en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

朱旭晨(1994—),男,辽宁葫芦岛人,硕士,从事油气田开发工作。E-mail:zhuxch11@cosl.com.cn。

中图分类号:TE345

文献标识码:A

文章编号:1009-9603(2021)06-0063-08

DOI:10.13673/j.cnki.cn37-1359/te.2021.06.008

参考文献 1
张风义,廖辉,高振南,等.海上深层块状特稠油SAGD开发参数优化研究[J].天然气与石油,2019,37(3):66-69.ZHANG Fengyi,LIAO Hui,GAO Zhennan,et al.Experimental re⁃ search on optimization of injection parameters for SAGD develop⁃ ment in extra-heavy oil[J].Natural Gas and Oil,2019,37(3):66-69.
参考文献 2
魏超平,李伟忠,吴光焕,等.稠油降黏剂驱提高采收率机理 [J].油气地质与采收率,2020,27(2):131-136.WEI Chaoping,LI Weizhong,WU Guanghuan,et al.EOR mecha⁃ nism of viscosity reducer flooding in heavy oil reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(2):131-136.
参考文献 3
刘义刚,钟立国,刘建斌,等.LD27-2油田稠油油藏蒸汽吞吐中后期注采参数优化研究[J].能源与环保,2020,42(8):86-91,108.LIU Yigang,ZHONG Liguo,LIU Jianbin,et al.Study on optimiza⁃ tion of injection and production parameters in mid-to-late stage of cycle steam stimulation of heavy oil reservoirs in LD27-2 Oil⁃ field[J].China Energy and Environmental Protection,2020,42(8):86-91,108.
参考文献 4
HUANG Shijun,CAO Meng,CHENG Linsong.Experimental study on the mechanism of enhanced oil recovery by multi-thermal fluid in offshore heavy oil[J].International Journal of Heat and Mass Transfer,2018,122:1 074-1 084.
参考文献 5
葛涛涛,庞占喜,罗成栋,等.海上稠油油藏水平井多元热流体驱物理模拟实验研究[J].油气地质与采收率,2019,26(4):62-69.GE Taotao,PANG Zhanxi,LUO Chengdong,et al.Experimental study on multi-thermal fluid flooding by using horizontal wells in offshore heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(4):62-69.
参考文献 6
姜杰,杜福云,李敬松,等.多元热流体吞吐窜流影响灰色关联定量分析[J].海洋石油,2015,35(3):38-41.JIANG Jie,DU Fuyun,LI Jingsong,et al.Gray correlative quanti⁃ tative analysis on the influence of steam channeling of multiple thermal fluids[J].Offshore Oil,2015,35(3):38-41.
参考文献 7
祁成祥,姜杰,李敬松,等.海上稠油多元热流体吞吐注入参数正交优化[J].天然气与石油,2012,30(6):46-48.QI Chengxiang,JIANG Jie,LI Jingsong,et al.Orthogonal optimiza⁃ tion of huff and puff injection parameters of offshore heavy oil multiple thermal fluid[J].Natural Gas and Oil,2012,30(6):46-48.
参考文献 8
张启龙,马帅,霍宏博,等.基于数值模拟的渤海多元热流体增产机理研究[J].中外能源,2020,25(9):32-36.ZHANG Qilong,MA Shuai,HUO Hongbo,et al.Study on stimula⁃ tion mechanism of multiple thermal fluid in Bohai Oilfield based on numerical simulation[J].Sino-Global Energy,2020,25(9):32-36.
参考文献 9
AYDIN H,MEREY S.Potential of geothermal energy production from depleted gas fields:A case study of Dodan Field,Turkey[J].Renewable Energy,2021,164:1 076-1 088.
参考文献 10
PEDERSON J M,SITORUS J H.Geothermal hot-water floodBalam south Telisa sand,Sumatra,Indonesia[C].SPE 68724,2001.
参考文献 11
LIU Yongge,HOU Jian,ZHAO Haifeng,et al.A method to recover natural gas hydrates with geothermal energy conveyed by CO2 [J].Energy,2018,144:265-278.
参考文献 12
LIU Yongge,LIU Xiaoyu,HOU Jian,et al.Technical and econom⁃ ic feasibility of a novel heavy oil recovery method:Geothermal en⁃ ergy assisted heavy oil recovery[J].Energy,2019,181:853-867.
参考文献 13
ZIABAKHSH-GANJI Z,NICK H M,BRUHN D F.Investigation of the synergy potential of oil and geothermal energy from a fluvial oil reservoir[J].Journal of Petroleum Science and Engineering,2019,181:1-18.
参考文献 14
CROOIJMANS R A,WILLEMS C J L,NICK H M,et al.The influ⁃ ence of facies heterogeneity on the doublet performance in low-en⁃ thalpy geothermal sedimentary reservoirs[J].Geothermics,2016,64:209-219.
参考文献 15
王学忠.利用干热岩替代原油燃烧降低稠油开发成本[J].油气田地面工程,2010,29(9):71-72.WANG Xuezhong.The development cost of heavy oil reduced by dry hot rock combustion instead of crude oil[J].Oil-Gas Field Surface Engineering,2010,29(9):71-72.
参考文献 16
杜森垚,陈航,唐唐,等.利用地热能实现热 CO2驱的技术研究 [J].化工管理,2015,53(6):63.DU Senyao,CHEN Hang,TANG Tang,et al.Research on technol⁃ ogy of thermal CO2 flooding using geothermal energy[J].Chemical Enterprise Management,2015,53(6):63.
参考文献 17
MOSTOFINIA M,MOHAMMADI M,POURAFSHARY P.A cou⁃ pled wellbore/reservoir simulator to model temperature distribu⁃ tion and inflow rate profile in wells with multiple pay zones[J].Pe⁃ troleum Science and Technology,2012,30(6):575-584.
参考文献 18
OBALLA V,BUCHANAN L.Flexible wellbore model coupled to thermal reservoir simulator[C].Venezuela:World Heavy Oil Con⁃ gress,2009:3-5.
参考文献 19
STONE T W,EDMUNDS N R,KRISTOFF B J.A comprehensive wellbore/reservoir simulator[C].SPE 18419,1989.
参考文献 20
STONE T W,BENNETT J,EDWARDS D A,et al.A unified ther⁃ mal wellbore model for flexible simulation of multiple tubing strings[C].SPE 142153,2011.
参考文献 21
谢晓庆,康晓东,曾杨,等.海上油田不同开发方式组合模式探讨[J].中国海上油气,2017,29(4):85-90.XIE Xiaoqing,KANG Xiaodong,ZENG Yang,et al.Discussion of different development combination modes in offshore oilfield[J].China Offshore Oil and Gas,2017,29(4):85-90.
目录contents

    摘要

    热采技术是渤海油田开采稠油的主要方式,但普遍存在能耗高、规模大等缺点,制约了海上稠油的开采。渤海A油田具有丰富的地热资源,由此提出了一种利用深部地热能辅助开采浅层稠油的方法。系统地介绍了地热能辅助开采浅层稠油的工艺设计,基于渤海 A油田实际地质背景,结合传热理论和油气渗流规律建立了地热能辅助开采稠油的数值模拟模型,并通过经济评价验证了该方法的可行性,分析了敏感因素。模拟结果表明:注入水经地热储层的加热,上返至稠油储层时具有80 ℃以上高温,能够有效加热稠油储层使稠油黏度大幅度降低,累积产油量达3.0×106 m3 ,是常规注海水累积产油量的1倍;生产20 a净现值显示出地热能辅助开采方法具有良好的经济可行性,资金回收期为 2 a,净现值高达 21.8×108 元。敏感性分析显示,注水温度为 50~60 ℃时具有较好的开采效果,长水平井段地热能利用率较好,稠油采收率较高,注水速度对地热能辅助开采方法具有多重影响。

    Abstract

    The thermal recovery technology is the main method for heavy oil reservoirs in Bohai Oilfield,but it is usually ac- companied with high-energy consumption and large capital expenses,restricting the exploitation of offshore heavy oil reser- voir. With regard to Bohai Oilfield A with abundant geothermal resources,we proposed a deep geothermal energy assisted recovery method for shallow heavy oil reservoirs and systematically introduced its technological design. In light of the actu- al geological background of Bohai Oilfield A,a numerical model of geothermal energy assisted recovery for heavy oil reser- voirs was built,which was combined with the heat transfer theory and oil-gas flow laws. In addition,the feasibility of this method was verified by economic evaluation,and sensitive factors were analyzed. The simulation results show that the in- jected water,heated by the geothermal reservoir,has a temperature above 80 ℃ when it returns to the heavy oil reservoir. The water can effectively heat the heavy oil reservoir to dramatically reduce the viscosity of heavy oil. The cumulative oil production reaches 3.0×106 m3 ,which is twice the cumulative oil production by conventional seawater injection. Moreover, the net present value over 20 years of production is CNY21.8×108 ,proving the good economic feasibility of geothermal ener- gy assisted recovery,and the payback period is 2 years. Sensitivity analysis finds that recovery results are satisfactory at the water injection temperature of 50-60 ℃;the long horizontal well section reveals a better utilization of geothermal energy and a higher recovery factor of heavy oil;the water injection rate has multiple influences on geothermal energy assisted re- covery.

  • 中国稠油资源丰富,主要分布在辽河、新疆、胜利、河南和渤海等油田,其中渤海油田稠油储量占其探明储量一半以上,具有巨大开发潜力[1-2]。目前,热采技术是开采稠油的主要方法,主要包括蒸汽吞吐、蒸汽驱、注热水驱、火烧油层、多元热流体吞吐等方式。热采技术开采稠油的基本原理是通过向储层注入热流体使原油黏度降低,改善水油流度比,从而提高驱油效率[3-4]。海上稠油开发受作业空间和开采成本的限制,诸多陆上稠油开采方式难以实施,而蒸汽吞吐和多元热流体吞吐技术具有占地面积小、自动化程度高等优势,成为渤海油田开采稠油的主要方式[5-8],然而,这 2 种方式存在能源损失大、危险程度高和作业频繁等缺点。为了能够满足清洁、可持续发展的要求,诸多学者提出了利用深部地热能辅助开采稠油的设想。地热是一种清洁、可持续、可再生的能源,近年来,地热能被广泛地应用到油气开发领域[9]。PEDERSON等提出从地热储层中抽水转注到稠油储层进行热水驱油,同时将采出水注回地热储层的设想[10]。LIU等提出了 CO2置换法联合地热开采水合物的方法,利用地热加热 CO2开采浅层水合物资源[11]。LIU 等提出了一种利用地热能开采陆上稠油的方法,并与常规热水驱进行了比较,证实了该方法的可行性[12]。针对荷兰 MOERKAPELLE 油田的地热能辅助开采石油进行了评估和建模,结果表明利用地热能辅助开采石油能有效降低开发成本[13-14]。王学忠提出了基于干热岩开采石油的流程概念,利用单体增压泵直接将从干热岩井采出的热流体注入目的油层,再利用周围油井开采石油[15]。杜森垚等提出了利用地热能实现 CO2驱的设想,将低温超临界 CO2注入到深部地热储层,被加热后的CO2直接进入到稠油储层,实现CO2驱油[16]

  • 目前提出的地热能辅助开采稠油的方法多数仅适用于陆地稠油开采,海上稠油开采受地理位置的限制,存在施工难度大、作业成本高等难题,并且开发井以海洋平台为载体多数为大斜度井、水平井,不能完全借鉴陆地油田地热能辅助开采稠油的方法。针对利用地热能辅助海上稠油开采的相关研究处于基本空白阶段,渤海 A 油田位于渤海湾盆地,以岩性-构造复合油藏为主,主力储层孔隙度主要为 0.32~0.36,平均值为 0.327,渗透率为 100~5 000 mD,平均值为 2 600 mD;原油物性较差,胶质沥青质含量为35%,平均密度为0.981 g/cm3,地层原油黏度高达 350.4~425.2 mPa·s;地层压力梯度为 1.0 MPa/hm,地层温度梯度为5.7℃/hm,属于常压超温油藏。整体来看渤海A油田浅层属于高孔高渗透稠油油藏,由于温度梯度较高深部地层具有丰富地热资源,为利用深部地热能开采浅层稠油提供了良好的地质条件。为此,基于渤海 A 油田提出了一种海上利用深部地热能辅助开采浅层稠油的方法,系统地阐述了利用深部地热能辅助开采浅层稠油的工艺设计,基于传热理论和油气渗流规律建立了地热能辅助开采浅层稠油数值模拟模型,通过经济评价对其可行性进行评估,并深入探究了注水温度、注水速度和水平井段长度等因素的敏感性。

  • 1 工艺设计

  • 渤海 A 油田具有多个海上生产平台,受地理条件的限制同一生产区块内的注水井、生产井井口设置在同一生产平台内,便于注水井和生产井的管理以及采出液的分离与运输,这为地热能辅助开采浅层稠油提供了极大便利。根据渤海A油田某区块生产平台现有结构,提出了一种利用深部地热能辅助开采浅层稠油的方法。图1为地热能辅助开采浅层稠油方法示意,整个系统主要包括生产平台以及注水井和生产井,注水井由稠油储层注入水平井段和地热储层换热水平井段组成,利用海水或者采出水作为换热介质,将注入水从注水井的油管注入,依次经过海水层、稠油储层到达深部地热储层,注入水进入注水井的换热水平井段环空内,与地热储层进行热交换,并从环空内上返至稠油储层内的水平井段进入地层之中,油管使用隔热材料减少环空内上返的注入水与油管内注入水的热交换,保证环空内上返的注入水到达稠油储层时具有较高的温度。

  • 该方法既节省了地面设备的投入,又节约了海上平台的空间,并且海上平台采出水温度能达到50~60℃,可以充分利用采出水的余热,避免了热量的浪费。为了验证地热能辅助开采浅层稠油方法的可行性,通过数值模拟技术基于经济评价方法以净现值作为评价指标,评估了地热能辅助开采浅层稠油方法的可行性。

  • 图1 地热能辅助开采浅层稠油方法示意

  • Fig.1 Geothermal energy assisted recovery for shallow heavy oil reservoir

  • 2 数值模拟分析

  • 2.1 模型建立

  • 目前热力采油的数值模拟技术已经成熟,本次研究通过CMG-STARS数值模拟器基于渤海A油田地质背景建立热采特征模型,图2 为地热能辅助开采浅层稠油数值模拟模型的井位布置情况,主要包括 2口注水井(INJ1和 INJ2)和 2口生产井(PRO1和 PRO2),注采井距为 200 m,注水井在稠油储层内的水平井段与采出井水平井段位于同一生产层位。数值模拟模型尺寸为820 m×820 m×2 020 m,模型被离散成41×41×39共65 559个网格,为了提高计算精度对生产井和注水井水平井段所在层位进行了网格加密。模型顶部深度为 1 000 m,底部深度为 3 020 m,浅层稠油储层深度为 1 000~1 100 m,渗透率为 2 600 mD,孔隙度为 0.327,模型外边界为封闭边界,具体参数设置如表1。原油黏度随温度的变化和油水相相对渗透率对稠油开发具有重要的影响,根据室内实验测得原油黏温曲线(图3)和归一化后相对渗透率曲线(图4)。

  • 图2 数值模拟模型井位布置

  • Fig.2 Well pattern of numerical simulation model

  • 表1 数值模拟模型基础参数

  • Table1 Basic parameters of numerical simulation model

  • 图3 原油黏温曲线

  • Fig.3 Viscosity-temperature curve of crude oil

  • 图4 室内实验归一化后油水相相对渗透率曲线

  • Fig.4 Oil-water relative permeability curves after normalization in laboratory experiment

  • 本文采用传统的传热、传质热采数学模型[17],涉及到的注水井与地层换热模型则采用 OBALLA 等提出的灵活井模型,该模型能够有效地模拟井筒、油管和地层之间的换热以及管内的流动,根据液体流速和流动方向确定井筒内流态,然后计算摩擦压降,井筒内流体与地层之间通过径向热传导进行热量交换[18-19]。灵活井与油藏分别独立求解,通过环空与油藏完全耦合。井筒内的压降方程和能量方程参见文献[20]方程1和方程2。

  • 2.2 可行性分析

  • 为了能够科学评价地热能辅助开采浅层稠油方法的可行性,通过经济评价以净现值作为评价指标,综合考虑出售原油的收入和资金投入成本,其中投入成本包括钻井费用、平台管理成本、出售原油税费等,利用净现值公式计算地热能辅助开采浅层稠油。净现值法是一种动态评价方法,是在考虑资金时间价值的基础上,根据油气田开发寿命期内各年的现金流来分析、计算其经济效益的评价方法[21]。用净现值法评估地热能辅助开采浅层稠油可行性的基础参数见表2。同时对比了注海水、注采出水 2种方法的开采效果,在这 2种方法中,注入水不经过地热储层加热,直接注入到稠油储层,因此注水井井身长度小于地热能辅助开采浅层稠油注水井的井身长度。注入海水的温度为20℃,渤海 A 油田采出水温度为 50℃,地热能辅助开采注入 50℃的采出水。

  • 表2 经济评价基础参数

  • Table2 Basic parameters of economic evaluation

  • 从生产 20 a 产油速度和累积产油量变化曲线 (图5)可以看出,生产周期内地热能辅助开采、注采出水和注海水 3 种方法的累积产油量分别为 3.04× 106,1.85×106 和1.57×106 m3,地热能辅助开采稠油方法的累积产油量远大于注海水和注采出水方法,采收率是注海水的近1倍;产油速度曲线显示生产4 a 时,地热能辅助开采稠油方法的产油速度曲线缓慢上升,而注采出水和注海水的产油速度曲线没有明显变化,一直保持逐渐降低的趋势。由生产井井筒内原油黏度曲线(图6)可以看出,生产4 a时地热能辅助开采浅层稠油方法井筒内的原油黏度较低,水油流度比大大降低,有利于原油的开采,这也解释了生产 4 a时地热能辅助开采方法产油速度曲线升高的原因。此外,注采出水和注海水这 2 种方法原油黏度缓慢上升,是由于注入水温度比储层温度低,吸收稠油储层的热量导致稠油储层温度下降,从而使原油黏度变大,不利于稠油开采。

  • 图5 生产20 a产油速度和累积产油量曲线

  • Fig.5 Oil production rate and cumulative oil production

  • 图6 原油黏度曲线

  • Fig.6 Curves of crude oil viscosity

  • 稠油储层原始温度为 69℃,从图7 分析看出,地热能辅助开采浅层稠油方法热水波及区域的稠油储层温度保持在73~75℃,直接注海水、注采出水方法的储层温度分别保持在 21~50和 51~62℃。地热能辅助开采方法使原油黏度降低,水油流度比降低,而直接注海水和注采出水这 2 种方法使原油黏度升高,不利于稠油开采。地热能辅助开采方法的含油饱和度明显低于注海水和注采出水这 2 种方法,具有更高的采收率(图7)。注入水经地热储层的加热上返到稠油储层时水温最高达到80℃以上,能够加热稠油储层(图8)。

  • 从净现值曲线(图9)能够直观地体现地热能辅助开采方法具有良好的可行性。原油价格为 1 970 元/t时,注采出水、注海水和地热能辅助这 3种方法的回收期分别为 1,1.2 和 2 a,直接注采出水方法具有较短的回收期,由于地热能辅助开采方法增加了换热井的投资,回收期要晚于其他 2 种方法。生产20 a 时,地热能辅助开采方法的净现值远远高于其他 2种方法,其值高达 21.8×108 元,直接注采出水和注海水方法的净现值分别为 16.1×108和 12.2×108 元。根据净现值评估可以看出在低油价时期地热能辅助开采方法仍然具有较大的可行性,当油价升高时投资回收期将会缩短,可有效地降低投资风险。

  • 图7 生产20 a地层温度、原油黏度和含油饱和度分布情况

  • Fig.7 Distributions of formation temperature,crude oil viscosity and oil saturation during 20 years of production

  • 图8 水平井段入口注入水温度变化

  • Fig.8 Analysis of temperature change in injected water at inlet of a horizontal well section

  • 图9 生产20 a的净现值

  • Fig.9 Analysis of net present value

  • 3 敏感性分析

  • 3.1 注水温度

  • 海上平台采出水的温度为 50~60℃,海水的温度为20℃,注入水的初始温度影响地热储层的换热性进而影响产油效果。由注入水初始温度为 20, 50,55 和 60℃的累积产油量(图10)和净现值曲线 (图11)可以看出,注海水和注采出水的产油效果差异较大,而不同初始温度采出水的产油效果相差不大,累积产油量分别为 2.51×106,3.00×106,3.08×106 和 3.16×106 m3,净现值分别为 17.4×108,21.8×108, 22.4×108 和 23.3×108 元。地热能辅助开采方法利用海上平台的采出水作为注入水,具有较好的开采效果,而利用海水作为注入水效果不佳。这是因为海水的初始温度过低,经过地热储层加热到达稠油储层的温度为 55℃,不仅无法加热稠油储层,而且海水会携带部分储层热量经生产井产出,不利于稠油开采。地热能辅助开采浅层稠油时应利用采出水作为注入水,长期以海水作为注入水会影响开采稠油效果。

  • 图10 不同注入水初始温度条件下累积产油量

  • Fig.10 Cumulative oil production at different water injection temperatures

  • 图11 不同注入水初始温度条件下净现值

  • Fig.11 Net present value at different water injection temperatures

  • 3.2 注水速度

  • 海上平台的采出水处理能力有限,需要探究注水速度对地热能辅助开采方法的影响,从注水速度为 100,200,300 和 400 m3 /d 的累积产油量曲线(图12)可以看出,生产 20 a 累积产油量分别为 3.09× 106,3.16×106,3.04×106,2.89×106 m3,注水速度为 200 m3 /d 时累积产油量最大。增大注水速度,累积产油量反而下降,这是因为注水速度对地热能辅助开采主要存在两方面的影响:一方面注水速度越大,越有利于补充地层压力,增大驱替压差;另一方面注水速度增大,注入水与地热储层的换热性变差。由注入水上返至稠油储层水平井段入口温度曲线(图13)可以看出,注水速度越小,进入地层的注入水温度越高,稠油降黏效果越好,越有利于提高原油的流动性。当注水速度为 200 m3 /d 时,注入水进入稠油储层时的温度达到 88.1℃,既能够有效降低稠油黏度,又能充分补充地层能量,开采效果最理想;当注水速度为100 m3 /d时,虽然注入水的换热效果较好,但是驱替压差小;而当注水速度为300 和400 m3 /d时,稠油降黏效果不佳,导致最终产油量较低。

  • 图12 不同注水速度条件下累积产油量

  • Fig.12 Cumulative oil production at different injection rates

  • 图13 不同注水速度条件下水平井段入口注入水温度

  • Fig.13 Water temperature at inlet of a horizontal well section at different injection rates

  • 3.3 水平井段长度

  • 水平井段长度既影响换热性能又影响产油量,提高水平井段长度会增加投入成本,由水平井段长度分别为 200,300,400和 500 m 条件下累积产油量变化曲线(图14)和稠油储层水平井段入口的注入水温度变化曲线(图15)可以看出,随着水平井段长度的增加,累积产油量增加,注入水进入稠油储层的温度增加。生产 20 a,累积产油量分别为 2.31× 106,2.76×106,3.16×106和 3.49×106 m3,初始温度为 60℃的注入水进入稠油储层的温度分别增至 85.8, 87.5,88.1 和 89.0℃。由不同水平井段长度净现值变化曲线(图16)可以看出,当水平井段长度为 500 m时具有较早的回收期,并且随着开采的进行,长水平井段带来的经济效益越发明显。虽然增加水平井段的长度会导致基础投资增大,但是水平井段长度增加也会使产油量大幅度增加,这种提高产油量的回报可以有效弥补基础投资增加的成本。因此,在条件允许下,地热能辅助开采方法尽可能采用长水平井段进行开发。

  • 图14 不同水平井段长度下累积产油量

  • Fig.14 Cumulative oil production with different horizontal well sections

  • 图15 不同水平井段长度下入口注入水温度

  • Fig.15 Water injection temperature at inlets of different horizontal well sections

  • 图16 不同水平井段长度下净现值

  • Fig.16 Analysis of net present value with different horizontal well sections

  • 4 结论

  • 基于渤海A油田的地质背景建立了海上利用深部地热能辅助开采浅层稠油数值模拟模型,以净现值作为评价指标通过经济评价表明地热能辅助开采浅层稠油方法具有较好的可行性,敏感性分析发现注水温度、注水速度和水平井段长度对该方法具有重要影响。研究结果表明:①相比于常规注采出水和注海水方法,海上地热能辅助开采浅层稠油方法具有产油量高和净现值高等优点,20 a 累积产油量高达3.00×106 m3,净现值可以达到21.8×108 元,具有良好的可行性。②注入水经过地热储层的加热上返至稠油储层时水温达到80℃以上,能有效加热稠油储层,降低稠油黏度,从而改善水油流度比,提高稠油的采收率。③相比于海水,采出水作为海上地热能辅助开采浅层稠油方法的注入水具有更好的增油效果,长期以海水作为注入水会影响稠油开采效果;当注水速度为 200 m3 /d 时具有较好的增油效果,注水速度既影响换热性又影响产油量;增加水平井段的长度带来的增油收益可以弥补基础投资增加的成本,开采时间越长,长水平井段带来的经济效益越明显。

  • 参考文献

    • [1] 张风义,廖辉,高振南,等.海上深层块状特稠油SAGD开发参数优化研究[J].天然气与石油,2019,37(3):66-69.ZHANG Fengyi,LIAO Hui,GAO Zhennan,et al.Experimental re⁃ search on optimization of injection parameters for SAGD develop⁃ ment in extra-heavy oil[J].Natural Gas and Oil,2019,37(3):66-69.

    • [2] 魏超平,李伟忠,吴光焕,等.稠油降黏剂驱提高采收率机理 [J].油气地质与采收率,2020,27(2):131-136.WEI Chaoping,LI Weizhong,WU Guanghuan,et al.EOR mecha⁃ nism of viscosity reducer flooding in heavy oil reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(2):131-136.

    • [3] 刘义刚,钟立国,刘建斌,等.LD27-2油田稠油油藏蒸汽吞吐中后期注采参数优化研究[J].能源与环保,2020,42(8):86-91,108.LIU Yigang,ZHONG Liguo,LIU Jianbin,et al.Study on optimiza⁃ tion of injection and production parameters in mid-to-late stage of cycle steam stimulation of heavy oil reservoirs in LD27-2 Oil⁃ field[J].China Energy and Environmental Protection,2020,42(8):86-91,108.

    • [4] HUANG Shijun,CAO Meng,CHENG Linsong.Experimental study on the mechanism of enhanced oil recovery by multi-thermal fluid in offshore heavy oil[J].International Journal of Heat and Mass Transfer,2018,122:1 074-1 084.

    • [5] 葛涛涛,庞占喜,罗成栋,等.海上稠油油藏水平井多元热流体驱物理模拟实验研究[J].油气地质与采收率,2019,26(4):62-69.GE Taotao,PANG Zhanxi,LUO Chengdong,et al.Experimental study on multi-thermal fluid flooding by using horizontal wells in offshore heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(4):62-69.

    • [6] 姜杰,杜福云,李敬松,等.多元热流体吞吐窜流影响灰色关联定量分析[J].海洋石油,2015,35(3):38-41.JIANG Jie,DU Fuyun,LI Jingsong,et al.Gray correlative quanti⁃ tative analysis on the influence of steam channeling of multiple thermal fluids[J].Offshore Oil,2015,35(3):38-41.

    • [7] 祁成祥,姜杰,李敬松,等.海上稠油多元热流体吞吐注入参数正交优化[J].天然气与石油,2012,30(6):46-48.QI Chengxiang,JIANG Jie,LI Jingsong,et al.Orthogonal optimiza⁃ tion of huff and puff injection parameters of offshore heavy oil multiple thermal fluid[J].Natural Gas and Oil,2012,30(6):46-48.

    • [8] 张启龙,马帅,霍宏博,等.基于数值模拟的渤海多元热流体增产机理研究[J].中外能源,2020,25(9):32-36.ZHANG Qilong,MA Shuai,HUO Hongbo,et al.Study on stimula⁃ tion mechanism of multiple thermal fluid in Bohai Oilfield based on numerical simulation[J].Sino-Global Energy,2020,25(9):32-36.

    • [9] AYDIN H,MEREY S.Potential of geothermal energy production from depleted gas fields:A case study of Dodan Field,Turkey[J].Renewable Energy,2021,164:1 076-1 088.

    • [10] PEDERSON J M,SITORUS J H.Geothermal hot-water floodBalam south Telisa sand,Sumatra,Indonesia[C].SPE 68724,2001.

    • [11] LIU Yongge,HOU Jian,ZHAO Haifeng,et al.A method to recover natural gas hydrates with geothermal energy conveyed by CO2 [J].Energy,2018,144:265-278.

    • [12] LIU Yongge,LIU Xiaoyu,HOU Jian,et al.Technical and econom⁃ ic feasibility of a novel heavy oil recovery method:Geothermal en⁃ ergy assisted heavy oil recovery[J].Energy,2019,181:853-867.

    • [13] ZIABAKHSH-GANJI Z,NICK H M,BRUHN D F.Investigation of the synergy potential of oil and geothermal energy from a fluvial oil reservoir[J].Journal of Petroleum Science and Engineering,2019,181:1-18.

    • [14] CROOIJMANS R A,WILLEMS C J L,NICK H M,et al.The influ⁃ ence of facies heterogeneity on the doublet performance in low-en⁃ thalpy geothermal sedimentary reservoirs[J].Geothermics,2016,64:209-219.

    • [15] 王学忠.利用干热岩替代原油燃烧降低稠油开发成本[J].油气田地面工程,2010,29(9):71-72.WANG Xuezhong.The development cost of heavy oil reduced by dry hot rock combustion instead of crude oil[J].Oil-Gas Field Surface Engineering,2010,29(9):71-72.

    • [16] 杜森垚,陈航,唐唐,等.利用地热能实现热 CO2驱的技术研究 [J].化工管理,2015,53(6):63.DU Senyao,CHEN Hang,TANG Tang,et al.Research on technol⁃ ogy of thermal CO2 flooding using geothermal energy[J].Chemical Enterprise Management,2015,53(6):63.

    • [17] MOSTOFINIA M,MOHAMMADI M,POURAFSHARY P.A cou⁃ pled wellbore/reservoir simulator to model temperature distribu⁃ tion and inflow rate profile in wells with multiple pay zones[J].Pe⁃ troleum Science and Technology,2012,30(6):575-584.

    • [18] OBALLA V,BUCHANAN L.Flexible wellbore model coupled to thermal reservoir simulator[C].Venezuela:World Heavy Oil Con⁃ gress,2009:3-5.

    • [19] STONE T W,EDMUNDS N R,KRISTOFF B J.A comprehensive wellbore/reservoir simulator[C].SPE 18419,1989.

    • [20] STONE T W,BENNETT J,EDWARDS D A,et al.A unified ther⁃ mal wellbore model for flexible simulation of multiple tubing strings[C].SPE 142153,2011.

    • [21] 谢晓庆,康晓东,曾杨,等.海上油田不同开发方式组合模式探讨[J].中国海上油气,2017,29(4):85-90.XIE Xiaoqing,KANG Xiaodong,ZENG Yang,et al.Discussion of different development combination modes in offshore oilfield[J].China Offshore Oil and Gas,2017,29(4):85-90.

  • 参考文献

    • [1] 张风义,廖辉,高振南,等.海上深层块状特稠油SAGD开发参数优化研究[J].天然气与石油,2019,37(3):66-69.ZHANG Fengyi,LIAO Hui,GAO Zhennan,et al.Experimental re⁃ search on optimization of injection parameters for SAGD develop⁃ ment in extra-heavy oil[J].Natural Gas and Oil,2019,37(3):66-69.

    • [2] 魏超平,李伟忠,吴光焕,等.稠油降黏剂驱提高采收率机理 [J].油气地质与采收率,2020,27(2):131-136.WEI Chaoping,LI Weizhong,WU Guanghuan,et al.EOR mecha⁃ nism of viscosity reducer flooding in heavy oil reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(2):131-136.

    • [3] 刘义刚,钟立国,刘建斌,等.LD27-2油田稠油油藏蒸汽吞吐中后期注采参数优化研究[J].能源与环保,2020,42(8):86-91,108.LIU Yigang,ZHONG Liguo,LIU Jianbin,et al.Study on optimiza⁃ tion of injection and production parameters in mid-to-late stage of cycle steam stimulation of heavy oil reservoirs in LD27-2 Oil⁃ field[J].China Energy and Environmental Protection,2020,42(8):86-91,108.

    • [4] HUANG Shijun,CAO Meng,CHENG Linsong.Experimental study on the mechanism of enhanced oil recovery by multi-thermal fluid in offshore heavy oil[J].International Journal of Heat and Mass Transfer,2018,122:1 074-1 084.

    • [5] 葛涛涛,庞占喜,罗成栋,等.海上稠油油藏水平井多元热流体驱物理模拟实验研究[J].油气地质与采收率,2019,26(4):62-69.GE Taotao,PANG Zhanxi,LUO Chengdong,et al.Experimental study on multi-thermal fluid flooding by using horizontal wells in offshore heavy oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(4):62-69.

    • [6] 姜杰,杜福云,李敬松,等.多元热流体吞吐窜流影响灰色关联定量分析[J].海洋石油,2015,35(3):38-41.JIANG Jie,DU Fuyun,LI Jingsong,et al.Gray correlative quanti⁃ tative analysis on the influence of steam channeling of multiple thermal fluids[J].Offshore Oil,2015,35(3):38-41.

    • [7] 祁成祥,姜杰,李敬松,等.海上稠油多元热流体吞吐注入参数正交优化[J].天然气与石油,2012,30(6):46-48.QI Chengxiang,JIANG Jie,LI Jingsong,et al.Orthogonal optimiza⁃ tion of huff and puff injection parameters of offshore heavy oil multiple thermal fluid[J].Natural Gas and Oil,2012,30(6):46-48.

    • [8] 张启龙,马帅,霍宏博,等.基于数值模拟的渤海多元热流体增产机理研究[J].中外能源,2020,25(9):32-36.ZHANG Qilong,MA Shuai,HUO Hongbo,et al.Study on stimula⁃ tion mechanism of multiple thermal fluid in Bohai Oilfield based on numerical simulation[J].Sino-Global Energy,2020,25(9):32-36.

    • [9] AYDIN H,MEREY S.Potential of geothermal energy production from depleted gas fields:A case study of Dodan Field,Turkey[J].Renewable Energy,2021,164:1 076-1 088.

    • [10] PEDERSON J M,SITORUS J H.Geothermal hot-water floodBalam south Telisa sand,Sumatra,Indonesia[C].SPE 68724,2001.

    • [11] LIU Yongge,HOU Jian,ZHAO Haifeng,et al.A method to recover natural gas hydrates with geothermal energy conveyed by CO2 [J].Energy,2018,144:265-278.

    • [12] LIU Yongge,LIU Xiaoyu,HOU Jian,et al.Technical and econom⁃ ic feasibility of a novel heavy oil recovery method:Geothermal en⁃ ergy assisted heavy oil recovery[J].Energy,2019,181:853-867.

    • [13] ZIABAKHSH-GANJI Z,NICK H M,BRUHN D F.Investigation of the synergy potential of oil and geothermal energy from a fluvial oil reservoir[J].Journal of Petroleum Science and Engineering,2019,181:1-18.

    • [14] CROOIJMANS R A,WILLEMS C J L,NICK H M,et al.The influ⁃ ence of facies heterogeneity on the doublet performance in low-en⁃ thalpy geothermal sedimentary reservoirs[J].Geothermics,2016,64:209-219.

    • [15] 王学忠.利用干热岩替代原油燃烧降低稠油开发成本[J].油气田地面工程,2010,29(9):71-72.WANG Xuezhong.The development cost of heavy oil reduced by dry hot rock combustion instead of crude oil[J].Oil-Gas Field Surface Engineering,2010,29(9):71-72.

    • [16] 杜森垚,陈航,唐唐,等.利用地热能实现热 CO2驱的技术研究 [J].化工管理,2015,53(6):63.DU Senyao,CHEN Hang,TANG Tang,et al.Research on technol⁃ ogy of thermal CO2 flooding using geothermal energy[J].Chemical Enterprise Management,2015,53(6):63.

    • [17] MOSTOFINIA M,MOHAMMADI M,POURAFSHARY P.A cou⁃ pled wellbore/reservoir simulator to model temperature distribu⁃ tion and inflow rate profile in wells with multiple pay zones[J].Pe⁃ troleum Science and Technology,2012,30(6):575-584.

    • [18] OBALLA V,BUCHANAN L.Flexible wellbore model coupled to thermal reservoir simulator[C].Venezuela:World Heavy Oil Con⁃ gress,2009:3-5.

    • [19] STONE T W,EDMUNDS N R,KRISTOFF B J.A comprehensive wellbore/reservoir simulator[C].SPE 18419,1989.

    • [20] STONE T W,BENNETT J,EDWARDS D A,et al.A unified ther⁃ mal wellbore model for flexible simulation of multiple tubing strings[C].SPE 142153,2011.

    • [21] 谢晓庆,康晓东,曾杨,等.海上油田不同开发方式组合模式探讨[J].中国海上油气,2017,29(4):85-90.XIE Xiaoqing,KANG Xiaodong,ZENG Yang,et al.Discussion of different development combination modes in offshore oilfield[J].China Offshore Oil and Gas,2017,29(4):85-90.