-
碳酸盐岩油气藏在全球油气勘探开发中处于举足轻重的地位,油气地质储量和产量在全球均占较大比重。国外的印尼RAMA、KARISNA和伊拉克米桑等油田,以及中国的塔里木盆地、渤海、南海等诸多大型碳酸盐岩油藏,由于裂缝的发育使得致密的碳酸盐岩的渗流特征得到改善,成为良好的储集空间及运移通道。因此,对裂缝进行精细的预测及建模,明确裂缝在三维空间的分布特征以及对渗流的影响,对该油藏的增产和提高采收率具有较大意义。但目前进行精细的裂缝预测并应用于建模的研究还处于探索阶段。潘玲黎等充分利用露头、岩心、成像测井资料对单井裂缝密度进行刻画,采用地震叠前反演的横波阻抗数据体约束来建立裂缝密度模型,但研究区岩心和成像测井单井数据有限,未对常规测井进行裂缝的响应特征预测分析,在建模过程中缺少丰富的单井硬数据约束[1]。王乐之等采用蚂蚁体进行裂缝预测并利用确定性方法进行裂缝建模,但该方法的适用范围是大断裂及伴生的小断裂级别,还达不到裂缝精细表征的程度[2]。苗青等采用高精度曲率属性作为建模空间约束条件,但构造曲率大多反映的是构造成因形成的裂缝,无法表征成岩作用形成的裂缝[3]。邓西里等认为地震叠后属性对小尺度裂缝失效,主要原因是叠后地震资料缺乏偏移距信息和方位角信息,而叠前纵波方位角各向异性检测方法对垂直缝和高角度缝预测效果较好,可预测出小尺度裂缝的三维空间裂缝数据体[4]。
-
由于单井资料和井间约束条件的限制,大多数裂缝预测及建模无法客观地反映出裂缝的分布。尤其是对单井的裂缝密度刻画,主要依赖少量的岩心资料和有限的成像测井资料,使得大多数缺少这些资料的井的裂缝密度刻画受到较大限制。单井硬数据太少,得不到准确的数据分析,无法满足建模精度的要求。对于井间裂缝预测约束条件,大多数采用与裂缝相关的构造曲率、方位角各向异性、横波阻抗属性、蚂蚁体属性等单一地震属性,但是不同尺度、不同方位裂缝的地震响应各有不同,单一的地震属性预测无法完整地反映出储层裂缝发育的实际情况。对于裂缝精细表征而言,需要整合各种信息进行裂缝预测及建模[5-6],只从有限的几口单井资料或者某方面的裂缝属性预测均无法全面地反映裂缝信息。
-
为此,笔者根据有限的岩心观察、成像测井资料,基于 BP 神经网络[7] 方法,利用常规测井资料对裂缝密度进行预测,从而丰富了单井裂缝密度硬数据。应用多种叠前地震属性神经网络非线性融合生成裂缝密度概率体,对裂缝进行三维空间预测,并作为约束条件。在严格变差函数相关性分析以及裂缝参数统计分布规律的多重条件控制下,建立较全面准确的裂缝模型,以期为油田开发策略优化提供较好的地质依据,也为同类油田增产提供技术指导。
-
1 区域地质概况
-
中东 M 油田是以碳酸盐岩油藏为主的大型整装油田,位于阿拉伯台地东部美索不达米亚低角度褶皱带东南部。该油田构造总体呈北西—南东走向的断背斜,断裂沿背斜两翼发育,断裂走向同背斜长轴走向一致。断裂发育在表层,均为逆冲断层,断距较小,平面延伸长度较长。其中G层为该油田的主力油层,含油层段可细分为 A 和 B 共 2 个主力油组及 7 个小层。研究区是以潮坪、半局限—局限台地为主的碳酸盐岩台地沉积,其中碎屑潮坪、台内礁滩是最有利的沉积亚相带。主要发育白云岩和灰岩,局部发育少量的砂岩储层。M 油田碳酸盐岩沉积年代久远,受到扎格罗斯构造运动的影响,遭受到强烈的风化、剥蚀和淋滤作用,G 层构造缝和溶蚀缝均有发育,且各向异性和非均质性较强。
-
2 裂缝发育特征
-
根据区域构造特征,结合岩心观察和描述以及成像测井解释,总结了研究区裂缝发育特征。主要包括:①裂缝成因类型。受扎格罗斯构造运动的影响,G层主要发育构造缝。从力学性质来看,其为张裂缝,受张应力控制,裂缝往往处于开启状态。因其油藏埋藏较深,局部地区由于成岩压溶作用而形成压溶缝(缝合线)。②裂缝倾角。根据岩心照片观察及成像测井分析统计,G 层裂缝倾角为 10°~90°。高角度缝、斜交缝、低角度缝均有发育,主要以中-高角度缝为主。裂缝倾角受地层产状的控制,构造背斜轴部大多发育近垂直缝,翼部多为斜交缝及近水平缝。③裂缝走向。根据岩心资料较难准确得到裂缝的走向,主要通过成像测井资料获取。统计分析发现,研究区主要发育北西—南东走向裂缝,与区域构造主应力方向一致。④裂缝开度。岩心观察直接测量的裂缝开度,实际是地面减压后裂缝的张开值。一般比地下实际值大得多,因此岩心实测的开度无法代表裂缝的真实开启情况[8]。从岩心薄片分析来看,裂缝开度主要为0.01~0.5 mm(图1),早期裂缝多被石膏充填,后期裂缝多呈开启状态,成为良好的渗流通道。
-
图1 M1井不同深度段裂缝发育特征
-
Fig.1 Fracture development characteristics at different depths in Well M1
-
3 基于神经网络的多信息融合裂缝建模
-
3.1 单井裂缝密度预测
-
研究区共有 44口井,只有 4口井有成像测井数据,3口井有岩心资料,若仅靠这几口井作为井上硬数据的控制条件,无法满足裂缝建模精度的要求。因此利用常规测井资料对无成像测井和岩心资料的单井进行裂缝密度预测。而常规测井在机理上对裂缝有一定的反映,但信号均较微弱,且多解性较强[9-10]。通过研究发现,M油田G层不同产状裂缝的双侧向测井曲线形态和幅度均存在差异,纵波时差对低角度裂缝有较明显的反应而对高角度裂缝无响应。由于泥浆侵入的影响,水平裂缝、低角度裂缝表现为相对高自然伽马、低电阻率、深浅侧向电阻率测井曲线基本重合、低密度、高中子孔隙度、高声波时差的测井响应特征;斜交缝、高角度裂缝表现为中高电阻率、深浅侧向电阻率正差异(浅侧向电阻率小于深侧向电阻率)、低密度、低声波时差的测井响应特征。
-
对常规测井资料进行裂缝响应特征综合分析发现,自然伽马、声波时差、密度、中子孔隙度、浅侧向电阻率、深侧向电阻率这 6 条常规测井曲线对研究区裂缝有一定的响应特征,但存在多解性。利用 BP 神经网络,采用误差反向传播算法进行学习,数据从输入层经隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值。通过模糊聚类分析,选择以上6条常规测井曲线作为输入信号,拟合的裂缝密度曲线作为输出信号,进行网络化训练,形成网络训练模型。以岩心描述的裂缝密度和成像测井拟合的裂缝密度数据点作为检验数据,校验网络训练模型的合理性。研究发现,基于常规测井资料预测的裂缝密度与对应检验井分析的裂缝密度的吻合度在 85% 以上,整体预测效果较好,说明训练模型是较合理的。
-
3.2 井间地震多信息融合裂缝密度发育概率体建立
-
若仅通过测井资料计算得到的单井裂缝密度曲线进行井间插值,建立的可靠性较差[11]。多信息融合裂缝建模技术是借助地震资料作为井间约束条件,为了实现地震资料对井间裂缝密度的有效约束,需对地震资料进行预处理,并以此为基础提取能反映裂缝密度分布的地震属性。
-
M 油田碳酸盐岩油藏的埋藏较深,常规碎屑岩中与裂缝储层响应比较好的地震属性如振幅、波阻抗、频率等与该油藏裂缝的响应关系并不明显[12]。通过岩心观察发现,研究区主要发育中高角度裂缝,而叠前纵波方位各向异性对小尺度的高角度裂缝的检测效果较好[13-14]。而基于局部构造熵的地震不连续检测可分析细微断层的空间分布,继而从侧面反应由断裂引起的大尺度裂缝的分布规律[15],与由叠前纵波方位角各向异性预测的小尺度裂缝进行优势互补。为了较全面地反映研究区裂缝发育特征,基于神经网络方法对这 2 种地震属性进行非线性融合,形成了地震多信息融合裂缝密度发育概率体,并提取井旁地震道与测井裂缝密度进行对比[16],发现与80%以上的测井裂缝密度趋势对应效果较好。将该裂缝密度发育概率体提取到三维网格中,作为井间裂缝密度约束条件,增加了裂缝建模井间预测的可靠性(图2)。
-
图2 地震多信息融合裂缝密度发育概率体
-
Fig.2 Probability volume of fracture density by seismic multi-information fusion
-
3.3 三维裂缝密度模型建立
-
三维裂缝密度建模是整个裂缝建模的核心,其准确度直接影响到离散裂缝网络模型的建立[17-19]。利用成像测井资料计算单井的裂缝密度,并采用神经网络方法,通过常规测井资料预测无成像的单井裂缝密度。为分析裂缝密度间的相关性,进行了空间变差函数分析。首先调节垂直变程,因纵向上裂缝密度数据点多,较易分析其相关距离,从而获得较准确的变差函数。从表1 可以看出,裂缝密度垂向上的相关距离为 2~5 m。区域主应力方向为北西—南东向,变差函数的主方向与其一致。主方向上的主变程相对次方向上的次变程比较好调节,主要是北西向的井数相对较多,数据点也较多,而北东向的井数较少,数据点有限,变差函数也相对难以调节。从A油组各小层主、次变程来看,整体比B 油组各小层的主、次变程要大。其原因是 A 油组的储层为含结核状石膏云岩或云岩与硬石膏互层,在这种塑性与脆性岩石交互发育的情况下,脆性云岩中最易产生裂缝。而 B 油组主要发育灰岩,部分夹杂着砂泥岩,裂缝的发育程度没有A油组高,主次变程也相对较小。
-
通过成像测井和常规测井资料计算研究区单井裂缝密度,以单井裂缝密度作为硬数据,在严格的变差函数分析和地震多信息融合裂缝密度发育概率体作为双重井间约束条件下,通过序贯高斯随机函数模拟的方法,建立G层三维裂缝密度模型(图3)。
-
研究结果(图4)显示,裂缝发育的整体趋势主要为北西—南东向,在构造高部位,特别是靠近断层部分裂缝发育密度较大。在主体南区,由西到东,裂缝发育程度逐渐减弱;在北区,由西到东,裂缝发育程度逐渐增强,主体南区的裂缝发育程度整体比北区好。从纵向上来看,A 油组裂缝发育程度总体比B油组好。
-
3.4 离散裂缝网络模型建立
-
离散裂缝网络模型是在三维裂缝密度模型建立的基础上,对裂缝片的分布、几何形态、方位等进行三维表征,实现了裂缝系统从几何形态到渗流特征的有效描述[20-21]。通过成像测井资料,可统计分析包括倾角、方位角、开度及长度的最大值、最小值、标准偏差等各小层裂缝参数(表2)。建模采用斯伦贝谢Petrel软件裂缝建模模块,在裂缝的分布、几何形态、方位、开度等 4 个方面的参数设置基础上,针对每小层的裂缝发育情况,逐层设置进行离散裂缝网络模型的建立(图5)。从每小层裂缝片分布规律总结得出,从 A1—A3 小层的裂缝片发育逐渐增多,主要是 A 油组从上到下硬石膏含量逐渐增多,而云岩与硬石膏互层接触越多,越容易产生裂缝。B1—B4小层裂缝片发育逐渐减弱,主要原因是 B油组从上到下,脆性云岩含量越来越小,砂岩含量逐渐增多,裂缝发育也逐渐变少。离散裂缝网络模拟结果可以精细客观地反映出实际地质认识。
-
图3 M油田G层三维裂缝密度模型
-
Fig.3 Three-dimensional fracture density model of G Formation in Oilfield M
-
图4 M油田G层裂缝密度模型剖面
-
Fig.4 Fracture density model section of G Formation in Oilfield M
-
3.5 裂缝等效属性模型建立
-
根据裂缝的离散裂缝网络模型,采用裂缝等效参数计算方法[22],对裂缝储集体离散裂缝网络模型进行粗化至基质模型。以单个网格内裂缝的总面积及裂缝的不同参数为基准,计算每一个网格内由裂缝贡献的单元属性[23-24]。将裂缝离散网络模型转换为裂缝储集体属性模型,等效形成裂缝介质的属性体,包括裂缝孔隙度、裂缝渗透率、基质系统与裂缝系统沟通程度的 Sigma 因子场,以及每个网格的裂缝间距。其中裂缝的孔隙度较小,为 0~0.3%。裂缝的渗透率为300~2 500 mD。
-
图5 M油田G层离散裂缝网络模型
-
Fig.5 Discrete fracture network model of G Formation in Oilfield M
-
4 模型验证及应用
-
4.1 模型验证
-
在进行油藏数值模拟时考虑裂缝模型的作用,对研究区所有生产井进行压力、产量等开发指标的历史拟合[25],各指标拟合效果均较好。以往研究区由于缺乏三维地震资料和单井裂缝描述资料未建立裂缝模型,导致其各项指标拟合不好。通过本次建模,对单井的含水率、压力、日产油量、日产液量等方面指标进行拟合,拟合率均达到85%以上。
-
4.2 实例应用
-
研究区基质渗透率平均为 4.4 mD,一般在 10 mD 以下,裂缝发育较大程度改进了储层的渗流能力[26-27]。已有的生产井资料显示,裂缝预测发育程度与产能基本呈正相关性。如位于主体南区的X12井,裂缝模拟预测发育程度较高,初始产量也较高。而 X19 井和 X31 井初始产量较低,裂缝模拟预测这 2 口井位于裂缝密度低值区,裂缝预测结果与生产动态较吻合(图6)。从模型模拟结果来看,A油组裂缝发育程度较高,M 油田主体南区的北部投产井较少,对该区域建议采用水平井或大斜度井进行优先开发。在方案优化指导下,该油田新钻井为 15 口,平均单井日产油量为 2 298 bbl/ d,累积增油量为 202×104 bbl。经证实,新井揭示的裂缝发育情况与钻前预测一致,并且投产井单井产量均明显高于先期开发井。
-
图6 M油田主体区裂缝密度平面分布
-
Fig.6 Plane distribution of fracture density in main area of Oilfield M
-
5 结论
-
碳酸盐岩双重介质储层裂缝发育具有较强的非均质性,对裂缝的精细刻画难度较大,常规单一的方法具有一定的局限性。多信息融合裂缝建模技术充分利用了常规测井资料和叠前多属性地震资料,基于神经网络方法进行单井裂缝密度预测和井间裂缝密度发育概率预测。在多信息融合裂缝密度概率体和空间变差函数的双重约束下,以多井硬数据为控制条件,建立较准确的裂缝预测模型。模拟结果符合生产动态和实际地质规律,历史拟合吻合率达到 85% 以上。研究成果为 M 油田开发方案的实施提供了有力的技术指导,对油田增产和提高采收率具有重要意义。
-
参考文献
-
[1] 潘玲黎,吕坐彬,张迎春,等.裂缝性油藏三维定量表征技术在锦州南油田开发生产中的应用[J].重庆科技学院学报:自然科学版,2012,14(5):1-5.PAN Lingli,LÜ Zuobin,ZHANG Yingchun,et al.Application of development and production in Jinzhounan Oilfield[J].Journal of Chongqing University of Science and Technology:Natural Scienc⁃ es Edition,2012,14(5):1-5.
-
[2] 王乐之,刘红磊,张纪喜,等.普光大湾地区断裂系统自动识别及裂缝建模研究[J].科学技术与工程,2013,13(18):5 304-5 307.WANG Lezhi,LIU Honglei,ZHANG Jixi,et al.Study on the auto⁃ matic recognition of fault-system and fracture modeling in Dawan Area of Puguang Gasfield[J].Science Technology and Engineer⁃ ing,2013,13(18):5 304-5 307.
-
[3] 苗青,周存俭,罗日升,等.碳酸盐岩裂缝型油藏裂缝预测及建模技术[J].特种油气藏,2014,21(2):37-40.MIAO Qing,ZHOU Cunjian,LUO Risheng,et al.Fracture predic⁃ tion and modeling of fractured carbonate oil reservoir[J].Special Oil & Gas Reservoirs,2014,21(2):37-40.
-
[4] 邓西里,李佳鸿,刘丽,等.裂缝性储集层表征及建模方法研究进展[J].高校地质学报,2015,21(2):306-319.DENG Xili,LI Jiahong,LIU Li,et al.Advances in the study of fractured reservoir characterization and modeling[J].Geological Journal of China Universities,2015,21(2):306-319.
-
[5] 彭仕宓,索重辉,王晓杰,等.整合多尺度信息的裂缝性储层建模方法探讨[J].西安石油大学学报:自然科学版,2011,26(4):1-7.PENG Shimi,SUO Chonghui,WANG Xiaojie,et al.A modeling method for fractured reservoirs using multi-scale information[J].Journal of Xi’an Shiyou University:Natural Science Edition,2011,26(4):1-7.
-
[6] 潘斐,张在旭,明玉坤.基于Hilbert空间的致密碎屑岩储层有效裂缝识别方法[J].油气地质与采收率,2020,27(2):80-86.PAN Fei,ZHANG Zaixu,MING Yukun.Identification of effective fractures in tight clastic reservoirs in Hilbert space[J].Petroleum Geology and Recovery Efficiency,2020,27(2):80-86.
-
[7] 孙致学,姚军,孙治雷,等.基于神经网络的聚类分析在储层流动单元划分中的应用[J].物探与化探,2011,35(3):349-353.SUN Zhixue,YAO Jun,SUN Zhilei,et al.The application of clus⁃ ter analysis based on neural network methods in identification res⁃ ervoir flow unit[J].Geophysical & Geochemical Exploration,2011,35(3):349-353.
-
[8] 吴永平,昌伦杰,陈文龙,等.裂缝表征及建模在迪那2气田的应用[J].断块油气田,2015,22(1):78-81.WU Yongping,CHANG Lunjie,CHEN Wenlong,et al.Applica⁃ tion of fracture characterization and modeling in Dina2 Gas Field [J].Fault-Block Oil and Gas Field,2015,22(1):78-81.
-
[9] 董双波,柯式镇,张红静,等.利用常规测井资料识别裂缝方法研究[J].测井技术,2013,37(4):380-384,388.DONG Shuangbo,KE Shizhen,ZHANG Hongjing,et al.On frac⁃ ture identification with conventional well logging data[J].Well Logging Technology,2013,37(4):380-384,388.
-
[10] 孟俊,骆杨.泾河油田长8段垂直裂缝常规测井识别[J].测井技术,2015,39(6):724-728.MENG Jun,LUO Yang.Identification of vertical fracture using conventional log data in Chang8 Formation of Jinghe Oilfield[J].Well Logging Technology,2015,39(6):724-728.
-
[11] 张小平,郭希明,蒋记伟,等.新场气田裂缝孔隙性储层地质建模研究[J].石油天然气学报,2013,35(10):41-44.ZHANG Xiaoping,GUO Ximing,JIANG Jiwei,et al.Geological modeling on fracture-pore reservoirs in Xinchang Gasfield[J].Journal of Oil and Gas Technology,2013,35(10):41-44.
-
[12] 汪勇.裂缝油气藏储层预测方法及应用研究[D].武汉:中国地质大学(武汉),2013.WANG Yong.Prediction method and its application of the frac⁃ tured oil and gas reservoirs[D].Wuhan:China University of Geo⁃ sciences(Wuhan),2013.
-
[13] 张广智,陈怀震,王琪,等.基于碳酸盐岩裂缝岩石物理模型的横波速度和各向异性参数预测[J].地球物理学报,2013,56(5):1 707-1 715.ZHANG Guangzhi,CHEN Huaizhen,WANG Qi,et al.Estimation of S-wave velocity and anisotropic parameters using fractured car⁃ bonate rock physics model[J].Chinese Journal of Geophysics,2013,56(5):1 707-1 715.
-
[14] 杨勤勇,赵群,王世星,等.纵波方位各向异性及其在裂缝检测中的应用[J].石油物探,2006,45(2):177-181.YANG Qinyong,ZHAO Qun,WANG Shixing,et al.P-wave azi⁃ muthal anisotropy and its application in detection of fractures[J].Geophysical Prospecting for Petroleum,2006,45(2):177-181.
-
[15] 姜传金,鞠林波,张广颖,等.利用地震叠前数据预测火山岩裂缝的方法和效果分析——以松辽盆地北部徐家围子断陷营城组火山岩为例[J].地球物理学报,2011,54(2):515-523.JIANG Chuanjin,JU Linbo,ZHANG Guangying,et al.The meth⁃ od and effect analysis of volcanic fracture prediction with prestack seismic data—An example from the volcanic rocks of Yingcheng formation in Xujiaweizi fault depression,north of Songliao basin[J].Chinese Journal of Geophysics,2011,54(2):515-523.
-
[16] 孙炜,李玉凤,付建伟,等.测井及地震裂缝识别研究进展[J].地球物理学进展,2014,29(3):1 231-1 242.SUN Wei,LI Yufeng,FU Jianwei,et al.Review of fracture identifi⁃ cation with well logs and seismic data[J].Progress in Geophysics,2014,29(3):1 231-1 242.
-
[17] 张占女,陈建波,吕坐彬,等.等效裂缝密度在锦州南变质岩潜山裂缝定量表征中的应用[J].重庆科技学院学报:自然科学版,2014,16(1):13-16.ZHANG Zhannü,CHEN Jianbo,LÜ Zuobin,et al.Application of equivalent fracture density in the process of quantitative charac⁃ terization of fractures in Jinzhounan metamorphic buried-hill[J].Journal of Chongqing University of Science and Technology:Natu⁃ ral Sciences Edition,2014,16(1):13-16.
-
[18] 陈烨菲,蔡冬梅,范子菲,等.哈萨克斯坦盐下油藏双重介质三维地质建模[J].石油勘探与开发,2008,35(4):492-497,508.CHEN Yefei,CAI Dongmei,FAN Zifei,et al.3D geological model⁃ ing of dual porosity carbonate reservoirs:A case from Kenkiyak pre-salt oilfield,Kazakhstan[J].Petroleum Exploration and De⁃ velopment,2008,35(4):492-497,508.
-
[19] 刘瑞兰,王泽华,孙友国,等.准噶尔盆地车排子油田火成岩双重介质储集层地质建模[J].新疆石油地质,2008,29(4):482-484.LIU Ruilan,WANG Zehua,SUN Youguo,et al.Geological model⁃ ing of dual porosity igneous reservoir in Chepaizi oilfield in Jung⁃ gar Basin[J].Xinjiang Petroleum Geology,2008,29(4):482-484.
-
[20] 徐维胜,龚彬,何川,等.基于离散裂缝网络模型的储层裂缝建模[J].大庆石油学院学报,2011,35(3):13-16.XU Weisheng,GONG Bin,HE Chuan,et al.Modeling of reservoir fractures based on discrete fracture network[J].Journal of Daqing Petroleum Institute,2011,35(3):13-16.
-
[21] 李虎,许自强,边滢滢,等.基于FracMan的储层裂缝建模技术 [J].天然气技术与经济,2014,8(2):18-21.LI Hu,XU Ziqiang,BIAN Yingying,et al.FracMan-based reser⁃ voir fracture modeling[J].Natural Gas Technology and Economy,2014,8(2):18-21.
-
[22] 孙致学,姜宝胜,肖康,等.基于新型集成学习算法的基岩潜山油藏储层裂缝开度预测算法[J].油气地质与采收率,2020,27(3):32-38.SUN Zhixue,JIANG Baosheng,XIAO Kang,et al.Prediction of fracture aperture in bedrock buried hill oil reservoir based on nov⁃ el ensemble learning algorithm[J].Petroleum Geology and Recov⁃ ery Efficiency,2020,27(3):32-38.
-
[23] 魏旭,张永平,薄云鹤,等.离散裂缝网络建模技术在大庆油区泥岩裂缝性油气藏的应用浅析[J].油气藏评价与开发,2018,8(4):11-16.WEI Xu,ZHANG Yongping,BO Yunhe,et al.Application of dis⁃ crete fracture network modeling technology in mudstone fractured reservoir in Daqing oil region[J].Reservoir Evaluation and Devel⁃ opment,2018,8(4):11-16.
-
[24] 王永东,雷俊杰,樊万红,等.延长南部低渗透储层天然裂缝定量识别技术[J].断块油气田,2018,25(3):322-327.WANG Yongdong,LEI Junjie,FAN Wanhong,et al.Quantitive identification of natural fractures in tight reservoir of southern Yanchang Oilfield[J].Fault-Block Oil and Gas Field,2018,25(3):322-327.
-
[25] 张迪.双重介质条件下的地质建模技术研究与应用——以哥伦比亚Capella油田为例[J].中外能源,2015,20(9):41-44.ZHANG Di.Research and application of geological modeling tech⁃ nology under the condition of binary medium—a case study of Ca⁃ pella Oilfield in Colombia[J].Sino-Global Energy,2015,20(9):41-44.
-
[26] 王威,卢祥国,吕金龙,等.裂缝对致密砂岩储层物性及产气能力影响实验[J].大庆石油地质与开发,2019,38(4):160-166.WANG Wei,LU Xiangguo,LÜ Jinlong,et al.Experiments of the effects of the fracture on the physical property and gas production capacity for the tight sandstone[J].Petroleum Geology & Oilfield Development in Daqing,2019,38(4):160-166.
-
[27] 梅丹,胡勇,王倩.裂缝对气藏储层渗透率及气井产能的贡献 [J].石油实验地质,2019,41(5):769-772.MEI Dan,HU Yong,WANG Qian.Experimental study on fracture contribution to gas reservoir permeability and well capacity[J].Petroleum Geology & Experiment,2019,41(5):769-772.
-
摘要
中东M油田是以碳酸盐岩储层为主的双重介质油藏,裂缝发育、非均质性较强。由于目前常规单一的地震属性无法精细刻画裂缝分布规律,因此建立了基于神经网络的多信息融合裂缝建模技术,首先利用神经网络预测无成像测井资料的单井裂缝密度;其次将纵波方位各向异性、地震不连续检测叠前地震属性,基于神经网络非线性融合进行三维裂缝密度发育概率预测;以单井裂缝密度作为井上硬数据,在严格的变差函数分析和裂缝密度概率体双重约束条件下建立裂缝密度模型;最后通过地质统计学建模方法建立离散裂缝网络模型并将其粗化等效成裂缝属性模型。模型拟合率应用于M油田开发决策优化,优选裂缝较为发育的区域采用水平井或大斜度井进行开发,平均单井日产油量达上千桶。新井揭示的裂缝发育情况与钻前预测一致,并且投产井单井产量均明显高于先期开发井。
Abstract
The Oilfield M in the Middle East is a dominated by dual-medium carbonate reservoir with well-developed frac- tures and strong heterogeneity. However,the conventional single method cannot finely characterize the distribution of frac- tures. The multi-information fusion modeling technology for fractures based on the neural network firstly depends on the neural network to predict the fracture density in a single well without imaging logging data. Secondly,the nonlinear fusion of multiple pre-stack seismic attributes including P-wave azimuthal anisotropy and seismic discontinuity detection is per- formed on the basis of the neural network to predict the development probability of 3D fracture density. The fracture density of a single well is taken as hard data,and the fracture density model is constructed within the dual constraints of strict vario- gram analysis and fracture density probability volume. Finally,the discrete fracture network model is construced with the geostatistical modeling method,which is coarsened to be equivalent to the fracture attribute model. The model fitting rate is applied to the decision-making optimization for Oilfield M development.It is preferable to use horizontal wells or highly de- viated wells for development in the areas with relatively developed fractures,and the average daily oil production per well reaches thousands of barrels. The fracture development revealed by the new well is consistent with the results of pre-drill- ing prediction,and the output of a single production well is significantly higher than that of a previous development well.
Keywords
carbonate reservoir ; dual-medium ; fracture modeling ; neural network ; seismic attribute