en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

李爱芬(1962—),女,山东潍坊人,教授,博导,从事油气渗流机理与提高采收率机理研究。E-mail:aifenli123@163.com。

中图分类号:TE345

文献标识码:A

文章编号:1009-9603(2021)06-0030-08

DOI:10.13673/j.cnki.cn37-1359/te.2021.06.004

参考文献 1
赵弟江,江尚昆,乔柱,等.稠油油藏油气运移路径刻画与成藏过程分析——以渤海海域辽东湾坳陷LD16含油气构造为例 [J].中国石油勘探,2021,26(5):113-124.ZHAO Dijiang,JIANG Shangkun,QIAO Zhu,et al.Characteriza⁃ tion of migration pathway and analysis of oil accumulation process of heavy oil reservoirs:a case study of LD16 oil-bearing structure in Liaodong Bay Depression in Bohai Sea area[J].China Petro⁃ leum Exploration,2021,26(5):113-124.
参考文献 2
王诗灏.特深层稠油油藏火驱可行性[J].大庆石油地质与开发,2019,38(6):83-89.WANG Shihao.Feasibility of the fire flooding in the extra-deep heavy oil reservoirs[J].Petroleum Geology & Oilfield Develop⁃ ment in Daqing,2019,38(6):83-89.
参考文献 3
杨光璐,李迎环,何慧卓.特稠油油藏多元热流体吞吐技术研究与应用[J].特种油气藏,2020,27(2):103-107.YANG Guanglu,LI Yinghuan,HE Huizhuo.Research and appli⁃ cation of multi-component thermal fluid stimulation in the extraheavy oil reservoir[J].Special Oil & Gas Reservoirs,2020,27(2):103-107.
参考文献 4
张弦,车洪昌,刘以胜,等.超细金属催化剂改善稠油火烧效果实验研究[J].油气藏评价与开发,2019,9(4):36-40.ZHANG Xian,CHE Hongchang,LIU Yisheng,et al.Improved effi⁃ ciency of in-situ combustion by application of submicro metal ox⁃ ides particles[J].Reservoir Evaluation and Development,2019,9(4):36-40.
参考文献 5
魏超平,李伟忠,吴光焕,等.稠油降黏剂驱提高采收率机理 [J].油气地质与采收率,2020,27(2):131-136.WEI Chaoping,LI Weizhong,WU Guanghuan,et al.EOR mecha⁃ nism of viscosity reducer flooding in heavy oil reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(2):131-136.
参考文献 6
李爱芬,任晓霞,江凯亮,等.表面活性剂改善稠油油藏水驱开发效果实验研究——以东辛油田深层稠油油藏为例[J].油气地质与采收率,2014,21(2):18-21.LI Aifen,REN Xiaoxia,JIANG Kailiang,et al.Experimental study on influencing factors of injecting surfactant to improve water flooding for heavy oil reservoir-case of Dongxin heavy oil reservoir [J].Petroleum Geology and Recovery Effciency,2014,21(2):18-21.
参考文献 7
鹿腾,李兆敏,韩继超,等.页岩夹层及压裂裂缝对蒸汽辅助重力泄油蒸汽腔扩展的影响[J].石油钻采工艺,2012,34(1):95-99.LU Teng,LI Zhaomin,HAN Jichao,et al.The influence of shale interlayer and fracturing fracture on steam chamber expansion of SAGD[J].Oil Drilling & Production Technology,2012,34(1):95-99.
参考文献 8
吴永彬,刘雪琦,杜宣,等.超稠油油藏溶剂辅助重力泄油机理物理模拟实验[J].石油勘探与开发,2020,47(4):765-771.WU Yongbin,LIU Xueqi,DU Xuan,et al.Scaled physical experi⁃ ments on drainage mechanisms of solvent-expanded SAGD in su⁃ per-heavy oil reservoirs[J].Petroleum Exploration and Develop⁃ ment,2020,47(4):765-771.
参考文献 9
杜阳.夹层对油砂SAGD蒸汽腔特征的影响研究[D].北京:中国石油大学(北京),2018.DU Yang.Study on the influence of interlayers on the characteris⁃ tics of oil sand SAGD steam chamber[D].Beijing:China Universi⁃ ty of Petroleum(Beijing),2018.
参考文献 10
邓宏伟.超深层低渗透稠油CO2增溶降黏体系研发与应用[J].油气地质与采收率,2020,27(1):81-88.DENG Hongwei.Development and application of CO2 solubilizing and viscosity reducing system for ultra-deep and low-permeabili⁃ ty heavy oil reservoirs[J].Petroleum Geology and Recovery Effi⁃ ciency,2020,27(1):81-88.
参考文献 11
刘雅利,刘鹏.陆相富有机质泥页岩中夹层特征及其作用—— 以济阳坳陷为例[J].油气地质与采收率,2019,26(5):1-9.LIU Yali,LIU Peng.Interlayer characteristics and their effect on continental facies organic-rich shale:A case study of Jiyang De⁃ pression[J].Petroleum Geology and Recovery Efficiency,2019,26(5):1-9.
参考文献 12
崔景伟,侯连华,朱如凯,等.鄂尔多斯盆地延长组长7页岩层段岩石热导率特征及启示[J].石油实验地质,2019,41(2):280-288.CUI Jingwei,HOU Lianhua,ZHU Rukai,et al.Thermal conductiv⁃ ity properties of rocks in the Chang7 shale strata in the Ordos Ba⁃ sin and its implications for shale oil in situ development[J].Petro⁃ leum Geology & Experiment,2019,41(2):280-288.
参考文献 13
BUTLER R M,STEPHENS D J.The gravity drainage of steamheated heavy oil to parallel horizontal wells[J].Journal of Canadi⁃ an Petroleum Technology,1981,20(2):8.
参考文献 14
JOSHI S D.A laboratory study of thermal oil recovery using hori⁃ zontal wells:SPE Enhanced Oil Recovery Symposium[C].Tulsa:Society of Petroleum Engineers,1986:12.
参考文献 15
桑林翔,杨万立,杨浩哲,等.重18井区 J3q3 层夹层分布对SAGD开发效果的影响[J].特种油气藏,2015,22(3):81-84.SANG Linxiang,YANG Wanli,YANG Haozhe,et al.Influence of interbedding distribution on SAGD development effect in layer J3q3,Zhong-18 well field[J].Special Oil & Gas Reservoirs,2015,22(3):81-84.
参考文献 16
石兰香,李秀峦,刘荣军,等.夹层对SAGD开发效果影响研究 [J].特种油气藏,2015,22(5):133-136.SHI Lanxiang,LI Xiuluan,LIU Rongjun,et al.Research on the ef⁃ fect of interlayers on SAGD development[J].Special Oil & Gas Reservoirs,2015,22(5):133-136.
参考文献 17
吴光焕.泥岩夹层对蒸汽辅助重力驱油开发效果的影响[J].科学技术与工程,2016,16(6):59-65.WU Guanghuan.The effect of mudstone interlayer on SAGD devel⁃ opment[J].Science Technology and Engineering,2016,16(6):59-65.
参考文献 18
魏绍蕾,程林松,张辉登,等.夹层对加拿大麦凯河油砂区块双水平井蒸汽辅助重力泄油开发的影响[J].油气地质与采收率,2016,23(2):62-69.WEI Shaolei,CHENG Linsong,ZHANG Huideng,et al.Physical simulation of the interlayer effect on SAGD production by dual horizontal well in Mackay River oil sands block,Canada[J].Petro⁃ leum Geology and Recovery Effciency,2016,23(2):62-69.
参考文献 19
HUANG S.An experimental and numerical study of a steam cham⁃ ber and production characteristics of SAGD considering multiple barrier layers[J].Journal of Petroleum Science and Engineering,2019,180:716-726.
参考文献 20
王琪琪,林伯韬,陈森,等.泥质夹层空间分布对SAGD效果的影响研究[J].地下空间与工程学报,2018,14(S2):632-638.WANG Qiqi,LIN Botao,CHEN Sen,et al.Study on spatial distri⁃ butions of mud stringers and its effect on SAGD[J].Chinese Jour⁃ nal of Underground Space and Engineering,2018,14(S2):632-638.
参考文献 21
石立华,喻高明,袁芳政,等.海上稠油砂岩油藏启动压力梯度测定方法及应用——以秦皇岛32-6油田为例[J].油气地质与采收率,2014,21(3):82-85.SHI Lihua,YU Gaoming,YUAN Fangzheng,et al.Experimental method and its application on threshold pressure gradient for off⁃ shore sandstone in heavy oil reservoir:a case study of QHD32-6 oilfield[J].Petroleum Geology and Recovery Efficiency,2014,21(3):82-85.
参考文献 22
刘新光,郭晓,王盘根,等.油砂蒸汽辅助重力排水开发隔层界限及上部剩余油挖潜方法[J].科学技术与工程,2021,21(16):6 657-6 662.LIU Xinguang,GUO Xiao,WANG Pangen,et al.Standard of top interlayers and exploitation method of stranded reserve in oil sand steam assistant gravity drainage development[J].Science Technol⁃ ogy and Engineering,2021,21(16):6 657-6 662.
参考文献 23
张凯,李阳,王琳娜,等.稠油流变特性实验研究[J].油气地质与采收率,2007,14(5):91-94.ZHANG Kai,LI Yang,WANG Linna,et al.Experimental study on rheological characteristics of heavy oil[J].Petroleum Geology and Recovery Efficiency,2007,14(5):91-94.
参考文献 24
宋传真,曹丽丽,曹立迎.低渗稠油油藏蒸汽吞吐合理开发井距的确定——以叙利亚O油田为例[J].断块油气田,2019,26(2):210-214.SONG Chuanzhen,CAO Lili,CAO Liying.Determination of rea⁃ sonable well spacing for low-permeability heavy-oil reservoirs by steam huff and puff:taking O oilfield in Syria for example[J].Fault-Block Oil and Gas Field,2019,26(2):210-214.
参考文献 25
郭万江,付帅师,李爱芬,等.缝洞型油藏物理实验模型制作新方法[J].科学技术与工程,2021,21(23):9 830-9 836.GUO Wanjiang,FU Shuaishi,LI Aifen,et al.A new method for manufacturing physical experimental models of fracture-cavity reservoir[J].Science Technology and Engineering,2021,21(23):9 830-9 836.
参考文献 26
PUJOL L,BOBERG T C.Scaling accuracy of laboratory steam flooding models[C].Bakersfield:SPE California Regional Meet⁃ ing,1972.
参考文献 27
冯晓敏,赵凤玲,薛雅芳,等.油田采出水中含油量测定方法分光光度法:SY/T 0530—2011[S].北京:石油工业出版社,2011.FENG Xiaomin,ZHAO Fengling,XUE Yafang,et al.Determina⁃ tion of oil content in oilfield produced water-Spectrophotometry method:SY/T 0530-2011[S].Beijing:Petroleum Industry Press,2011.
目录contents

    摘要

    蒸汽辅助重力泄油(SAGD)是一种高效开发稠油的热采技术。针对加拿大长湖油田原油黏度大,砂泥互层状隔夹层渗透率低、厚度大,隔夹层上方原油动用难度大等问题,进行了不同渗透率、不同温度下的稠油启动压力梯度室内实验,分析原油在重力作用下通过隔夹层的可行性。在此基础上,开展了 3组 SAGD二维物理模拟实验,研究了砂泥互层状隔夹层厚度对 SAGD蒸汽腔扩展及生产效果的影响,确定砂泥互层状隔夹层条件下 SAGD蒸汽腔扩展厚度界限。结果表明:在油砂开采过程中,稠油在隔夹层中的流动存在启动压力梯度现象,只有当隔夹层上方地层中的温度达200 ℃以上,原油黏度降至8.966 mPa·s以下,隔夹层上方的原油才能单纯依靠重力作用开始流动; 随着地层中砂泥互层状隔夹层厚度增大,蒸汽腔呈现纵向扩展减弱、横向扩展增强,蒸汽突破隔夹层能力减弱的趋势。砂泥互层状隔夹层渗透率为50 mD,厚度低于6 cm时,蒸汽突破隔夹层,隔夹层上方原油能得到部分动用。

    Abstract

    Steam-assisted gravity drainage(SAGD)is a thermal recovery technology for the efficient development of heavy oil reservoirs. The Long Lake Oilfield in Canada is faced with problems such as high viscosity of crude oil,low permeability and large thickness of the sand-mud interbed,and difficult crude oil production above the interbed. In response,laboratory experiments on the start-up pressure gradient of heavy oil at different permeability and temperature were carried out. The feasibility of crude oil passing through the interbed under gravity was analyzed. On this basis,three sets of two-dimensional SAGD physical simulation experiments were carried out to study the influence of the thickness of the sand-mud interbed on the expansion of the SAGD steam chamber and the production effect of SAGD and obtain the expansion thickness limit of the SAGD steam chamber under the condition of the sand-mud interbed. The results show that the flow of heavy oil in the interbed has a start-up pressure gradient in the process of oil sand exploitation. The crude oil above the interbed will start the flow merely by gravity only when the temperature in the formation above the interbed reaches 200 ℃ or more and the viscosity of the crude oil decreases to below 8.966 mPa·s. The steam chamber shows a trend of the vertical expansion weak- ening,the horizontal expansion increasing,and the ability of the steam to break through the interbed declining as the thick- ness of the sand-mud interbeds in the formations increases. The steam can break through the interbed and the crude oil above the interbed can be produced to a certain extent when the permeability of the sand-mud interbed is 50 mD and its thickness is less than 6 cm.

  • 据统计,中国稠油储量约为常规石油储量的 6 倍,而长期以来,受开发技术的限制,稠油油藏一直未得到有效动用[1]。近年来随着常规油气资源量减少以及对油气需求的不断扩大,稠油油藏逐渐成为研究重点。由于稠油存在黏度高、密度大、流动性差的特点,采用常规的方法难以有效动用,目前一般采用热力开采的方法[2]。近年来虽然采取了一系列适合中—深层稠油油藏特点的蒸汽吞吐、蒸汽驱、火驱等开发技术,但受油藏条件影响,常规的热采技术效率低、成本高,能耗大,动用储量有限[3-4]。而蒸汽辅助重力泄油(SAGD)技术作为 20 世纪 80 年代由BUTLER根据注水采盐原理提出的一种高效开发稠油的热采技术,相比传统注蒸汽开发具有蒸汽损耗减小,经济效益提高,采油速率大和采收率高等优点。目前在中外稠油油藏开发中得到了更为广泛的应用[5-10]。但是在实际油田生产的过程中,由于储层中普遍夹杂着不同物性的砂岩夹层、泥页岩夹层和砾岩夹层等,这些夹层岩性不同,其导热能力(热扩散系数、热导率)有所差异[11-12],因此对蒸汽开采过程中蒸汽腔向上扩展范围产生不同的影响,从而影响SAGD开发效果。

  • BUTLER等通过多个实验确定不同物性及分布模式隔夹层对 SAGD 开发效果的影响,认为连续分布的夹层会降低 SAGD 生产效果,小夹层影响不大[13]。JOSHI认为 SAGD 开发油藏中如果低渗透或非渗透夹层薄且零星分布,不会对蒸汽腔的扩展和 SAGD开发效果产生很大的影响[14]。桑林翔等研究了不同长度泥岩隔夹层对 SAGD 开发的影响,分别建立了不同长度泥岩隔夹层的模型。模拟结果显示,隔夹层发育长度越长,蒸汽腔绕过隔夹层需要的时间越长,产量高峰值推迟出现[15]。石兰香等通过数值模拟确定了隔夹层位于注汽井上方时,夹层位置是影响 SAGD 前期及中期采油速度的主要因素[16]。吴光焕基于数值模拟,分析了隔夹层两侧的流体导热速度和对流速度,认为泥岩隔夹层只阻碍上部油层物质交换,但不阻碍热量传递[17]。魏绍蕾等通过二维物理模拟实验研究了不同夹层空间分布下SAGD开发效果,结果表明,夹层越靠近油层顶部,蒸汽腔受到影响的时机越晚,对生产指标影响越小[18]。HUANG 通过对比蒸汽腔的扩展,分析了不同数量及不同组合方式的隔夹层对SAGD生产特性的影响,认为隔夹层的数量对蒸汽腔的整体形状和 SAGD 产量影响不大,靠近注采井的第一道隔夹层在多隔夹层的影响中起主导作用[19]。王琪琪等通过建立不同夹层空间分布模型,评价了不同夹层分布模式对 SAGD 蒸汽腔扩展的影响,认为随着夹层发育程度增大,蒸汽腔垂向扩展减弱而水平方向扩展增强[20]

  • 尽管针对隔夹层对SAGD开发效果的影响进行了大量研究,但对于隔夹层上方储层原油动用程度研究较少,而且对于隔夹层类型,大多考虑是纯泥岩夹层或页岩夹层,基于砂泥互层状隔夹层条件下的 SAGD 蒸汽腔扩展厚度界限研究较少。因此,笔者通过室内一维物理模拟实验,测试得到不同温度下的原油在不同渗透率隔夹层下的启动压力梯度,分析得到加热后原油在重力作用下通过隔夹层的可行性。在此基础上,进行了 3 组 SAGD 二维物理模拟实验,确定了砂泥互层状隔夹层条件下 SAGD 蒸汽腔扩展厚度界限。

  • 1 实验器材与方法

  • 稠油在原始地层温度下为非牛顿流体,黏度高、相对分子质量大、极性强,稠油与岩石界面及稠油流体之间界面的相互作用力大,在低渗透隔夹层中的流动属于低速非达西流动,存在附加渗流阻力,即存在启动压力梯度。因此,只有当油层驱替压力梯度超过启动压力梯度时,稠油才能流动[21-24]。开展不同温度下的原油通过不同渗透率隔夹层的渗流能力测试实验,测定不同渗透率填砂岩心流速与压差的关系,可得到稠油真实启动压力梯度。通过与重力作用所产生的压力梯度相比较,分析得到加热后稠油在重力作用下通过隔夹层的可行性。

  • 1.1 稠油启动压力梯度实验

  • 1.1.1 实验仪器

  • 实验岩心采用不同目数石英砂和环氧树脂胶按一定比例混合均匀制成的与隔夹层渗透率相同的填砂岩心[25],渗透率分别为20,50,100和200 mD。

  • 实验用油为不同地层温度下原油黏度分别为 856.535,73.681,18.109和8.966 mPa·s的模拟油,对应的地层温度分别为100,140,180和200℃。

  • 实验用水为按照油田实际矿化度配制的模拟地层水。

  • 1.1.2 实验步骤

  • 实验具体操作步骤包括:①将岩心抽真空饱和地层水,实验流程如图1所示。②80℃条件下恒温 3 h,用模拟油驱至岩心束缚水状态,老化24 h后,以驱替速度为 0.001 mL/min 油驱至出口端出油之后,关闭油容器的上部开关,观察压力变化,记录出口流速和稳定后上游压力,即为该流速下的最小启动压力。③分别以驱替速度 0.003,0.005,0.007 和 0.01 mL/min 油驱,记录出口流速和稳定后上游压力,即可得到不同黏度原油在不同渗透率岩心中的最小启动压力梯度。

  • 图1 稠油启动压力梯度实验流程

  • Fig.1 Experiment flow chart of start-up pressure gradient of heavy oil

  • 1.2 SAGD蒸汽腔扩展厚度界限实验

  • 加拿大长湖油田储层内存在渗透率较低的砂泥互层状隔夹层,会影响 SAGD 蒸汽腔的发育。隔夹层厚度与蒸汽能否突破隔夹层,使隔夹层上方储层中的原油得到动用密切相关。为研究隔夹层对 SAGD 开发效果的影响,开展了不同隔夹层厚度下的 SAGD 二维物理模拟实验,得到蒸汽腔突破隔夹层的厚度界限。

  • 1.2.1 实验仪器

  • SAGD实验装置主要包括注入系统、SAGD二维物理模型、生产系统和采集系统(图2)。注入系统包括恒速恒压泵和过热蒸汽发生器,主要用来为实验饱和原油和提供过热蒸汽。SAGD二维物理模型是该实验的主体部分,尺寸为 50 cm×40 cm×5 cm,最高耐压为10 MPa,最高耐温为300℃,模型内共布置95个测温点。生产系统主要包括回压阀和量筒,用来控制生产端压力和采集并计量产出液体。采集系统主要包括压力传感器、温度传感器及监控电脑等,将监测到的实时压力和温度数据传入计算机中,进行记录与存储,生成实时温度场云图。

  • 图2 二维双水平井SAGD室内物理模拟实验装置

  • Fig.2 Design of indoor 2D SAGD physical simulation experiment for dual horizontal wells

  • 依据现场得到的油藏数据和流体数据,已知长湖油田油砂埋深约为300 m,储层厚度达到20 m,垂直方向地层平均渗透率为 4 000 mD,储层平均有效孔隙度为35%。80℃原油黏度约为3 156 mPa·s,原始地层温度为 10℃,原始含水饱和度为 0.35,地层条件下原油黏度大于500×104 mPa·s,属于超稠油范围。该地区采用双水平井井组模式开发,注采井距为 5 m,生产井距离油层底部为 2 m,水平井段长度为 1 000 m,SAGD生产阶段注汽速率为 450 m3 /d,气腔操作压力为 1 MPa。根据 BUTLER 提出的 SAGD 物理模拟实验相似准则[26] 建立SAGD二维室内物理模拟实验模型与实验流程。实验选用现场脱水原油,假定实验室所用的石英砂热物理性质与油藏条件下的岩石热物理性质相同,操作温度和压力也与现场保持一致。实际油藏参数与物理模型参数对比如表1所示。

  • 1.2.2 实验步骤

  • 实验步骤主要包括:①充填隔夹层,根据隔夹层渗透率及厚度要求,选择不同目数石英砂(320~2 000 目)混合,加入一定比例的环氧树脂胶搅拌均匀,分批次填入模型。②室温下使隔夹层固化24 h,向隔夹层表面喷洒地层水,排出隔夹层孔隙中的空气。③根据油层粒径分布及模型油藏参数,计算模型油层所需要充填的不同目数石英砂(30~320目)、原油及地层水质量。④采用湿法填砂方式充填油层,由于原油室温下呈半固体状,因此将称量好的石英砂、原油及地层水在 80℃下混合均匀,分批次填入模型中。⑤密封模型,将黏土均匀铺在油砂上方,保证模型密封性。⑥将超稠油放置在中间容器内,利用加热套加热至80℃,使原油呈流动状态,以 5 mL/min的速度向模型中再次饱和油,驱替一倍模型孔隙体积后停止,确保模型内部达到原始含油饱和度,记录此过程饱和油的体积。⑦利用注汽井与生产井外部缠绕的直径为3 cm的管线,依靠热传递的方式加热注汽井和生产井及其周围的地层。待注汽井与生产井之间地层温度升高至80℃时,确保注汽井与生产井井间建立热连通,结束预热。⑧以 16 mL / min 速度注入蒸汽,出口端设置回压为 1 MPa,驱替 2 200 min 停止实验。⑨将产出液放置在 80℃恒温箱中静置,待其油水分离后,依据油田采出水中含油量测定方法分光光度法[27] 进行产出水中含油量分析,计量模型产油速度和总产油量。 ⑩将油藏模型均匀划分为20份,在每个网格中心取一定量的油砂样品,通过石油醚萃取油砂中的原油,得到模型不同位置的剩余油饱和度,将测试结果导入 Sufer 软件,自动差值生成饱和度分布图,测试剩余油饱和度,实验结束。

  • 表1 SAGD原型与实验模型油藏参数

  • Table1 Reservoir parameters of SAGD prototype and experimental model

  • 1.2.3 实验方案

  • 针对加拿大长湖油田砂泥互层状隔夹层渗透率低、厚度大的特点,在距油层顶部约 1/3 位置处,设计了 3 种不同厚度隔夹层,渗透率均为 50 mD。实验 1:泥岩厚度为 1 cm,砂岩厚度为 2 cm,泥岩厚度为 1 cm;实验 2:泥岩厚度为 1.5 cm,砂岩厚度为 2 cm,泥岩厚度为1.5 cm;实验3:泥岩厚度为2 cm,砂岩厚度为2 cm,泥岩厚度为2 cm。

  • 2 结果与分析

  • 2.1 稠油渗流能力分析

  • 针对 4种不同黏度原油通过 4种不同渗透率填砂岩心,每组实验以5种不同流速驱替,绘制流速与压力梯度关系曲线(图3)。不同黏度原油流动通过不同渗透率岩心时,流速与压力梯度均呈非线性关系,流速-压力梯度曲线均不通过原点,即证实不同黏度的原油通过隔夹层时均存在启动压力梯度,由不同黏度原油通过不同渗透率隔夹层时的最小启动压力梯度(表2)可以看出,隔夹层渗透率越低,原油黏度越高,最小启动压力梯度越大。

  • 地层中蒸汽加热的原油靠重力作用通过隔夹层,单位体积原油作用在隔夹层上引起的压力梯度可表示为:

  • dpdx=ρghoh1
    (1)
  • 图3 不同黏度原油通过不同渗透率岩心的流速与压力梯度关系曲线

  • Fig.3 Relationships between flow velocity and pressure gradient of simulated oil with different viscosities in cores with different permeability

  • 表2 不同黏度原油的最小启动压力梯度

  • Table2 Minimum start-up pressure gradients of crude oil with different viscosities

  • 分析实验测得的不同温度下的原油在不同渗透率隔夹层下的最小启动压力梯度与200℃原油在重力作用下的压力梯度关系(图4)可知,只有当蒸汽突破隔夹层,隔夹层上方原油温度升至 200℃以上,此时原油黏度小于 8.966 mPa·s,原油才能在重力作用下克服最小启动压力梯度通过隔夹层。

  • 图4 不同温度下原油的最小启动压力梯度与 200℃原油重力作用梯度对比

  • Fig.4 Comparison of minimum start-up pressure gradients of crude oil at different temperatures and gravity gradient of crude oil at 200℃

  • 2.2 蒸汽腔发育过程

  • 由不同厚度隔夹层条件下SAGD模型内蒸汽腔发育过程(图5)可以看出,在隔夹层存在的情况下, SAGD 蒸汽腔发育过程可划分为蒸汽腔上升、蒸汽腔横向扩展以及蒸汽腔下降3个阶段。蒸汽腔上升阶段,由于井间热连通性较好,并且在蒸汽超覆作用下,使得蒸汽腔在纵向上发育较快,而横向扩展较慢,蒸汽腔整体呈条带状;蒸汽在未到达隔夹层之前,未受到隔夹层的阻碍,因此驱替 400 min蒸汽腔扩展到隔夹层位置时形状较为一致。蒸汽腔横向扩展阶段,在受到低渗透性隔夹层的阻碍后,蒸汽无法继续向上运移,开始沿着隔夹层横向扩展一段时间;与此同时,部分蒸汽突破隔夹层,并沿着突破位置不断上行,在隔夹层上方纵向发育,到达顶部后,沿着顶部横向扩展;隔夹层下部蒸汽腔同时以相对较慢的速度横向扩展。蒸汽腔下降阶段,在蒸汽到达模型边界后,逐渐向下运移。

  • 对比不同厚度隔夹层条件下蒸汽腔扩展过程的温度场可知,隔夹层厚度主要影响蒸汽腔在纵向上的发育,隔夹层厚度越小,蒸汽腔越容易突破隔夹层且突破时间越早,蒸汽腔在纵向上的发育程度越大,横向发育会相对减弱。当隔夹层厚度大于 6 cm(实际地层中厚度为 3 m)时,蒸汽无法突破隔夹层,蒸汽腔会在隔夹层下方充分发育。

  • 2.3 剩余油饱和度分布特征

  • 对比3组实验中蒸汽腔泄油界面及剩余油饱和度分布情况(图6)发现,实验1中泄油界面在纵向上扩展范围最大,隔夹层上方原油动用程度最大,实验3中隔夹层上方原油基本没有得到动用。这主要是因为随着隔夹层厚度增加,在隔夹层的阻碍作用下,蒸汽腔在纵向上扩展受影响,无法突破隔夹层,隔夹层上方原油黏度过高,原油单纯在重力作用下无法克服黏滞阻力流动。进一步对比发现,随着隔夹层厚度增大,蒸汽沿纵向渗流能力逐渐减弱,从而使泄油界面横向扩展范围逐渐增大。但由于模型边界不断向外部环境散热,蒸汽在横向上与加热原油进行物质交换能力有限,因此当隔夹层厚度增加到一定程度,蒸汽腔横向泄油界面扩展受到限制。

  • 图5 不同厚度隔夹层条件下SAGD温度场

  • Fig.5 SAGD temperature fields under different interbed thicknesses

  • 图6 不同厚度隔夹层条件下SAGD蒸汽腔泄油界面与剩余油饱和度分布

  • Fig.6 Drainage interface and distribution of remaining oil saturation of SAGD steam chamber under different interbed thicknesses

  • 2.4 生产动态特征

  • 对比不同厚度隔夹层条件下SAGD产油速率随时间变化曲线(图7a)发现,其产油量变化整体上可分为瞬时产油量上升、瞬时产油量稳定和瞬时产油量下降3个阶段,分别对应着蒸汽腔上升、蒸汽腔横向扩展及蒸汽腔下降3个阶段。前期蒸汽腔扩展未受到隔夹层影响,因此500 min前3组实验产油速率较为一致。在蒸汽接触隔夹层之后,实验 3 中蒸汽主要在隔夹层下方横向扩展,无法突破隔夹层,因此 1 500 min 前实验 3 中平均瞬时产油速率略大于实验 1 和实验 2。1 500 min 后实验 1 和实验 2 中隔夹层上方地层中被加热的原油通过了隔夹层,因此实验1和实验2产油速率反而逐渐增大。

  • 对比不同厚度隔夹层条件下 SAGD 采出程度 (图7b)发现,实验1采出程度为37.30%,实验2和实验3采出程度分别为36.09%和34.12%。3组实验采出程度差别较小,实验 1 采出程度略高于实验 2 和实验3。这主要是因为隔夹层上方存在着大量原油难以动用的区域,使得整体的采出程度较低。由于实验 1 中隔夹层厚度最小,因此对隔夹层上方原油的流动阻碍最小,相比于实验 2和实验 3,隔夹层上方原油动用程度最大。

  • 图7 不同厚度隔夹层条件下SAGD生产特征随时间的变化

  • Fig.7 Variation of SAGD production characteristics with time under different interbed thicknesses

  • 3 结论

  • 油砂开采过程中,稠油在低渗透隔夹层流动存在启动压力梯度现象。对比实验测得的蒸汽温度下稠油的启动压力梯度与重力作用梯度发现,只有当蒸汽突破隔夹层,隔夹层上方原油温度升至 200℃以上,原油黏度小于8.966 mPa·s时,原油才能在重力作用下,克服隔夹层的最小启动压力梯度,通过隔夹层。随着地层中砂泥互层状隔夹层厚度增大,隔夹层对蒸汽腔扩展影响越大,呈现出蒸汽腔纵向扩展减弱、横向扩展增强的趋势。蒸汽腔突破隔夹层的能力逐渐减弱,隔夹层上方原油动用程度逐渐降低。砂泥互层状隔夹层渗透率为 50 mD,厚度低于 6 cm 时,蒸汽突破隔夹层,隔夹层上方原油能得到部分动用。

  • 符号解释

  • dpdx——单位体积原油作用在隔夹层上引起的压力梯度,MPa/cm;

  • g ——重力加速度,cm/s2,取值为980;

  • h o——实验中隔夹层上方油层厚度,m;

  • h l ——实验中隔夹层厚度,m;

  • ρ——原油密度,kg/m3

  • 参考文献

    • [1] 赵弟江,江尚昆,乔柱,等.稠油油藏油气运移路径刻画与成藏过程分析——以渤海海域辽东湾坳陷LD16含油气构造为例 [J].中国石油勘探,2021,26(5):113-124.ZHAO Dijiang,JIANG Shangkun,QIAO Zhu,et al.Characteriza⁃ tion of migration pathway and analysis of oil accumulation process of heavy oil reservoirs:a case study of LD16 oil-bearing structure in Liaodong Bay Depression in Bohai Sea area[J].China Petro⁃ leum Exploration,2021,26(5):113-124.

    • [2] 王诗灏.特深层稠油油藏火驱可行性[J].大庆石油地质与开发,2019,38(6):83-89.WANG Shihao.Feasibility of the fire flooding in the extra-deep heavy oil reservoirs[J].Petroleum Geology & Oilfield Develop⁃ ment in Daqing,2019,38(6):83-89.

    • [3] 杨光璐,李迎环,何慧卓.特稠油油藏多元热流体吞吐技术研究与应用[J].特种油气藏,2020,27(2):103-107.YANG Guanglu,LI Yinghuan,HE Huizhuo.Research and appli⁃ cation of multi-component thermal fluid stimulation in the extraheavy oil reservoir[J].Special Oil & Gas Reservoirs,2020,27(2):103-107.

    • [4] 张弦,车洪昌,刘以胜,等.超细金属催化剂改善稠油火烧效果实验研究[J].油气藏评价与开发,2019,9(4):36-40.ZHANG Xian,CHE Hongchang,LIU Yisheng,et al.Improved effi⁃ ciency of in-situ combustion by application of submicro metal ox⁃ ides particles[J].Reservoir Evaluation and Development,2019,9(4):36-40.

    • [5] 魏超平,李伟忠,吴光焕,等.稠油降黏剂驱提高采收率机理 [J].油气地质与采收率,2020,27(2):131-136.WEI Chaoping,LI Weizhong,WU Guanghuan,et al.EOR mecha⁃ nism of viscosity reducer flooding in heavy oil reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(2):131-136.

    • [6] 李爱芬,任晓霞,江凯亮,等.表面活性剂改善稠油油藏水驱开发效果实验研究——以东辛油田深层稠油油藏为例[J].油气地质与采收率,2014,21(2):18-21.LI Aifen,REN Xiaoxia,JIANG Kailiang,et al.Experimental study on influencing factors of injecting surfactant to improve water flooding for heavy oil reservoir-case of Dongxin heavy oil reservoir [J].Petroleum Geology and Recovery Effciency,2014,21(2):18-21.

    • [7] 鹿腾,李兆敏,韩继超,等.页岩夹层及压裂裂缝对蒸汽辅助重力泄油蒸汽腔扩展的影响[J].石油钻采工艺,2012,34(1):95-99.LU Teng,LI Zhaomin,HAN Jichao,et al.The influence of shale interlayer and fracturing fracture on steam chamber expansion of SAGD[J].Oil Drilling & Production Technology,2012,34(1):95-99.

    • [8] 吴永彬,刘雪琦,杜宣,等.超稠油油藏溶剂辅助重力泄油机理物理模拟实验[J].石油勘探与开发,2020,47(4):765-771.WU Yongbin,LIU Xueqi,DU Xuan,et al.Scaled physical experi⁃ ments on drainage mechanisms of solvent-expanded SAGD in su⁃ per-heavy oil reservoirs[J].Petroleum Exploration and Develop⁃ ment,2020,47(4):765-771.

    • [9] 杜阳.夹层对油砂SAGD蒸汽腔特征的影响研究[D].北京:中国石油大学(北京),2018.DU Yang.Study on the influence of interlayers on the characteris⁃ tics of oil sand SAGD steam chamber[D].Beijing:China Universi⁃ ty of Petroleum(Beijing),2018.

    • [10] 邓宏伟.超深层低渗透稠油CO2增溶降黏体系研发与应用[J].油气地质与采收率,2020,27(1):81-88.DENG Hongwei.Development and application of CO2 solubilizing and viscosity reducing system for ultra-deep and low-permeabili⁃ ty heavy oil reservoirs[J].Petroleum Geology and Recovery Effi⁃ ciency,2020,27(1):81-88.

    • [11] 刘雅利,刘鹏.陆相富有机质泥页岩中夹层特征及其作用—— 以济阳坳陷为例[J].油气地质与采收率,2019,26(5):1-9.LIU Yali,LIU Peng.Interlayer characteristics and their effect on continental facies organic-rich shale:A case study of Jiyang De⁃ pression[J].Petroleum Geology and Recovery Efficiency,2019,26(5):1-9.

    • [12] 崔景伟,侯连华,朱如凯,等.鄂尔多斯盆地延长组长7页岩层段岩石热导率特征及启示[J].石油实验地质,2019,41(2):280-288.CUI Jingwei,HOU Lianhua,ZHU Rukai,et al.Thermal conductiv⁃ ity properties of rocks in the Chang7 shale strata in the Ordos Ba⁃ sin and its implications for shale oil in situ development[J].Petro⁃ leum Geology & Experiment,2019,41(2):280-288.

    • [13] BUTLER R M,STEPHENS D J.The gravity drainage of steamheated heavy oil to parallel horizontal wells[J].Journal of Canadi⁃ an Petroleum Technology,1981,20(2):8.

    • [14] JOSHI S D.A laboratory study of thermal oil recovery using hori⁃ zontal wells:SPE Enhanced Oil Recovery Symposium[C].Tulsa:Society of Petroleum Engineers,1986:12.

    • [15] 桑林翔,杨万立,杨浩哲,等.重18井区 J3q3 层夹层分布对SAGD开发效果的影响[J].特种油气藏,2015,22(3):81-84.SANG Linxiang,YANG Wanli,YANG Haozhe,et al.Influence of interbedding distribution on SAGD development effect in layer J3q3,Zhong-18 well field[J].Special Oil & Gas Reservoirs,2015,22(3):81-84.

    • [16] 石兰香,李秀峦,刘荣军,等.夹层对SAGD开发效果影响研究 [J].特种油气藏,2015,22(5):133-136.SHI Lanxiang,LI Xiuluan,LIU Rongjun,et al.Research on the ef⁃ fect of interlayers on SAGD development[J].Special Oil & Gas Reservoirs,2015,22(5):133-136.

    • [17] 吴光焕.泥岩夹层对蒸汽辅助重力驱油开发效果的影响[J].科学技术与工程,2016,16(6):59-65.WU Guanghuan.The effect of mudstone interlayer on SAGD devel⁃ opment[J].Science Technology and Engineering,2016,16(6):59-65.

    • [18] 魏绍蕾,程林松,张辉登,等.夹层对加拿大麦凯河油砂区块双水平井蒸汽辅助重力泄油开发的影响[J].油气地质与采收率,2016,23(2):62-69.WEI Shaolei,CHENG Linsong,ZHANG Huideng,et al.Physical simulation of the interlayer effect on SAGD production by dual horizontal well in Mackay River oil sands block,Canada[J].Petro⁃ leum Geology and Recovery Effciency,2016,23(2):62-69.

    • [19] HUANG S.An experimental and numerical study of a steam cham⁃ ber and production characteristics of SAGD considering multiple barrier layers[J].Journal of Petroleum Science and Engineering,2019,180:716-726.

    • [20] 王琪琪,林伯韬,陈森,等.泥质夹层空间分布对SAGD效果的影响研究[J].地下空间与工程学报,2018,14(S2):632-638.WANG Qiqi,LIN Botao,CHEN Sen,et al.Study on spatial distri⁃ butions of mud stringers and its effect on SAGD[J].Chinese Jour⁃ nal of Underground Space and Engineering,2018,14(S2):632-638.

    • [21] 石立华,喻高明,袁芳政,等.海上稠油砂岩油藏启动压力梯度测定方法及应用——以秦皇岛32-6油田为例[J].油气地质与采收率,2014,21(3):82-85.SHI Lihua,YU Gaoming,YUAN Fangzheng,et al.Experimental method and its application on threshold pressure gradient for off⁃ shore sandstone in heavy oil reservoir:a case study of QHD32-6 oilfield[J].Petroleum Geology and Recovery Efficiency,2014,21(3):82-85.

    • [22] 刘新光,郭晓,王盘根,等.油砂蒸汽辅助重力排水开发隔层界限及上部剩余油挖潜方法[J].科学技术与工程,2021,21(16):6 657-6 662.LIU Xinguang,GUO Xiao,WANG Pangen,et al.Standard of top interlayers and exploitation method of stranded reserve in oil sand steam assistant gravity drainage development[J].Science Technol⁃ ogy and Engineering,2021,21(16):6 657-6 662.

    • [23] 张凯,李阳,王琳娜,等.稠油流变特性实验研究[J].油气地质与采收率,2007,14(5):91-94.ZHANG Kai,LI Yang,WANG Linna,et al.Experimental study on rheological characteristics of heavy oil[J].Petroleum Geology and Recovery Efficiency,2007,14(5):91-94.

    • [24] 宋传真,曹丽丽,曹立迎.低渗稠油油藏蒸汽吞吐合理开发井距的确定——以叙利亚O油田为例[J].断块油气田,2019,26(2):210-214.SONG Chuanzhen,CAO Lili,CAO Liying.Determination of rea⁃ sonable well spacing for low-permeability heavy-oil reservoirs by steam huff and puff:taking O oilfield in Syria for example[J].Fault-Block Oil and Gas Field,2019,26(2):210-214.

    • [25] 郭万江,付帅师,李爱芬,等.缝洞型油藏物理实验模型制作新方法[J].科学技术与工程,2021,21(23):9 830-9 836.GUO Wanjiang,FU Shuaishi,LI Aifen,et al.A new method for manufacturing physical experimental models of fracture-cavity reservoir[J].Science Technology and Engineering,2021,21(23):9 830-9 836.

    • [26] PUJOL L,BOBERG T C.Scaling accuracy of laboratory steam flooding models[C].Bakersfield:SPE California Regional Meet⁃ ing,1972.

    • [27] 冯晓敏,赵凤玲,薛雅芳,等.油田采出水中含油量测定方法分光光度法:SY/T 0530—2011[S].北京:石油工业出版社,2011.FENG Xiaomin,ZHAO Fengling,XUE Yafang,et al.Determina⁃ tion of oil content in oilfield produced water-Spectrophotometry method:SY/T 0530-2011[S].Beijing:Petroleum Industry Press,2011.

  • 参考文献

    • [1] 赵弟江,江尚昆,乔柱,等.稠油油藏油气运移路径刻画与成藏过程分析——以渤海海域辽东湾坳陷LD16含油气构造为例 [J].中国石油勘探,2021,26(5):113-124.ZHAO Dijiang,JIANG Shangkun,QIAO Zhu,et al.Characteriza⁃ tion of migration pathway and analysis of oil accumulation process of heavy oil reservoirs:a case study of LD16 oil-bearing structure in Liaodong Bay Depression in Bohai Sea area[J].China Petro⁃ leum Exploration,2021,26(5):113-124.

    • [2] 王诗灏.特深层稠油油藏火驱可行性[J].大庆石油地质与开发,2019,38(6):83-89.WANG Shihao.Feasibility of the fire flooding in the extra-deep heavy oil reservoirs[J].Petroleum Geology & Oilfield Develop⁃ ment in Daqing,2019,38(6):83-89.

    • [3] 杨光璐,李迎环,何慧卓.特稠油油藏多元热流体吞吐技术研究与应用[J].特种油气藏,2020,27(2):103-107.YANG Guanglu,LI Yinghuan,HE Huizhuo.Research and appli⁃ cation of multi-component thermal fluid stimulation in the extraheavy oil reservoir[J].Special Oil & Gas Reservoirs,2020,27(2):103-107.

    • [4] 张弦,车洪昌,刘以胜,等.超细金属催化剂改善稠油火烧效果实验研究[J].油气藏评价与开发,2019,9(4):36-40.ZHANG Xian,CHE Hongchang,LIU Yisheng,et al.Improved effi⁃ ciency of in-situ combustion by application of submicro metal ox⁃ ides particles[J].Reservoir Evaluation and Development,2019,9(4):36-40.

    • [5] 魏超平,李伟忠,吴光焕,等.稠油降黏剂驱提高采收率机理 [J].油气地质与采收率,2020,27(2):131-136.WEI Chaoping,LI Weizhong,WU Guanghuan,et al.EOR mecha⁃ nism of viscosity reducer flooding in heavy oil reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(2):131-136.

    • [6] 李爱芬,任晓霞,江凯亮,等.表面活性剂改善稠油油藏水驱开发效果实验研究——以东辛油田深层稠油油藏为例[J].油气地质与采收率,2014,21(2):18-21.LI Aifen,REN Xiaoxia,JIANG Kailiang,et al.Experimental study on influencing factors of injecting surfactant to improve water flooding for heavy oil reservoir-case of Dongxin heavy oil reservoir [J].Petroleum Geology and Recovery Effciency,2014,21(2):18-21.

    • [7] 鹿腾,李兆敏,韩继超,等.页岩夹层及压裂裂缝对蒸汽辅助重力泄油蒸汽腔扩展的影响[J].石油钻采工艺,2012,34(1):95-99.LU Teng,LI Zhaomin,HAN Jichao,et al.The influence of shale interlayer and fracturing fracture on steam chamber expansion of SAGD[J].Oil Drilling & Production Technology,2012,34(1):95-99.

    • [8] 吴永彬,刘雪琦,杜宣,等.超稠油油藏溶剂辅助重力泄油机理物理模拟实验[J].石油勘探与开发,2020,47(4):765-771.WU Yongbin,LIU Xueqi,DU Xuan,et al.Scaled physical experi⁃ ments on drainage mechanisms of solvent-expanded SAGD in su⁃ per-heavy oil reservoirs[J].Petroleum Exploration and Develop⁃ ment,2020,47(4):765-771.

    • [9] 杜阳.夹层对油砂SAGD蒸汽腔特征的影响研究[D].北京:中国石油大学(北京),2018.DU Yang.Study on the influence of interlayers on the characteris⁃ tics of oil sand SAGD steam chamber[D].Beijing:China Universi⁃ ty of Petroleum(Beijing),2018.

    • [10] 邓宏伟.超深层低渗透稠油CO2增溶降黏体系研发与应用[J].油气地质与采收率,2020,27(1):81-88.DENG Hongwei.Development and application of CO2 solubilizing and viscosity reducing system for ultra-deep and low-permeabili⁃ ty heavy oil reservoirs[J].Petroleum Geology and Recovery Effi⁃ ciency,2020,27(1):81-88.

    • [11] 刘雅利,刘鹏.陆相富有机质泥页岩中夹层特征及其作用—— 以济阳坳陷为例[J].油气地质与采收率,2019,26(5):1-9.LIU Yali,LIU Peng.Interlayer characteristics and their effect on continental facies organic-rich shale:A case study of Jiyang De⁃ pression[J].Petroleum Geology and Recovery Efficiency,2019,26(5):1-9.

    • [12] 崔景伟,侯连华,朱如凯,等.鄂尔多斯盆地延长组长7页岩层段岩石热导率特征及启示[J].石油实验地质,2019,41(2):280-288.CUI Jingwei,HOU Lianhua,ZHU Rukai,et al.Thermal conductiv⁃ ity properties of rocks in the Chang7 shale strata in the Ordos Ba⁃ sin and its implications for shale oil in situ development[J].Petro⁃ leum Geology & Experiment,2019,41(2):280-288.

    • [13] BUTLER R M,STEPHENS D J.The gravity drainage of steamheated heavy oil to parallel horizontal wells[J].Journal of Canadi⁃ an Petroleum Technology,1981,20(2):8.

    • [14] JOSHI S D.A laboratory study of thermal oil recovery using hori⁃ zontal wells:SPE Enhanced Oil Recovery Symposium[C].Tulsa:Society of Petroleum Engineers,1986:12.

    • [15] 桑林翔,杨万立,杨浩哲,等.重18井区 J3q3 层夹层分布对SAGD开发效果的影响[J].特种油气藏,2015,22(3):81-84.SANG Linxiang,YANG Wanli,YANG Haozhe,et al.Influence of interbedding distribution on SAGD development effect in layer J3q3,Zhong-18 well field[J].Special Oil & Gas Reservoirs,2015,22(3):81-84.

    • [16] 石兰香,李秀峦,刘荣军,等.夹层对SAGD开发效果影响研究 [J].特种油气藏,2015,22(5):133-136.SHI Lanxiang,LI Xiuluan,LIU Rongjun,et al.Research on the ef⁃ fect of interlayers on SAGD development[J].Special Oil & Gas Reservoirs,2015,22(5):133-136.

    • [17] 吴光焕.泥岩夹层对蒸汽辅助重力驱油开发效果的影响[J].科学技术与工程,2016,16(6):59-65.WU Guanghuan.The effect of mudstone interlayer on SAGD devel⁃ opment[J].Science Technology and Engineering,2016,16(6):59-65.

    • [18] 魏绍蕾,程林松,张辉登,等.夹层对加拿大麦凯河油砂区块双水平井蒸汽辅助重力泄油开发的影响[J].油气地质与采收率,2016,23(2):62-69.WEI Shaolei,CHENG Linsong,ZHANG Huideng,et al.Physical simulation of the interlayer effect on SAGD production by dual horizontal well in Mackay River oil sands block,Canada[J].Petro⁃ leum Geology and Recovery Effciency,2016,23(2):62-69.

    • [19] HUANG S.An experimental and numerical study of a steam cham⁃ ber and production characteristics of SAGD considering multiple barrier layers[J].Journal of Petroleum Science and Engineering,2019,180:716-726.

    • [20] 王琪琪,林伯韬,陈森,等.泥质夹层空间分布对SAGD效果的影响研究[J].地下空间与工程学报,2018,14(S2):632-638.WANG Qiqi,LIN Botao,CHEN Sen,et al.Study on spatial distri⁃ butions of mud stringers and its effect on SAGD[J].Chinese Jour⁃ nal of Underground Space and Engineering,2018,14(S2):632-638.

    • [21] 石立华,喻高明,袁芳政,等.海上稠油砂岩油藏启动压力梯度测定方法及应用——以秦皇岛32-6油田为例[J].油气地质与采收率,2014,21(3):82-85.SHI Lihua,YU Gaoming,YUAN Fangzheng,et al.Experimental method and its application on threshold pressure gradient for off⁃ shore sandstone in heavy oil reservoir:a case study of QHD32-6 oilfield[J].Petroleum Geology and Recovery Efficiency,2014,21(3):82-85.

    • [22] 刘新光,郭晓,王盘根,等.油砂蒸汽辅助重力排水开发隔层界限及上部剩余油挖潜方法[J].科学技术与工程,2021,21(16):6 657-6 662.LIU Xinguang,GUO Xiao,WANG Pangen,et al.Standard of top interlayers and exploitation method of stranded reserve in oil sand steam assistant gravity drainage development[J].Science Technol⁃ ogy and Engineering,2021,21(16):6 657-6 662.

    • [23] 张凯,李阳,王琳娜,等.稠油流变特性实验研究[J].油气地质与采收率,2007,14(5):91-94.ZHANG Kai,LI Yang,WANG Linna,et al.Experimental study on rheological characteristics of heavy oil[J].Petroleum Geology and Recovery Efficiency,2007,14(5):91-94.

    • [24] 宋传真,曹丽丽,曹立迎.低渗稠油油藏蒸汽吞吐合理开发井距的确定——以叙利亚O油田为例[J].断块油气田,2019,26(2):210-214.SONG Chuanzhen,CAO Lili,CAO Liying.Determination of rea⁃ sonable well spacing for low-permeability heavy-oil reservoirs by steam huff and puff:taking O oilfield in Syria for example[J].Fault-Block Oil and Gas Field,2019,26(2):210-214.

    • [25] 郭万江,付帅师,李爱芬,等.缝洞型油藏物理实验模型制作新方法[J].科学技术与工程,2021,21(23):9 830-9 836.GUO Wanjiang,FU Shuaishi,LI Aifen,et al.A new method for manufacturing physical experimental models of fracture-cavity reservoir[J].Science Technology and Engineering,2021,21(23):9 830-9 836.

    • [26] PUJOL L,BOBERG T C.Scaling accuracy of laboratory steam flooding models[C].Bakersfield:SPE California Regional Meet⁃ ing,1972.

    • [27] 冯晓敏,赵凤玲,薛雅芳,等.油田采出水中含油量测定方法分光光度法:SY/T 0530—2011[S].北京:石油工业出版社,2011.FENG Xiaomin,ZHAO Fengling,XUE Yafang,et al.Determina⁃ tion of oil content in oilfield produced water-Spectrophotometry method:SY/T 0530-2011[S].Beijing:Petroleum Industry Press,2011.