-
随着开发技术的进步和国家对能源需求的增长,油气藏的开发越来越趋向于非常规油气藏[1-4]。中国稠油储量较大,主要分布在辽河、新疆、胜利、南阳、大港、吉林和华北等油田,稠油油藏的开发已成为非常规油气藏开发的一个重要组成部分[5-6]。目前,最常用、最成功的中外稠油开采方法包括热水驱[7-8]、热采蒸汽吞吐[9-10]、火烧油层等[11-12],近年来,稠油冷采降黏剂的研究与应用十分活跃,聚合物降黏剂可以实现在地层剪切强度下既降低稠油黏度又增加驱替液黏度的目的,2 种功能协同作用可实现油水流度控制,进而大幅度提高稠油水驱采收率[13-18]。这种一剂两效的聚合物降黏剂驱是稠油水驱后关键接替技术之一,对提高稠油水驱采收率具有重要意义,应用前景十分广阔。在应用过程中,对于聚合物降黏剂驱替机理及其活性和表观黏度对提高采收率效果的影响缺乏定量认识。因此,通过对比部分水解聚丙烯酰胺(HPAM)和 2种聚合物降黏剂(P-OVR-1,P-OVR-3)的基本性能,深入研究了在驱替过程中表观黏度和活性对提高采收率所做的贡献。
-
1 实验部分
-
1.1 实验材料和仪器
-
实验材料包括:现场原油,油藏温度为50℃,脱气原油黏度为 288 mPa·s;聚合物降黏剂 P-OVR-1 和 P-OVR-3,由胜利油田石油工程技术研究院提供;普通聚合物HPAM,由胜利油田石油工程技术研究院提供;β-CD,由阿拉丁试剂(上海)有限公司提供;实验用水为模拟地层水,矿化度为23 583.65 mg/ L,Na+ +K+,Ca2+,Mg2+,Ba2+,HCO3-,SO4 2-,Cl-的质量浓度分别为 8 233,457,232,33.2,1 372.95,9.61, 13 245.89 mg/L;实验用岩心为人造岩心,具体参数见表1。
-
实验设备包括:Brookfield DV-Ⅲ旋转黏度计,由美国 Brookfield 公司生产;HTP-TT 化学驱综合物理模拟装置,由中国江苏华安有限公司生产;核磁共振仪 MacroMR,由苏州纽迈分析仪器股份有限公司生产;Nova NanoSEM450 型高分辨场发射扫描电镜,由美国 FEI 有限公司生产;JZHY-180 表面张力仪,由中国上海京阁仪器设备有限公司生产;XSZHS3 光学显微镜,由中国重庆光电仪器有限公司生产;Malvern Zetaseizer Nano动态光散射仪,由英国马尔文仪器有限公司生产。
-
1.2 实验方法
-
聚合物降黏剂溶液的表观黏度测定 配制不同质量浓度的聚合物HPAM,P-OVR-1和P-OVR-3 溶液,放置于 50℃恒温箱中熟化 24 h,利用 Brook⁃ field DV-Ⅲ旋转黏度计,测定聚合物降黏剂溶液的表观黏度,设置转子转速为6 r/min。
-
聚合物降黏剂溶液的微观形貌表征 采用扫描电镜观察 P-OVR-1 和 P-OVR-3 溶液的微观形貌。聚合物降黏剂质量浓度均为3 000 mg/L。首先将样品放置于紫外灯下烘干,然后固定在样品板上进行喷金处理,最后观察聚合物降黏剂溶液的干态形貌。
-
聚合物降黏剂的流体力学半径测定 采用 Malvern Zetaseizer Nano 动态光散射仪测定 P-OVR-1及其加入β-CD的包合体系的流体力学半径,测量角度为90°。
-
降黏率测试及乳化效果评价 在实验温度为 50℃下,参照稠油降黏剂通用技术条件[19],利用 Brookfield DV-Ⅲ旋转黏度计测定降黏前后稠油的黏度,并利用XSZ-HS3光学显微镜观察降黏后稠油乳状液的乳化状态,研究不同质量浓度的P-OVR-1 和P-OVR-3的乳化效果。
-
聚合物降黏剂溶液的表面张力测定 表面张力是表征聚合物活性以及乳化性能的一个重要的评价指标。采用吊环法,在常温下通过 JZHY-180 表面张力仪测定 HPAM,P-OVR-1 和 P-OVR-3 溶液的表面张力。
-
聚合物降黏剂溶液驱油效果评价 利用 HTPTT 化学驱综合物理模拟装置模拟胜利油田稠油聚合物降黏剂驱实验流程,流程图如图1 所示。驱替速度为 0.5 mL/min,实验温度为 50℃。具体实验步骤如下:①进行岩心预处理、抽真空饱和模拟地层水,计算岩心孔隙度及水测岩心渗透率。②饱和原油,进行核磁共振扫描,计算原始含油饱和度。③水驱岩心至采出液含水率为98%以上,进行核磁共振扫描,计算水驱采收率。④注入一定质量浓度的 HPAM 或 P-OVR-1 和 P-OVR-3 溶液 0.6 PV 后,进行后续水驱至含水率为98%以上,进行核磁共振扫描,记录驱替过程压差、采出液及采出水体积,计算各阶段采收率。
-
图1 聚合物降黏剂驱实验流程
-
Fig.1 Flow chart of polymer viscosity reducer flooding experiment
-
2 实验结果与讨论
-
2.1 聚合物降黏剂溶液的微观形貌与流变性
-
聚合物降黏剂溶液的表观黏度影响注入流体与被驱替原油的流度比。由 HPAM 与 P-OVR-1 和 P-OVR-3 的黏浓关系曲线(图2)可明显看出, HPAM 的表观黏度随着质量浓度的增加呈线性增大,没有明显的拐点。P-OVR-1 和 P-OVR-3 存在明显拐点,在低质量浓度下增黏能力较弱,当质量浓度高于 2 000 mg/L 左右时,聚合物降黏剂的增黏能力增强,这主要是由于 P-OVR-1 和 P-OVR-3 中疏水单体的存在,使得聚合物降黏剂存在临界缔合质量浓度。所以,在使用该类聚合物时,其质量浓度一般高于2 000 mg/L。对比质量浓度为3 000 mg/ L条件下的 P-OVR-1和 P-OVR-3溶液的扫描电镜照片(图2)可看出,在相同放大倍数下,P-OVR-3形成的网络结构更致密,这与表观黏度的规律一致。
-
图2 不同类型聚合物的黏浓关系曲线
-
Fig.2 Viscosity-concentration curves of different kinds of polymers
-
由质量浓度为 3 000 mg/L 的 P-OVR-1 及其加入质量浓度为 1 000 mg/L 的 β-CD 的包合体系的流体力学半径分布曲线(图3)可以看出,P-OVR-1的流体力学半径分布曲线呈现双峰分布,说明溶液中存在超分子聚集体。而包合体系的流体力学半径分布曲线呈现单峰分布,说明由于 β-CD 的包合作用,将聚合物降黏剂溶液中的疏水缔合作用屏蔽,超分子聚集体消失。对于具有疏水单体的P-OVR-1 溶液来说,超分子聚集体的形成大大增加了聚合物降黏剂分子的平均流体力学半径,从宏观上来说,增加了聚合物降黏剂溶液的表观黏度。
-
图3 流体力学半径分布曲线
-
Fig.3 Distribution curves of hydrodynamic radius
-
2.2 聚合物降黏剂的乳化降黏性能
-
P-OVR-1 和 P-OVR-3 为乳化型聚合物降黏剂,可将稠油分散乳化,形成水包油的乳化油滴,增加原油的流动性。稠油变为水包油乳化油滴后,流动过程中稠油分子之间的内摩擦力可变成水分子之间的内摩擦力,稠油的表观黏度降低。乳化型聚合物降黏剂的稠油降黏效果取决于其乳化能力。由稠油降黏率随P-OVR-1和P-OVR-3质量浓度的变化(图4)可看出,随着聚合物降黏剂质量浓度的增大,稠油降黏率先迅速增大,后趋于平缓最后略有降低,其中,在质量浓度为 3 000~4 000 mg/L时降黏率最高,且P-OVR-3降黏效果略优于P-OVR-1。当聚合物降黏剂质量浓度较低时,聚合物降黏剂分子上的疏水链主要以分子内缔合作用为主,缔合强度较低,分散稠油能力较弱;当聚合物降黏剂质量浓度较高时,疏水链由分子内缔合作用为主转变为分子间缔合作用为主,缔合强度大大增加,分散稠油能力增强,提高聚合物降黏剂的乳化效果。另外,由于高质量浓度聚合物降黏剂的水相黏度较高,影响聚合物降黏剂在油水界面上的快速分散。因此,随着聚合物降黏剂质量浓度的增加,聚合物降黏剂的水相增黏性能与稠油乳化降黏性能之间存在一种平衡。不同质量浓度下的聚合物降黏剂形成的水包油乳状液的平均粒径变化规律(图5)与降黏率的变化规律一致,形成乳状液的粒径越小,降黏效果越好。这也说明该类型聚合物降黏剂的乳化作用在稠油降黏中占据主导地位。
-
图4 稠油降黏率随聚合物降黏剂质量浓度的变化
-
Fig.4 Viscosity reduction rate of heavy oil with increase in polymer viscosity reducer concentration
-
图5 乳状液平均粒径随聚合物降黏剂质量浓度的变化
-
Fig.5 Average particle size of emulsion with increase in polymer viscosity reducer concentration
-
2.3 聚合物降黏剂溶液的表面张力
-
由HPAM与P-OVR-1和P-OVR-3溶液的表面张力随质量浓度的变化(图6)可明显看出,HPAM 的活性较低,表面张力约为 70 mN/m。P-OVR-1和 P-OVR-3 溶液中由于疏水基团的引入使其具有较好的活性,表面张力随质量浓度的变化基本一致,先后出现缓慢下降、快速下降、缓慢下降 3 个阶段。这与P-OVR-1和P-OVR-3的临界缔合质量浓度有关,达到临界缔合质量浓度后,开始形成大的聚集体,聚集行为影响聚合物降黏剂溶液的活性。
-
图6 HPAM和聚合物降黏剂质量浓度与表面张力的关系
-
Fig.6 Relation curves between concentration and surface tension of HPAM and polymer viscosity reducer
-
2.4 聚合物降黏剂溶液的活性对水驱稠油油藏提高采收率的贡献
-
为了深入认识聚合物降黏剂溶液的活性对提高采收率的贡献,在相同黏度、不同活性下,开展了聚合物降黏剂驱油实验。选取质量浓度为 3 000 mg/L 的 P-OVR-1(表观黏度为 43 mPa·s,表面张力为 49.1 mN/m)和质量浓度为 4 500 mg/L 的 HPAM (表观黏度为42.3 mPa·s,表面张力为69.7 mN/m)作为研究对象。
-
在油藏温度为 50℃下,3 000 mg/L的 P-OVR-1 和 4 500 mg/L 的 HPAM 的降黏率分别为 98.5% 和 35.4%。从乳状液照片(图7)也可看出,P-OVR-1 溶液与稠油混合后可形成细小且均匀的水包油乳状液,而 HPAM 仅部分形成乳状液,且粒径分布不均匀,存在大量的块状稠油。
-
图7 HPAM和P-OVR-1形成的原油乳状液照片
-
Fig.7 Pictures of crude oil emulsion formed by HPAM and P-OVR-1
-
由驱替实验结果(图8)可知,水驱稠油油藏转注 HPAM 或 P-OVR-1 溶液后,注入压力均上升,含水率均呈不同程度的降低,采收率逐渐升高。对比 P-OVR-1 与 HPAM 的提高采收率效果(表2)可知,由于 P-OVR-1具有更低的表面张力,活性更高,其采收率提高值较HPAM相对提高了4.92%。
-
对比核磁共振扫描结果(图9),HPAM 提高小孔采收率 5.45%,提高大孔采收率 5.2%;P-OVR-1 提高小孔采收率8.02%,提高大孔采收率7.39%。核磁共振扫描结果与岩心驱替结果一致,P-OVR-1较 HPAM提高采收率效果更好。
-
图8 HPAM驱与聚合物降黏剂驱生产动态对比曲线
-
Fig.8 Production performances of HPAM flooding and polymer viscosity reducer floodings
-
2.5 聚合物降黏剂溶液的表观黏度对水驱稠油油藏提高采收率的贡献
-
为了深入认识聚合物降黏剂溶液的表观黏度对提高采收率的贡献,在相同活性、不同表观黏度下,开展了聚合物降黏剂驱油实验。选取质量浓度皆为 3 000 mg/L 的 P-OVR-1(表观黏度为 43 mPa· s,表面张力为49.1 mN/m)和P-OVR-3(表观黏度为 62 mPa·s,表面张力为49.2 mN/m)作为研究对象。
-
在油藏温度为 50℃下,3 000 mg/L的 P-OVR-1 和 P-OVR-3 的降黏率分别为 98.5% 和 99.7%。从P-OVR-3 形成的原油乳状液照片(图10)可看出, P-OVR-3与稠油混合后形成的水包油乳状液与 P-OVR-1类似,粒径较小且分布较均匀。
-
图9 聚合物降黏剂驱岩心核磁共振扫描图
-
Fig.9 NMR core scan pictures of polymer viscosity reducer floodings
-
图10 聚合物降黏剂P-OVR-3形成的原油乳状液照片
-
Fig.10 Pictures of crude oil emulsion formed by P-OVR-3
-
由驱替实验结果(图11)可见,与转注P-OVR-1 类似,水驱稠油油藏转注 P-OVR-3后,注入压力上升,含水率呈不同程度的降低,采收率逐渐升高。由各阶段的采收率结果(表2)可见,相比于具有相同活性的 P-OVR-1,P-OVR-3 采收率提高值较其增加 3.06%,原因是在相同活性条件下,P-OVR-3 溶液具有更大的表观黏度,能够更好地改善水油流度比,因此采收率提高值更大。
-
对比核磁共振扫描结果(图11),随着注入 P-OVR-3以及后续水驱的进行,岩心中含水饱和度较 P-OVR-1 驱替岩心中的更高,P-OVR-3 提高小孔采收率9.59%,提高大孔采收率8.48%。
-
图11 P-OVR-3驱生产动态曲线与岩心核磁共振扫描图
-
Fig.11 Production performance of P-OVR-3 flooding and NMR scan pictures of core
-
统计对比 HPAM,P-OVR-1 与 P-OVR-3 对于岩心中大孔、小孔的采收率提高值可看出,与HPAM 相比,在 P-OVR-1,P-OVR-3 的水相增黏、油相乳化降黏作用下,大孔和小孔的采收率均有不同程度提高,其中小孔提高幅度更大。小孔剩余油主要依靠聚合物降黏剂的黏弹性采出,在大孔中主要依靠聚合物降黏剂的高活性,降低毛管压力、黏附力和内聚力等,实现柱状残余油和油膜的高效驱替。
-
3 结论
-
P-OVR-1 与 P-OVR-3 分子中疏水单体的存在,使得聚合物降黏剂存在临界缔合质量浓度,且使聚合物降黏剂溶液既具有较好的活性又具有很好的增黏性能。在质量浓度为 3 000 mg/L 的条件下,P-OVR-1 与 P-OVR-3 溶液的表面张力分别为 49.1 和 49.2 mN/m。P-OVR-3 溶液的表观黏度(62 mPa·s)高于P-OVR-1溶液的黏度(43 mPa·s)。
-
P-OVR-1和 P-OVR-3具有很好的稠油降黏性能,主要通过乳化分散稠油。形成的乳状液的粒径越小,降黏效果越好。随着聚合物降黏剂质量浓度的增大,乳状液粒径先减小后趋于平缓,最后略有升高;降黏率先增大后平稳,最后略有下降。聚合物降黏剂的水相增黏性能与稠油乳化降黏性能之间存在一种平衡。
-
对于具有油水流度控制作用的聚合物降黏剂来说,岩心中大孔和小孔中的原油提高采收率幅度和启动方式不同。聚合物降黏剂溶液对小孔中的原油提高采收率幅度更大。小孔中的原油主要依靠聚合物降黏剂的高黏度驱替出,高黏度具有高黏弹性;在大孔中,主要依靠聚合物降黏剂的活性,高活性可降低毛管压力、黏附力和内聚力等,实现柱状残余油和油膜的高效驱替。
-
参考文献
-
[1] 包木太,范晓宁,曹秋芳,等.稠油降黏开采技术研究进展[J].油田化学,2016,23(3):284-288,292.BAO Mutai,FAN Xiaoning,CAO Qiufang,et al.Progress in vis⁃ cosity reducing technologies for recovery of viscous crude oils[J].Oilfield Chemistry,2016,23(3):284-288,292.
-
[2] 贾凯锋,计董超,高金栋,等.低渗透油藏 CO2驱油提高原油采收率研究现状[J].非常规油气,2019,6(1):107-114,61.JIA Kaifeng,JI Dongchao,GAO Jindong,et al.The existing state of enhanced oil recovery by CO2 flooding in low permeability res⁃ ervoirs[J].Unconventional Oil & Gas,2019,6(1):107-114,61.
-
[3] 钟立国,王成,刘建斌,等.中深层稠油油藏蒸汽-氮气复合吞吐技术[J].新疆石油地质,2019,40(2):194-198. ZHONG Liguo,WANG Cheng,LIU Jianbin,et al.Nitrogen assist⁃ ed steam stimulation technology for mid-deep heavy oil reservoirs [J].Xinjiang Petroleum Geology,2019,40(2):194-198.
-
[4] 杨光璐,李迎环,何慧卓.特稠油油藏多元热流体吞吐技术研究与应用[J].特种油气藏,2020,27(2):103-107. YANG Guanglu,LI Yinghuan,HE Huizhuo.Research and appli⁃ cation of multi-component thermal fluid stimulation in the extraheavy oil reservoir[J].Special Oil & Gas Reservoirs,2020,27(2):103-107.
-
[5] 户昶昊.中深层稠油油藏蒸汽驱技术研究进展与发展方向[J].特种油气藏,2020,27(6):54-59.HU Changhao.Research progress and development direction of steam flooding technology for medium and deep heavy oil reser⁃ voirs[J].Special Oil & Gas Reservoirs,2020,27(6):54-59.
-
[6] 廖辉,吴婷婷,邓猛,等.稠油热化学驱提高采收率机理及应用研究进展[J].当代化工,2019,48(11):2 623-2 625,2629.LIAO Hui,WU Tingting,DENG Meng,et al.Research progress of mechanism and application of thermochemical flooding technolo⁃ gy for improving heavy oil recovery[J].Contemporary Chemical Industry,2019,48(11):2 623-2 625,2629.
-
[7] 赵秋阳,郭烈锦,王晔春,等.超临界水驱超稠油提高采收率热物理特性研究[J].工程热物理学报,2020,41(3):635-642.ZHAO Qiuyang,GUO Liejin,WANG Yechun,et al.Thermophysi⁃cal characteristics of enhanced extra-heavy oil recovery by super⁃ critical water flooding[J].Journal of Engineering Thermophysics,2020,41(3):635-642.
-
[8] 李锋,邹信波,王中华,等.海上稠油地热水驱提高采收率矿场实践——以珠江口盆地EP油田HJ油藏为例[J].中国海上油气,2021,33(1):104-112.LI feng,ZOU Xinbo,WANG Zhonghua,et al.Field practice of off⁃ shore heavy oil geothermal water flooding for EOR:Taking HJ res⁃ ervoir in EP oilfield in Pearl River Mouth basin as an example[J].China Offshore Oil and Gas,2021,33(1):104-112.
-
[9] 张洪宝,刘永建,塔耀晶,等.稠油油藏氮气辅助蒸汽驱室内实验[J].断块油气田,2020,27(5):624-627.ZHANG Hongbao,LIU Yongjian,TA Yaojing,et al.Laboratory ex⁃ periment of nitrogen assisted steam flooding in heavy oil reservoir [J].Fault-Block Oil and Gas Field,2020,27(5):624-627.
-
[10] 张淑霞,刘帆,沐宝泉.蒸汽驱及化学辅助蒸汽驱提高稠油采收率实验[J].石油与天然气地质,2017,38(5):1 000-1 004.ZHANG Shuxia,LIU Fan,MU Baoquan.An experimental study on enhanced heavy oil recovery by steam flooding and chemical as⁃ sisted steam flooding[J].Oil & Gas Geology,2017,38(5):1 000-1 004.
-
[11] 木合塔尔,高成国,袁士宝,等.红浅1井区注蒸汽后火烧油层生产特征分析[J].大庆石油地质与开发,2021,40(4):73-79.MUHETAER,GAO Chengguo,YUAN Shibao,et al.Analysis on the production characteristics for the in-situ combustion reservoir after steam injection in Well Block HQ1[J].Petroleum Geology & Oilfield Development in Daqing,2021,40(4):73-79.
-
[12] 王倩,高祥录,罗池辉,等.超稠油Ⅲ类油藏夹层发育模式及SAGD提高采收率技术[J].特种油气藏,2020,27(4):105-112.WANG Qian,GAO Xianglu,LUO Chihui,et al.Interlayer develop⁃ ment patterns and SAGD enhanced oil recovery technology in the super heavy oil category-III reservoir[J].Special Oil & Gas Res⁃ ervoirs,2020,27(4):105-112.
-
[13] 魏超平,李伟忠,吴光焕,等.稠油降黏剂驱提高采收率机理 [J].油气地质与采收率,2020,27(2):131-136.WEI Chaoping,LI Weizhong,WU Guanghuan,et al.EOR mecha⁃ nism of viscosity reducer flooding in heavy oil reservoirs[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(2):131-136.
-
[14] 谢晓庆,冯国智,刘立伟,等.海上油田聚合物驱后提高采收率技术[J].油气地质与采收率,2015,22(1):93-97.XIE Xiaoqing,FENG Guozhi,LIU Liwei,et al.Study on enhanced oil recovery technology after polymer flooding in offshore oilfield [J].Petroleum Geology and Recovery Efficiency,2015,22(1):93-97.
-
[15] 杨森,许关利,刘平,等.稠油化学降粘复合驱提高采收率实验研究[J].油气地质与采收率,2018,25(5):80-86,109.YANG Sen,XU Guanli,LIU Ping,et al.Experimental study on chemical viscosity-reducing compound flooding for EOR of heavy oil reservoir[J].Petroleum Geology and Recovery Efficiency,2018,25(5):80-86,109.
-
[16] 潘广明,张彩旗,刘东,等.海上稠油油藏弱凝胶调驱提高采收率技术[J].特种油气藏,2018,25(3):140-143.PAN Guangming,ZHANG Caiqi,LIU Dong,et al.Weak-gel pro⁃ file-control flooding to enhance oil recovery in offshore heavy-oil reservoir[J].Special Oil & Gas Reservoirs,2018,25(3):140-143.
-
[17] 梁严,王增林,史树彬,等.稠油驱替-流度控制与非均质性调整——缔合聚合物与HPAM对比[J].油气藏评价与开发,2020,10(6):65-71,102.LIANG Yan,WANG Zenglin,SHI Shubin,et al.Heavy oil dis⁃ placement-mobility control and heterogeneity adjustment:Asso⁃ ciative polymer versus HPAM[J].Reservoir Evaluation and Devel⁃ opment,2020,10(6):65-71,102.
-
[18] 孙月文,寇杰,韩云蕊,等.胜利油田陈南稠油的乳化降黏研究 [J].油田化学,2016,33(2):333-337. SUN Yuewen,KOU Jie,HAN Yunrui,et al.Emulsification and viscosity reduction of heavy oil in Chennan station of Shengli oil⁃ field[J].Oilfield Chemistry,2016,33(2):333-337.
-
[19] 曹金林,张娜,唐永安,等.稠油降粘剂通用技术条件:QSH 1020 1519—2016[S].东营:中国石化集团胜利石油管理局.CAO Jinlin,ZHANG Na,TANG Yongan,et al.General technologi⁃ cal conditions of viscosity reducer for heavy oil:QSH1020 1519-2016[S].Dongying:Shengli Petroleum Administration Bureau,SINOPEC.
-
摘要
聚合物降黏剂在提高普通稠油油藏采收率方面展现出良好的应用前景。通过对比部分水解聚丙烯酰胺 (HPAM)和 2种聚合物降黏剂(P-OVR-1,P-OVR-3)的基本性能和乳化降黏性能,深入研究了 HPAM,P-OVR-1, P-OVR-3溶液的表观黏度和活性在驱替过程中对提高采收率所做的贡献。结果表明:P-OVR-1和P-OVR-3具有很好的乳化降黏性能,主要通过乳化分散原油,其形成乳状液的粒径越小,降黏效果越好。在P-OVR-1和P-OVR3的水相增黏、油相乳化降黏作用下,大孔和小孔的采收率均有不同程度的提高,其中P-OVR-3驱替后大孔、小孔的采收率提高值分别为8.48%和9.59%。小孔中的剩余油主要依靠聚合物降黏剂溶液的黏弹性采出,在大孔中,主要依靠聚合物降黏剂溶液的高活性,降低毛管压力、黏附力和内聚力等,实现柱状残余油和油膜的高效驱替。
Abstract
Polymer viscosity reducer shows a good application prospect in the recovery of conventional heavy oil reservoirs. The basic properties and emulsifying viscosity reduction properties of partially hydrolyzed polyacrylamide(HPAM)and two polymer viscosity reducers(P-OVR-1 and P-OVR-3)were compared in this paper. The contributions of their apparent vis- cosity and activity to enhanced oil recovery during the displacement were studied in depth. The results show that P-OVR-1 and P-OVR-3 have good emulsifying viscosity reduction properties for heavy oil,mainly through emulsifying and dispers- ing the crude oil. The smaller the particle size of the emulsion comes with a better viscosity reduction effect. Under the ef- fects of increasing water-phase viscosity and reduced oil-phase emulsifying viscosity of P-OVR-1 and P-OVR-3,the oil recovery in large pores and small pores was increased in varying degrees. The enhanced oil recoveries of large and small pores after P-OVR-3 flooding were 8.48% and 9.59% respectively. The residual oil in small pores was mainly obtained by the viscoelasticity of polymer viscosity reducers. In large pores,the efficient displacement of columnar residual oil and oil film was realized mainly depending on the high surface activity of polymer viscosity reducer to reduce the capillary force, adhesion and cohesion.