-
低渗透油藏通常需要通过压裂改造的方式来实现高效开发,压裂改造后储层中形成了裂缝-基质共存的双重介质渗流系统,由于裂缝与基质岩石之间渗透率相差较大,在注水开发过程中注入水易沿着高渗透率裂缝流动,造成水窜,影响水驱效率。
-
近年来,利用渗吸作用提高低渗透油藏采收率已成为中外的研究热点之一[1-7]。其主要原理是在高含水率条件下,基于低渗透油藏的孔喉小、裂缝发育良好的特点,利用以毛管压力为主要驱替动力的渗吸作用,增强裂缝与岩石基质间的油水交换能力,从而提高基质中原油动用程度[8-10]。影响渗吸采油效率的因素较为复杂,岩石物性特征(长度、渗透率和润湿性等)、流体性质(密度、黏度和油水界面张力)及边界条件(裂缝条数、端面开启位置)等因素,会影响渗吸速率和渗吸孔隙体积,使得渗吸规律存在差异[11-15]。针对渗吸采油规律及主控因素认识不清的问题,通过系统评价储层特性、流体性质和边界条件等因素对渗吸速率和渗吸采收率的影响,明确岩石自发渗吸排油的基本规律;使用灰色关联分析法对各影响因素进行权重分析,以确定渗吸采油的主控因素。
-
1 实验器材及方法
-
1.1 实验器材
-
实验仪器主要包括:高温高压渗吸仪(配套长管渗吸瓶及恒温装置)、TX-500 界面张力测试仪、 ABP-186覆压孔渗仪。
-
实验用油为胜利油田某区块脱水原油,20℃时密度为 0.865 g/cm3,黏度为 9.736 mPa·s。实验用水为该区块过滤地层水,其总矿化度为 10 132 mg/L,氯离子质量浓度为 4 060 mg/L,水型为 NaHCO3型。实验岩心为该区块天然砂岩岩心。实验用试剂主要包括OP-10表面活性剂和RS系列润湿转换剂。
-
1.2 实验方法
-
通过观察和记录渗吸瓶内不同时刻通过渗吸作用排出原油的体积,计算不同时刻的渗吸采收率[16-17]。实验步骤主要包括:①将岩心编号并测量各个岩心的几何尺寸。②用覆压孔渗仪测得各岩心的孔隙度和渗透率。③将岩心清洗晾干后,放入 80℃的烘箱中进行烘干处理,取出冷却后称重。④ 抽真空饱和水并称重。⑤将岩心饱和原油,称量驱替前后岩心质量,根据油水密度差,计算岩心吸油体积。⑥配制好渗吸液,将岩心表面原油拭净,放入渗吸瓶中迅速装满渗吸液,开始计时,每隔 1 h记录一次渗吸瓶中原油的体积,直到体积读数不再发生变化为止,计算渗吸采收率[18]。其计算式为:
-
2 渗吸采收率影响因素
-
2.1 岩心渗透率
-
选取 3 块长度相近、渗透率不同的岩心进行渗吸实验,结果(图1)表明,渗透率越大,渗吸采收率越小,相同时间内的渗吸采收率越低,渗吸速率越小。有的学者认为岩心渗透率越高越有利于渗吸[19]。造成这区别的原因在于,渗透率越高,依靠毛管压力自吸排出的原油体积增大,但由于高渗透岩心含油饱和度更高,因此折算后的渗吸采收率却并不高。3块岩心孔喉半径的测量结果(表1)表明,渗透率主要通过孔喉半径影响渗吸采收率:随着渗透率的降低,岩石孔喉半径减小,毛管压力增大,渗吸采收率增大。
-
图1 不同渗透率的岩心渗吸采收率曲线
-
Fig.1 Curves of imbibition recovery under different permeability
-
2.2 岩心长度
-
不同岩心长度下低渗透油藏渗吸采收率曲线和渗吸速率(曲线段斜率即为渗吸速率)曲线(图2) 表明,长度为2.54 cm的岩心约需22 h完成渗吸采油过程,长度为8.09 cm的岩心需63 h才能完成渗吸采油过程,后者岩心长度约为前者的 3.2倍,后者渗吸完成时间约为前者的 2.9 倍,但渗吸采收率均约为 30%。说明岩心长度对渗吸速率影响更为明显,而对最终渗吸采收率影响较小。其原因为,岩心长度并不影响孔隙大小,也不会影响毛管压力,即不会影响到渗吸动力,实验岩心长度较短,毛管压力能满足岩心自发渗吸所需动力,不会存在渗吸无法作用的区域,因此,最终渗吸采收率相差较小。由于毛管压力不随岩心长度的改变而改变,在相同毛管压力下,岩心长度越长,岩心中原油渗吸速率越慢。
-
图2 不同长度岩心的渗吸采收率曲线
-
Fig.2 Curves of imbibition recovery factor with different core lengths
-
在实际地层中,裂缝发育情况越好,渗吸距离越短,渗吸速率和渗吸采收率越大。因此,在低渗透油藏的开发中,加强储层的缝网改造技术或者加大水平井的利用能够有效提高渗吸作用在低渗透油藏中的利用,有利于有效动用程度和采收率的提高[20]。
-
2.3 油藏温度
-
由不同温度下低渗透岩心渗吸采收率曲线(图3)可以看出:当温度为30℃,渗吸采收率为22%;当温度升高至 80℃,渗吸采收率为 32.4%,说明随着温度升高,低渗透油藏渗吸采收率增大。这是因为,温度升高,会使渗吸过程中多个参数发生变化。一是岩石骨架发生形变,使得孔隙毛管半径减小,毛管压力增大,渗吸动力增强,渗吸作用加强;二是岩石亲水性增强,在孔隙中的原油更容易被采出; 三是原油黏度下降,其流动能力增强。
-
图3 不同温度下岩心的渗吸采收率曲线
-
Fig.3 Curves of imbibition recovery factor at different temperatures
-
2.4 端面开启位置
-
不同端面开启位置下岩心渗吸采收率曲线(图4)表明,当岩心两端开启时,渗吸采收率大于岩心周围开启渗吸采收率,这是因为岩心开启面位置影响了渗吸流动方向。两端开启时,发生同向渗吸,在重力辅助作用下,地层水自岩心底部端面向顶部渗吸,驱替原油从岩心顶面排出。周围开启时,发生逆向渗吸,地层水自侧向吸入,又自侧向排出。相对而言,同向渗吸比逆向渗吸排驱效率更高。因此,在低渗透油藏开发中,通过水平井以及多分支水平井,人为加大上下开启面,增大油水接触面积,当注入水通过水平段时,水沿裂缝在重力作用下移动,油层渗吸作用增强,从而提高低渗透油藏采收率。
-
图4 不同端面开启位置岩心的渗吸采收率曲线
-
Fig.4 Curves of imbibition recovery factor under different boundary conditions
-
2.5 油水界面张力
-
配制含有不同质量分数的 OP-10 表面活性剂溶液,分析油水界面张力对低渗透岩心采收率的影响。结果(表2)表明:随着油水界面张力减小,渗吸采收率增大。油水界面张力主要是通过两方面提高渗吸采收率:一是通过增大毛管压力,提高水相对油相的驱动作用;二是通过提高原油形变能力,使其易于通过细小孔喉。
-
2.6 岩心润湿性
-
使用RS系列润湿转换剂处理岩心,改变岩心润湿性,测定不同润湿条件下岩心的渗吸采收率。由实验结果(表3)可以看出,岩心越亲水,渗吸采收率越高。这是因为,岩心亲水性越强,相同界面张力下,毛管压力越大,水相更易被岩心吸入,岩心中的原油越容易被水置换出来。
-
2.7 裂缝条数
-
由图5可以看出,随着裂缝条数的增多,渗吸采收率增大。这是因为,裂缝越多,能够发生渗吸作用的区域越多,渗吸液可以通过裂缝进入到岩石基质中,将基质中的原油驱替出来,提高渗吸作用的强度。其次,岩心中的裂缝数量越多,岩心内各小岩块的体积越小,油滴很容易被驱替到裂缝中,降低了渗吸阻力,从而提高渗吸效率。
-
图5 不同裂缝条数下岩心的渗吸采收率曲线
-
Fig.5 Curves of imbibition recovery factor with different numbers of fractures
-
3 基于灰色关联的影响因素权重分析
-
在定性分析各影响因素对渗吸采收率影响的基础上,利用灰色关联分析法对各影响因素进行权重分析,总结各因素对低渗透油藏渗吸规律的影响。灰色关联分析法适用于实验数据总量少的情况,具有分析过程简单、分析结果准确性高等特点。主要通过以下5个步骤来确定各因素权重。
-
第 1 步,确定分析数列。对低渗透油藏渗吸规律进行分析,确定渗吸采收率为因变量,影响因素为自变量。按照这个要求将实验数据组成相应的数列。渗吸采收率构成参考数列,影响因素构成比较数列。参考数列和比较数列的表达式分别为:
-
第 2 步,无量纲化数据处理。由于系统中各因素的物理意义不同,导致数据的量纲也不同,不便于比较。因此在进行灰色关联度分析时,需要对参考数列和比较数列进行无量纲化的数据处理。其计算公式分别为:
-
第 3 步,计算关联系数。计算渗吸采收率的参考数列与各影响因素构成的比较数列的绝对差值,其表达式为:
-
第 i 个影响因素与渗吸采收率在第 k 个样品的关联系数为:
-
其中:
-
第 4 步,计算关联度。由于各数列之间关联信息分散,不容易进行比较,需要对全部关联信息进行进一步处理,将关联系数的平均值作为关联度的评价标准。计算公式为:
-
第 5 步,关联度排序。对得到的关联度进行排序,得到各比较数列对参考数列的主次关系。r0i值越接近于1,说明相关性越好。
-
根据渗吸实验结果,选择渗吸采收率作为参考数列,选择岩心渗透率、岩心长度、油藏温度、端面开启位置、油水界面张力、岩石润湿性和裂缝条数7 个影响参数作为比较数列。
-
关联度计算结果表明,岩心渗透率、岩心长度、油藏温度、端面开启位置、油水界面张力、岩石润湿性和裂缝条数的关联度分别为 0.816 4,0.755 1, 0.846 5,0.825 3,0.960 3,0.987 8和 0.953 8。各影响因素权重由大到小分别为:岩石润湿性、油水界面张力、裂缝条数、油藏温度、端面开启位置、岩心渗透率和岩心长度。其中,油水界面张力、岩石润湿性和裂缝条数与渗吸采收率的关联度均在 0.95 以上,为渗吸采油主控因素。
-
4 结论
-
储层物性对渗吸采收率有重要影响。渗透率对低渗透岩心自发渗吸采收率影响的总体表现为:渗透率越大,渗吸采收率越小;岩心长度对最终渗吸采收率影响较小,但岩心越长,渗吸速率越慢;随着温度升高,渗吸作用增强,渗吸采收率增大。
-
不同的端面开启位置导致渗吸采收率不同,按照渗吸采收率大小排列:岩心上下端面开启优于周围开启;裂缝越多,渗吸采收率越高。
-
表面活性剂溶液能够有效降低油水界面张力、改善岩石润湿性,提高渗吸采收率。
-
通过灰色关联分析法,得出影响因素权重由大到小依次为:岩石润湿性、油水界面张力、裂缝条数、油藏温度、端面开启位置、岩心渗透率、岩心长度。其中,油水界面张力、岩石润湿性和裂缝条数与渗吸采收率的关联度均在 0.95以上,为渗吸采油主控因素。
-
符号解释
-
i ——比较数列序号;
-
k ——数列中样品的序号,k =1,2,3,···,n;
-
m ——自变量因素的数量;
-
n ——数列中样品的总数;
-
r0i ——第 i 个比较数列与参考数列的关联度,越接近于 1,说明相关性越好;
-
V瓶——渗吸瓶中渗吸出的原油体积,mL;
-
V总——岩心吸油体积,mL;
-
X 0——参考数列,表示渗吸采收率,%;
-
X 0( k)——参考数列中的第k个值,%;
-
X 0( n)——参考数列中的第n个值,%;
-
Xi ——比较数列,表示影响渗吸采收率的因素,%;
-
Xi ′ ——优选初始化基准值,%;
-
Xi( k)——比较数列中第i个因素的第k个值,%;
-
Xi( n)——比较数列中第i个因素的第n个值,%;
-
Y 0( k)——无量纲化的参考数列;
-
Yi( k)——无量纲化的比较数列;
-
Δ0i( k)——无量纲化的参考数列与无量纲化的比较数列的绝对差值;
-
Δi( min)——无量纲化的参考数列与无量纲化的比较数列的绝对差值的最小值;
-
Δi( max)——无量纲化的参考数列与无量纲化的比较数列的绝对差值的最大值;
-
η渗吸——渗吸采收率,%;
-
ρ——分辨系数,数值为0~1,通常取0.5;
-
ξi( k)——第i个影响因素与渗吸采收率在第k个样品的关联系数。
-
参考文献
-
[1] JIANG Y,SHI Y,XU G,et al.Experimental study on spontaneous imbibition under confining pressure in tight sandstone cores based on low-field nuclear magnetic resonance measurements[J].Ener‐ gy & Fuels,2018,32(3):1-33.
-
[2] 吴忠宝,李莉,阎逸群.超低渗油藏体积压裂与渗吸采油开发新模式[J].断块油气田,2019,26(4):491-494.WU Zhongbao,LI Li,YAN Yiqun.New development pattern of network fracturing and imbibition oil recovery for super-low per‐ meability oil reservoirs[J].Fault-Block Oil and Gas Field,2019,26(4):491-494.
-
[3] KARPYN Z T,HALLECK P M,GRADER A S.An experimental study of spontaneous imbibition in fractured sandstone with con‐ trasting sedimentary layers[J].Journal of Petroleum Science & En‐ gineering,2009,67(1):48-56.
-
[4] SECHER‐HANSEN E,LANGGÅRD H,SCHOU J.An experimen‐ tal study of spontaneous imbibition in horn river shales[M].Cal‐ gary:Wiley Online Library,2012.
-
[5] 刘煜,杨建民,王丹,等.清洁压裂液返排液渗吸驱油效果影响因素评价[J].断块油气田,2020,27(5):666-670.LIU Yu,YANG Jianmin,WANG Dan,et al.Evaluation of influ‐ encing factors on imbibition displacement effect of clean fractur‐ ing flowback fluids[J].Fault-Block Oil and Gas Field,2020,27(5):666-670.
-
[6] AL-ATTAR H H.Experimental study of spontaneous capillary im‐ bibition in selected carbonate core samples[J].Journal of Petro‐ leum Science and Engineering,2010,70(3):320-326.
-
[7] 于欣,张猛,贺连啟,等.清洁压裂液返排液对致密油藏自发渗吸驱油效果的影响[J].大庆石油地质与开发,2019,38(1):162-168.YU Xin,ZHANG Meng,HE Lianqi,et al.Influences of the clean fracturing flow-back fluid on the oil displaced effect of the sponta‐ neous imbibition in dense reservoirs[J].Petroleum Geology & Oil‐ field Development in Daqing,2019,38(1):162-168.
-
[8] 谷潇雨,蒲春生,黄海,等.渗透率对致密砂岩储集层渗吸采油的微观影响机制[J].石油勘探与开发,2017,44(6):948-954.GU Xiaoyu,PU Chunsheng,HUANG Hai,et al.Micro-influenc‐ ing mechanism of permeability on spontaneous imbibition recov‐ ery for tight sandstone reservoirs[J].Petroleum Exploration and Development,2017,44(6):948-954.
-
[9] 韦青,李治平,白瑞婷,等.微观孔隙结构对致密砂岩渗吸影响的试验研究[J].石油钻探技术,2016,44(5):109-116.WEI Qing,LI Zhiping,BAI Ruiting,et al.An experimental study on the effect of microscopic pore structure on spontaneous imbibi‐tion in tight sandstones[J].Petroleum Drilling Techniques,2016,44(5):109-116.
-
[10] 叶洪涛,宁正福,王庆,等.页岩储层自发渗吸实验及润湿性研究[J].断块油气田,2019,26(1):84-87.YE Hongtao,NING Zhengfu,WANG Qing,et al.Spontaneous im‐ bibition experiment and wettability of shale reservoir[J].FaultBlock Oil and Gas Field,2019,26(1):84-87.
-
[11] 刘俊杰.鄂尔多斯盆地致密砂岩储层高温高压动态渗吸实验 [J].大庆石油地质与开发,2020,39(5):161-168.LIU Junjie.Dynamic imbibition experiment of the high-tempera‐ ture high-pressure tight sandstone reservoirs in Ordos Basin[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(5):161-168.
-
[12] 张全胜,李明,张子麟,等.胜利油田致密油储层体积压裂技术及应用[J].中国石油勘探,2019,24(2):233-240.ZHANG Quansheng,LI Ming,ZHANG Zilin,et al.Application of volume fracturing technology in tight oil reservoirs of Shengli oil‐ field[J].China Petroleum Exploration,2019,24(2):233-240.
-
[13] SCHECHTER D S,ZHOU D,ORR F M.Low IFT drainage and im‐ bibition[J].Journal of Petroleum Science & Engineering,1994,11(4):283-300.
-
[14] 王秀宇,巨明霜,杨文胜,等.致密油藏动态渗吸排驱规律与机理[J].油气地质与采收率,2019,26(3):92-98.WANG Xiuyu,JU Mingshuang,YANG Wensheng,et al.Dynamic imbibition principles and mechanism of tight oil reservoirs[J].Pe‐ troleum Geology and Recovery Efficiency,2019,26(3):92-98.
-
[15] 江敏,范洪富,张翼,等.渗吸剂体系基本性能对采收率的影响分析[J].特种油气藏,2019,26(3):138-142.JIANG Min,FAN Hongfu,ZHANG Yi,et al.Effects of basic per‐ formance of imbibition system on oil recovery[J].Special Oil & Gas Reservoirs,2019,26(3):138-142.
-
[16] 王家禄,刘玉章,陈茂谦,等.低渗透油藏裂缝动态渗吸机理实验研究[J].石油勘探与开发,2009,36(1):86-90.WANG Jialu,LIU Yuzhang,CHEN Maoqian,et al.Experimental study on dynamic imbibition mechanism of low permeability reser‐ voirs[J].Petroleum Exploration and Development,2009,36(1):86-90.
-
[17] 吕洲,王玉普,李莉,等.油气储层岩心实验的样本量设计[J].石油实验地质,2018,40(4):589-594.LÜ Zhou,WANG Yupu,LI Li,et al.Sample size design for oil and gas reservoir core-plug experiments[J].Petroleum Geology & Ex‐ periment,2018,40(4):589-594.
-
[18] 李爱芬,凡田友,赵琳.裂缝性油藏低渗透岩心自发渗吸实验研究[J].油气地质与采收率,2011,18(5):67-69.LI Aifen,FAN Tianyou,ZHAO Lin.Experimental study of sponta‐ neous imbibition in low permeability core,fractured reservoir[J].Petroleum Geology and Recovery Efficiency,2011,18(5):67-69.
-
[19] 党海龙,王小锋,段伟,等.鄂尔多斯盆地裂缝性低渗透油藏渗吸驱油研究[J].断块油气田,2017,24(5):687-690.DANG Hailong,WANG Xiaofeng,DUAN Wei,et al.Study on im‐ bibition flooding in fractured low-permeability reservoir of Ordos Basin[J].Fault-Block Oil and Gas Field,2017,24(5):687-690.
-
[20] 朱维耀,鞠岩,赵明,等.低渗透裂缝性砂岩油藏多孔介质渗吸机理研究[J].石油学报,2002,23(6):56-59.ZHU Weiyao,JU Yan,ZHAO Ming,et al.Spontaneous imbibition mechanism of flow through porous media and waterflooding in low-permeability fractured sandstone reservoir[J].Acta Petrolei Sinica,2002,23(6):56-59.
-
摘要
渗吸采油是利用低渗透油藏自身的毛管压力,强化基质与裂缝间的油水置换,从而有效提高采收率的一项新技术。目前关于渗吸采油的基本规律缺乏系统研究,对其主控因素不明确。使用高温高压渗吸仪,以渗吸采收率为指标,系统评价储层特性、流体性质和边界条件等3类7项参数对岩心自发渗吸作用的影响。使用灰色关联分析法对各影响因素进行权重分析。结果表明:低渗透油藏渗吸采收率随着岩心渗透率和长度的增大而减小。油藏温度升高,原油黏度降低,渗吸作用增强,渗吸采收率增大;两端开启岩心渗吸采收率高于周围开启岩心;油水界面张力越低,岩石表面亲水性越强,渗吸采收率越高;裂缝越多,渗吸采收率越高。各影响因素权重由大到小依次为:岩石润湿性、油水界面张力、裂缝条数、油藏温度、端面开启位置、岩心渗透率和岩心长度,其中油水界面张力、岩石润湿性和裂缝条数与渗吸采收率的关联度均在0.95以上,为渗吸采油主控因素。
Abstract
The imbibition oil recovery uses the capillary pressure of low-permeability reservoirs to enhance the oil-water displacement between matrices and fractures,thereby effectively improving the recovery factor. At present,there is a lack of systematic studies on the basic laws of imbibition oil recovery,and its main controlling factors are not clear. A high-tem‐ perature and high-pressure imbibition instrument was adopted,with the imbibition recovery factor as an indicator,to sys‐ tematically evaluate the influence of seven parameters of three types,including reservoir characteristics,fluid properties, and boundary conditions,on the spontaneous imbibition of cores. The weight of each influencing factor was analyzed by grey relational analysis. The results show that the imbibition recovery of low-permeability reservoirs decreases with the in‐ crease in core permeability and length. Lower oil-water interfacial tension and stronger hydrophilicity of rock surfaces lead to a higher imbibition recovery. A higher temperature results in lower viscosity of crude oil and stronger imbibition effect, with the imbibition recovery on the increase. The imbibition recovery of cores open at both ends is higher than that of cores open on the side. More fractures bring about a higher imbibition recovery. The weight of each influencing factor in descend‐ ing order is rock wettability,oil-water interfacial tension,number of fractures,reservoir temperature,end-face opening po‐ sition,core permeability,and core length. Among them,oil-water interfacial tension,rock wettability,and number of frac‐ tures are the main controlling factors of imbibition oil recovery as their correlations with imbibition recovery are all above 0.95.
Keywords
low-permeability reservoir ; imbibition ; main controlling factor ; wettability ; interfacial tension ; EOR