CO2驱过程中固相沉积的影响后发现,保持 1.3 倍最小混相压力开发时采收率为16.7%,固相沉积含量为15.8%。当压力保持水平降至 1.2 倍最小混相压力(37.04 MPa) 后,采收率为 16.3%,降低幅度较小,但固相沉积含量降至5.3%,即适当降低CO2驱开发压力保持水平,可在保障开发效果的同时大幅降低固相沉积的程度。因此,考虑固相沉积的影响,高 899区块 CO2驱开发压力应选取1.2倍最小混相压力。

  • 通过模拟计算CO2驱开发储层伤害程度和年产油能力[24],未来 15 a末,保持 1.3倍最小混相压力进行 CO2驱开发,储层渗透率降幅为 12.2%,考虑储层渗透率的变化累积产油量为 27.9×104 t;而保持 1.2 倍最小混相压力进行 CO2驱开发,储层渗透率降幅为 3.8%,考虑储层渗透率的变化累积产油量为3 1.3×104 t,优化后累积产油量增加了 3.4×104 t。说明在优化压力保持水平后,储层伤害程度更低,年产油能力更强,可有效提高油田可持续开采的潜力。

  • 4 结论

  • 建立的微观可视化固相沉积实验方法能够准确、实时地观测到固相沉积颗粒沉降和溶解的全过程,设计的实验方案具有创新性,可准确反映CO2驱开发过程固相沉积的变化规律。通过不同开发方式固相沉积程度对比实验,发现 CO2驱对固相沉积的影响尤为显著。进一步开展不同注入量和不同注入压力下CO2驱固相沉积实验,结果表明,固相沉积的门限压力高于最小混相压力,固相沉积含量呈现缓慢增加、快速上升、逐渐放缓的变化趋势,CO2 驱油过程中注入压力高于固相沉积门限压力将会加剧固相沉积的程度,且压力越高沉积程度越严重。固相沉积主要发生在混相区,控制合理的注入压力水平是预防固相沉积的关键。

  • 高 899 区块应用效果表明抑制固相沉积程度后,可有效提高油田可持续开采的潜力,验证了该实验成果在油田开发中的重要作用。

  • 参考文献

    • [1] 陈志豪,郝永卯,季迎春,等.CO2-原油混相带形成机理与表征方法[J].油气地质与采收率,2020,27(1):57-61.CHEN Zhihao,HAO Yongmao,JI Yingchun,et al.Formation mechanism and characterization method of CO2-crude oil misci⁃ ble zone[J].Petroleum Geology and Recovery Efficiency,2020,27(1):57-61.

    • [2] 张海龙.CO2混相驱提高石油采收率实践与认识[J].大庆石油地质与开发,2020,39(2):114-119.ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO2 miscible flooding[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(2):114-119.

    • [3] 李承龙.特低渗透油藏二氧化碳驱气窜影响因素及规律[J].特种油气藏,2018,25(3):82-86.LI Chenglong.Gas channeling influencing factors and patterns of CO2-flooding in ultra-low permeability oil reservoir[J].Special Oil & Gas Reservoirs,2018,25(3):82-86.

    • [4] 刘笑春,黎晓茸,杨飞涛,等.长庆姬塬油田黄3区 CO2驱对采出原油物性影响[J].油气藏评价与开发,2019,9(3):36-40.LIU Xiaochun,LI Xiaorong,YANG Feitao,et al.Effect of CO2 flooding on physical properties of produced crude oil in Huang3 block of Changqing Oilfield[J].Reservoir Evaluation and Devel⁃ opment,2019,9(3):36-40.

    • [5] 蒋永平.CO2复合驱油分子动力学模拟及微观机理研究[J].石油实验地质,2019,41(2):274-279.JIANG Yongping.Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding[J].Petroleum Geology & Experiment,2019,41(2):274-279.

    • [6] 叶航,刘琦,彭勃,等.纳米颗粒抑制 CO2驱过程中沥青质沉积的研究进展[J].油气地质与采收率,2020,27(5):86-96.YE Hang,LIU Qi,PENG Bo,et al.Inhibition of nanoparticles on asphaltene deposition during CO2 flooding:A review[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(5):86-96.

    • [7] 李闽,孙雷,李士伦,等.沥青沉积机理与模拟方法[J].西南石油学院学报,2000,22(1):9-11,15.LI Min,SUN Lei,LI Shilun,et al.Mechanism and modeling tech⁃ nique of asphtene precipitation[J].Journal of Southwest Petro⁃ leum Institute,2000,22(1):9-11,15.

    • [8] 张旭东,陈科,何伟,等.渤海西部海域某区块油田注水过程储层伤害机理[J].中国石油勘探,2016,21(4):121-126.ZHANG Xudong,CHEN Ke,HE Wei,et al.Reservoir damage mechanism during water flooding of oilfield in a block,western Bohai Sea[J].China Petroleum Exploration,2016,21(4):121-126.

    • [9] 陈龙龙,余华贵,汤瑞佳,等.沥青质沉积对轻质油藏 CO2驱的影响[J].油田化学,2017,34(1):87-91.CHEN Longlong,YU Huagui,TANG Ruijia,et al.Effect of as⁃ phalt deposition on CO2 flooding in light oil reservoir[J].Oilfield Chemistry,2017,34(1):87-91.

    • [10] 乞照,安锴胜,王筱晔,等.CO2驱沥青质沉积对致密储层的伤害机理——以鄂尔多斯盆地延长组长8储层为例[J].断块油气田,2020,27(3):350-354.QI Zhao,AN Kaisheng,WANG Xiaoye,et al.Damage mechanism of asphaltene deposition to tight reservoir during CO2 flooding:taking Chang8 reservoir of Yanchang Formation in Ordos Basin as an example[J].Fault-Block Oil and Gas Field,2020,27(3):350-354.

    • [11] 黄磊,沈平平,贾英,等.CO2注入过程中沥青质沉淀预测[J].石油勘探与开发,2010,37(3):349-353.HUANG Lei,SHEN Pingping,JIA Ying,et al.Prediction of as⁃ phaltene precipitation during CO2 injection[J].Petroleum Explo⁃ ration and Development,2010,37(3):349-353.

    • [12] 李兆敏,王美佳,武守亚,等.CO2驱油过程中原油胶质对沥青质沉积的影响[J].油田化学,2019,36(4):651-656.LI Zhaomin,WANG Meijia,WU Shouya,et al.Effect of colloidal concentration on asphaltene deposition during CO2 flooding[J].Oilfield Chemistry,2019,36(4):651-656.

    • [13] 王丽,卜祥福,伍锐东.CO2混相驱提高原油采收率的研究现状及发展前景[J].石油化工应用,2010,29(2):4-7.WANG Li,BU Xiangfu,WU Ruidong.Research status and devel⁃ opment prospects of CO2 miscible flooding enhanced oil recovery [J].Petrochemical Industry Application,2010,29(2):4-7.

    • [14] FOTLAND P,ANFINDSEN H,FADNES F H.Detection of asphal⁃ tene precipitation and amounts precipitated by measurement of electrical conductivity[J].Fluid Phase Equilibria,1993,82:157-164.

    • [15] HAMMAMI A,PHELPS C H,MONGER-MCCLURE T,et al.As⁃phaltene precipitation from live oils:An experimental investiga⁃ tion of onset conditions and reversibility[J].Energy & Fuels,2000,14(1):14-18.

    • [16] 雷浩.低渗储层CO2驱油过程中沉淀规律及防治对策研究[D].北京:中国石油大学(北京),2017.LEI Hao.Deposition mechanisms and reservoir protection counter⁃ measures of a low-permeability formation in CO2 flooding process [D].Beijing:China University of Petroleum(Beijing),2017.

    • [17] CARRIER H,PLANTIER F,DARIDON J L,et al.Acoustic meth⁃ od for measuring asphaltene flocculation in crude oils[J].Journal of Petroleum Science and Engineering,2000,27(3/4):111-117.

    • [18] ZHOU Y,SARMA H K.Asphaltene precipitation behavior during gas injection in a UAE carbonate reservoir and a faster experimen⁃ tal strategy to predict asphaltene onset pressure[C].Zahran:Abu Dhabi International Petroleum Conference and Exhibition,Society of Petroleum Engineers,2012.

    • [19] MOUSAVI-DEHGHANI S A,RIAZI M R,VAFAIE-SEFTI M,et al.An analysis of methods for determination of onsets of asphal⁃ tene phase separations[J].Journal of Petroleum Science and Engi⁃ neering,2004,42(2/4):145-156.

    • [20] 张钧溢,赵凤兰,侯吉瑞,等.CO2驱替过程中沥青质沉积及其对原油采收率的影响[J].特种油气藏,2012,19(2):107-109.ZHANG Junyi,ZHAO Fenglan,HOU Jirui,et al.Asphaltene depo⁃ sition and its impact on oil recovery during CO2 flooding[J].Spe⁃ cial Oil & Gas Reservoirs,2012,19(2):107-109.

    • [21] 钱坤,杨胜来,董俊昌,等.高压注烃类气体过程中沥青质初始沉淀压力试验研究[J].石油钻探技术,2015,43(2):116-119.QIAN Kun,YANG Shenglai,DONG Junchang,et al.A study of as⁃ phaltene onset pressure during high-pressure gas injection[J].Pe⁃ troleum Drilling Techniques,2015,43(2):116-119.

    • [22] 陈香润,李洪建,郭伦文,等.有机固相沉积对储层的损害[J].重庆科技学院学报:自然科学版,2010,12(4):4-6,29.CHEN Xiangrun,LI Hongjian,GUO Lunwen,et al.Reservoir dam⁃ age caused by organic solid precipitation[J].Journal of Chongq⁃ ing University of Science and Technology:Natural Sciences Edi⁃ tion,2010,12(4):4-6,29.

    • [23] 周星泽.低渗透油藏 CO2驱沥青质沉积分布规律研究[D].北京:中国石油大学(北京),2017.ZHOU Xingze.Investigation of the asphaltene deposition distribu⁃ tion in CO2 flooding of low permeability reservoir[D].Beijing:China University of Petroleum(Beijing),2017.

    • [24] 孙业恒.沥青质伤害油藏数值模拟研究[J].油气地质与采收率,2011,18(2):65-68.SUN Yeheng.Numerical simulation on reservoir damage by as⁃ phaltene[J].Petroleum Geology and Recovery Efficiency,2011,18(2):65-68.

  • 参考文献

    • [1] 陈志豪,郝永卯,季迎春,等.CO2-原油混相带形成机理与表征方法[J].油气地质与采收率,2020,27(1):57-61.CHEN Zhihao,HAO Yongmao,JI Yingchun,et al.Formation mechanism and characterization method of CO2-crude oil misci⁃ ble zone[J].Petroleum Geology and Recovery Efficiency,2020,27(1):57-61.

    • [2] 张海龙.CO2混相驱提高石油采收率实践与认识[J].大庆石油地质与开发,2020,39(2):114-119.ZHANG Hailong.Practice and understanding of enhancing the oil recovery by CO2 miscible flooding[J].Petroleum Geology & Oil⁃ field Development in Daqing,2020,39(2):114-119.

    • [3] 李承龙.特低渗透油藏二氧化碳驱气窜影响因素及规律[J].特种油气藏,2018,25(3):82-86.LI Chenglong.Gas channeling influencing factors and patterns of CO2-flooding in ultra-low permeability oil reservoir[J].Special Oil & Gas Reservoirs,2018,25(3):82-86.

    • [4] 刘笑春,黎晓茸,杨飞涛,等.长庆姬塬油田黄3区 CO2驱对采出原油物性影响[J].油气藏评价与开发,2019,9(3):36-40.LIU Xiaochun,LI Xiaorong,YANG Feitao,et al.Effect of CO2 flooding on physical properties of produced crude oil in Huang3 block of Changqing Oilfield[J].Reservoir Evaluation and Devel⁃ opment,2019,9(3):36-40.

    • [5] 蒋永平.CO2复合驱油分子动力学模拟及微观机理研究[J].石油实验地质,2019,41(2):274-279.JIANG Yongping.Molecular dynamics simulation and microscopic mechanism of CO2 composite flooding[J].Petroleum Geology & Experiment,2019,41(2):274-279.

    • [6] 叶航,刘琦,彭勃,等.纳米颗粒抑制 CO2驱过程中沥青质沉积的研究进展[J].油气地质与采收率,2020,27(5):86-96.YE Hang,LIU Qi,PENG Bo,et al.Inhibition of nanoparticles on asphaltene deposition during CO2 flooding:A review[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(5):86-96.

    • [7] 李闽,孙雷,李士伦,等.沥青沉积机理与模拟方法[J].西南石油学院学报,2000,22(1):9-11,15.LI Min,SUN Lei,LI Shilun,et al.Mechanism and modeling tech⁃ nique of asphtene precipitation[J].Journal of Southwest Petro⁃ leum Institute,2000,22(1):9-11,15.

    • [8] 张旭东,陈科,何伟,等.渤海西部海域某区块油田注水过程储层伤害机理[J].中国石油勘探,2016,21(4):121-126.ZHANG Xudong,CHEN Ke,HE Wei,et al.Reservoir damage mechanism during water flooding of oilfield in a block,western Bohai Sea[J].China Petroleum Exploration,2016,21(4):121-126.

    • [9] 陈龙龙,余华贵,汤瑞佳,等.沥青质沉积对轻质油藏 CO2驱的影响[J].油田化学,2017,34(1):87-91.CHEN Longlong,YU Huagui,TANG Ruijia,et al.Effect of as⁃ phalt deposition on CO2 flooding in light oil reservoir[J].Oilfield Chemistry,2017,34(1):87-91.

    • [10] 乞照,安锴胜,王筱晔,等.CO2驱沥青质沉积对致密储层的伤害机理——以鄂尔多斯盆地延长组长8储层为例[J].断块油气田,2020,27(3):350-354.QI Zhao,AN Kaisheng,WANG Xiaoye,et al.Damage mechanism of asphaltene deposition to tight reservoir during CO2 flooding:taking Chang8 reservoir of Yanchang Formation in Ordos Basin as an example[J].Fault-Block Oil and Gas Field,2020,27(3):350-354.

    • [11] 黄磊,沈平平,贾英,等.CO2注入过程中沥青质沉淀预测[J].石油勘探与开发,2010,37(3):349-353.HUANG Lei,SHEN Pingping,JIA Ying,et al.Prediction of as⁃ phaltene precipitation during CO2 injection[J].Petroleum Explo⁃ ration and Development,2010,37(3):349-353.

    • [12] 李兆敏,王美佳,武守亚,等.CO2驱油过程中原油胶质对沥青质沉积的影响[J].油田化学,2019,36(4):651-656.LI Zhaomin,WANG Meijia,WU Shouya,et al.Effect of colloidal concentration on asphaltene deposition during CO2 flooding[J].Oilfield Chemistry,2019,36(4):651-656.

    • [13] 王丽,卜祥福,伍锐东.CO2混相驱提高原油采收率的研究现状及发展前景[J].石油化工应用,2010,29(2):4-7.WANG Li,BU Xiangfu,WU Ruidong.Research status and devel⁃ opment prospects of CO2 miscible flooding enhanced oil recovery [J].Petrochemical Industry Application,2010,29(2):4-7.

    • [14] FOTLAND P,ANFINDSEN H,FADNES F H.Detection of asphal⁃ tene precipitation and amounts precipitated by measurement of electrical conductivity[J].Fluid Phase Equilibria,1993,82:157-164.

    • [15] HAMMAMI A,PHELPS C H,MONGER-MCCLURE T,et al.As⁃phaltene precipitation from live oils:An experimental investiga⁃ tion of onset conditions and reversibility[J].Energy & Fuels,2000,14(1):14-18.

    • [16] 雷浩.低渗储层CO2驱油过程中沉淀规律及防治对策研究[D].北京:中国石油大学(北京),2017.LEI Hao.Deposition mechanisms and reservoir protection counter⁃ measures of a low-permeability formation in CO2 flooding process [D].Beijing:China University of Petroleum(Beijing),2017.

    • [17] CARRIER H,PLANTIER F,DARIDON J L,et al.Acoustic meth⁃ od for measuring asphaltene flocculation in crude oils[J].Journal of Petroleum Science and Engineering,2000,27(3/4):111-117.

    • [18] ZHOU Y,SARMA H K.Asphaltene precipitation behavior during gas injection in a UAE carbonate reservoir and a faster experimen⁃ tal strategy to predict asphaltene onset pressure[C].Zahran:Abu Dhabi International Petroleum Conference and Exhibition,Society of Petroleum Engineers,2012.

    • [19] MOUSAVI-DEHGHANI S A,RIAZI M R,VAFAIE-SEFTI M,et al.An analysis of methods for determination of onsets of asphal⁃ tene phase separations[J].Journal of Petroleum Science and Engi⁃ neering,2004,42(2/4):145-156.

    • [20] 张钧溢,赵凤兰,侯吉瑞,等.CO2驱替过程中沥青质沉积及其对原油采收率的影响[J].特种油气藏,2012,19(2):107-109.ZHANG Junyi,ZHAO Fenglan,HOU Jirui,et al.Asphaltene depo⁃ sition and its impact on oil recovery during CO2 flooding[J].Spe⁃ cial Oil & Gas Reservoirs,2012,19(2):107-109.

    • [21] 钱坤,杨胜来,董俊昌,等.高压注烃类气体过程中沥青质初始沉淀压力试验研究[J].石油钻探技术,2015,43(2):116-119.QIAN Kun,YANG Shenglai,DONG Junchang,et al.A study of as⁃ phaltene onset pressure during high-pressure gas injection[J].Pe⁃ troleum Drilling Techniques,2015,43(2):116-119.

    • [22] 陈香润,李洪建,郭伦文,等.有机固相沉积对储层的损害[J].重庆科技学院学报:自然科学版,2010,12(4):4-6,29.CHEN Xiangrun,LI Hongjian,GUO Lunwen,et al.Reservoir dam⁃ age caused by organic solid precipitation[J].Journal of Chongq⁃ ing University of Science and Technology:Natural Sciences Edi⁃ tion,2010,12(4):4-6,29.

    • [23] 周星泽.低渗透油藏 CO2驱沥青质沉积分布规律研究[D].北京:中国石油大学(北京),2017.ZHOU Xingze.Investigation of the asphaltene deposition distribu⁃ tion in CO2 flooding of low permeability reservoir[D].Beijing:China University of Petroleum(Beijing),2017.

    • [24] 孙业恒.沥青质伤害油藏数值模拟研究[J].油气地质与采收率,2011,18(2):65-68.SUN Yeheng.Numerical simulation on reservoir damage by as⁃ phaltene[J].Petroleum Geology and Recovery Efficiency,2011,18(2):65-68.