-
西湖凹陷是中国东海盆地油气勘探开发的一个重点区域。“十二五”以来,随着西湖凹陷构造、沉积、油气成藏等基础地质研究的不断深入,中央反转带勘探重心逐渐向北推进,并在中北部发现了 2 个千亿方级气田[1-2],其中以花港组砂岩储层为主的中深层砂岩气田显示出巨大潜力。前期研究表明该区多为低渗透-致密砂岩储层,发育多套单层厚度达百米的大型辫状河沉积砂体[3],物性表现为常规-低渗透-致密复合的强非均质性特征[4-5],经济有效开发难度大。而对储层质量差异的认识是制约气藏开发的关键所在,分析其主控因素和差异演化过程对于寻找储层“甜点”具有重大的指导意义。
-
西湖凹陷中央反转带中北部花港组砂岩储层埋深跨度大(3 400~4 600 m),不同深度储层质量存在差异,目前已有不少学者从沉积环境、成岩作用和构造演化等方面对花港组砂岩储层进行了多因素综合分析[3-6],探究其主控因素。研究认为不同区块主控因素差异明显,沉积物源及优势沉积相是后期储层“甜点”形成的先决条件[4-8],而异常高压、油气充注和成岩作用等增强了储层质量的非均质性[8-14]。部分学者针对中央反转带南北区域成岩演化差异[4,8] 和花港组砂岩储层单一成岩作用、成岩流体环境演化以及致密化机理等方面做了大量研究[9-12],而花港组砂岩储层埋深跨度大,其内部不同层位成岩演化过程以及储层质量响应存在差异,目前尚未开展相关研究。为了进一步探究成岩演化对储层质量差异的控制作用,笔者以西湖凹陷中央反转带中北部 A 区和 B 区花港组砂岩储层为例,在前人研究基础上,结合沉积构造背景和分析测试资料,从研究区花港组不同砂组储层特征入手,综合分析花港组砂岩储层成岩差异演化过程,明确其形成机理,以期为该区储层“甜点”的认识和预测提供思路。
-
1 区域地质概况
-
西湖凹陷位于东海陆架盆地东北部,呈狭条状分布,面积约为 5.18×104 km2[6],其构造演化先后经历了裂陷期、拗陷期和区域沉降3个阶段,现今地层整体埋深较大。在多期构造运动作用下,西湖凹陷总体呈现出“两洼夹一隆”且具有东西分带、南北分块特征的构造格局[15-16]。由西向东划分为西部斜坡带、西次凹、中央反转带、东次凹和东部断阶带 5 个次级构造单元[6] (图1)。自下而上依次发育古新统 (E1),始新统八角亭组(E2ba)、宝石组(E2b)、平湖组 (E2p),渐新统花港组(E3h),中新统龙井组(N1l)、玉泉组(N1y)、柳浪组(N1ll),上新统三潭组(N2s)和第四系东海群(Qpdh)[17] (图1)。其中花港组是主要的有效储盖组合,为北东向南西方向发育的辫状河三角洲-湖泊沉积体系[3]。根据花港组内部特征差异,以T2 1 地震反射界面为界将其划分为花港组上段和花港组下段,并对应 12个砂组,其中 H1—H5砂组为花港组上段,H6—H12 砂组为花港组下段(图2)。花港组上段上部发育一套单层沉积厚度大、平面连续性好和泥质含量高的稳定区域盖层[4,18],中下部为厚层叠置的辫状河沉积砂岩储层,其物性非均质性强;花港组下段以泥岩局部盖层与花港组上段分隔,局部盖层封闭质量相对较差[4,18],其下部以砂泥互层为主,储层砂体发育程度远不如花港组上段。花港组下伏平湖组煤系地层为主力烃源岩,于中新世进入大规模生烃期,中新世中晚期为花港组砂岩储层主成藏期[10,18]。研究区主要经历了4个演化阶段即缓慢埋藏阶段、快速埋藏阶段、短暂构造抬升阶段和区域稳定沉降阶段[4,14],花港组砂岩储层在快速埋藏阶段已达到较大埋深[4]。
-
2 储层特征
-
2.1 物性特征
-
花港组砂岩储层纵向上在埋深 4 100 m 左右的物性和孔隙发育类型存在明显差异(图3,图4)。埋深 4 100 m 以上为 H3—H4 砂组,储层整体物性较好,但非均质性较强,存在相对高孔隙发育区,孔隙度主要为 5%~25%,渗透率主要为 0.1~1 000 mD,原生孔隙和次生孔隙都相对发育,其中粒间溶孔中原生孔隙所占比例较高。原生孔隙一般具有较为平直的孔隙边缘(图4a),溶蚀孔隙多为长石粒内溶孔和铸模孔,岩屑溶蚀孔隙次之。保存较好的原生孔隙与溶蚀孔隙相连通时组合成扩张的粒间溶孔(图4b),这类孔隙孔径较大,平均直径大于 50 μm 且连通性好。埋深4 100 m以下为H5—H6砂组,储层整体物性较差,但内部差异较小,孔隙度主要为 5%~10%,渗透率主要为 0.1~1.0 mD,次生孔隙发育,仅少量原生孔隙得以保存(图4c,图4d),粒间溶孔、铸模孔和粒内溶孔的平均含量都相对较低,属于低渗透-近致密类型储层。局部见石英次生加大后残余原生孔隙(图4c),溶蚀孔隙多为孤立零散分布的长石粒内溶孔或铸模孔(图4d),且与溶蚀相关的自生矿物占据孔隙空间,原生孔隙与次生孔隙连通性差。
-
2.2 岩石学特征
-
在渐新世大型挤压收缩拗陷背景下,西湖凹陷中央反转带中北部花港组限制性河谷中发育以辫状河体系为主的沉积,稳定的物源供给和辫状河道的强水动力导致其沉积了巨厚砂体[3,19]。碎屑锆石 U-Pb定年测试结果表明,花港组沉积时期北部虎皮礁隆起(变质岩母岩)为稳定的长距离主物源供给区,而西部海礁隆起(变质岩母岩)与东部钓鱼岛隆褶带(火山岩母岩)为短距离次物源供给区[3,20-21]。花港组砂岩位于中北部辫状河沉积体系中,H3—H4 砂组与H5—H6砂组整体处于相同的物源和沉积背景下[3,19],由铸体薄片观察和 X衍射数据表明,不同砂组的岩石学特征较为一致,仅部分特征有所差异。砂岩总体上结构成熟度中等,整体粒度较粗且以细砂岩、中砂岩及部分含砾砂岩为主,分选中等—好,磨圆呈次棱角—次圆状。成分成熟度较高,主要发育长石岩屑砂岩或岩屑长石砂岩(图5),石英含量主要为 60%~75%,长石含量主要为 10%~25%,斜长石含量稍高于钾长石含量,岩屑含量主要为 15%~25%(图5,图6a,图6c),以石英变质岩岩屑和中酸性火山岩岩屑为主,部分含有少量的火山凝灰物质,可见局部蚀变或溶蚀,黏土矿物含量主要为3%~7%,砂岩整体上较为洁净。花港组砂岩储层的主要碎屑成分组成上,H5—H6 砂组储层石英含量稍高于 H3—H4 砂组,长石含量则稍有降低(图6c);岩屑组成上,H5—H6砂组储层变质岩岩屑含量相对较高,而火山岩岩屑含量相对较低,沉积岩岩屑含量相差不大(图6a);黏土矿物组成上,H3— H4砂组储层绿泥石相对含量高于 H5—H6砂组,而伊/蒙混层和伊利石相对含量低于 H5—H6砂组(图6d)。
-
图2 西湖凹陷中央反转带中北部A-1井单井综合柱状图
-
Fig.2 Comprehensive log diagram of Well A-1 in north-central part of central reversal structural belt in Xihu Sag
-
3 成岩作用
-
3.1 成岩作用类型
-
储层质量主要受控于原始沉积组构和后期埋藏过程中的成岩改造,花港组不同砂组沉积环境和岩石学特征较为一致,仅岩屑类型有所差异,对于相同岩相砂岩而言,后期埋藏成岩作用控制着不同砂组储层质量的差异演化。有关沉积因素对储层质量的影响已开展过一些研究[5-6,14],笔者运用薄片观察、阴极发光观察、扫描电镜多模式分析以及元素分析等方法,对研究区优势岩相砂岩的主要成岩作用类型进行了探讨。
-
3.1.1 压实作用
-
压实作用程度通常受控于岩石组构、埋藏深度和温压效应[22-23]。研究区 H3—H4砂组储层发育以原生孔隙为主的相对高孔隙砂岩,铸体薄片显示压实作用相对较弱,颗粒之间以点—线接触为主,压溶作用不明显(图7a,图7b)。相对低孔隙发育带主要由强烈的压实作用和胶结作用造成,例如粒度较细、分选较差或局部塑性成分较高等导致的强压实作用和方解石、硅质等自生矿物导致的强胶结作用。H5—H6砂组储层整体压实、压溶程度较强,原生孔隙几乎消失殆尽,碎屑颗粒之间以镶嵌—凹凸接触为主,压溶缝合现象明显(图7c)。研究区储层砂岩具有粒度粗、高石英和低杂基的特点,这在一定程度上抑制了压实作用,有利于原生孔隙的保存,而更深的埋藏深度和更大的温压效应导致了 H5—H6 砂组储层物理和化学压实程度明显强于 H3—H4砂组。
-
图3 西湖凹陷中央反转带中北部花港组不同砂组物性随深度的变化
-
Fig.3 Changes of physical properties of different sandstone layers in Huagang Formation with depth in north-central part of central reversal structural belt in Xihu Sag
-
图4 西湖凹陷中央反转带中北部花港组不同砂组孔隙发育类型
-
Fig.4 Pore types of different sandstone layers in Huagang Formation in north-central part of central reversal structural belt in Xihu Sag
-
3.1.2 胶结作用
-
随着埋藏深度增加,地层物理化学条件不断变化,复杂的成岩环境演变和水岩相互作用过程产生了一系列自生胶结物,多期多类型的胶结作用是改造深部储层质量的重要因素。研究区花港组砂岩储层主要发育碳酸盐胶结、黏土矿物胶结和石英胶结。
-
图5 西湖凹陷中央反转带中北部花港组不同砂组岩石组分三角图
-
Fig.5 Triangle diagram of rock components in different sandstone layers of Huagang Formation in north-central part of central reversal structural belt in Xihu Sag
-
碳酸盐胶结 研究区主要发育方解石胶结,菱铁矿、白云石和铁白云石等其他碳酸盐矿物少量发育,仅在部分深度可见。方解石胶结可分为3期:早期方解石胶结多呈基底式连晶胶结,早于绿泥石包膜和石英次生加大,阴极发光显示橙红色,铁含量较高(图7d,图8);中期方解石胶结晚于石英次生加大,方解石多呈分散粒状或局部斑状交代碎屑颗粒或占据孔隙空间,阴极发光显示橙黄色,铁含量较低(图7e—7g,图8);晚期方解石胶结多以粗晶脉体形式充填于裂缝中,可能与研究区龙井运动造缝作用相关[17],阴极发光显示暗红色,铁含量最高(图7f,图7g,图8)。不同砂组方解石胶结差异较小且胶结物整体含量较低,从分布位置来看,早期方解石胶结方解石含量高,在砂泥界面最为发育[11],而研究区储层砂体主要由多期心滩-辫状水道砂体连续叠置沉积形成,晚期河道对早期河道冲刷强烈,钻井显示砂地比较高,呈现出砂包泥现象[21],因而与砂泥界面密切相关的早期方解石胶结范围比较局限,对储层主体影响较小。
-
黏土矿物胶结 绿泥石、伊/蒙混层和伊利石是研究区最常见的黏土矿物类型。绿泥石在花港组砂岩储层广泛发育是相对优质储层发育的重要原因之一。研究区主要发育 2 种类型绿泥石,分别为附着于颗粒表面生长的包膜状绿泥石与充填于孔隙的散片状和蠕虫状绿泥石。H3—H4砂组储层绿泥石包膜相对发育(图7h),覆盖率较高,厚度一般为 2~4 μm;H5—H6 砂组储层绿泥石包膜发育较差 (图7i),覆盖率低,厚度一般小于 2 μm,相比较而言,充填于孔隙的散片状和蠕虫状绿泥石更为常见 (图7j)。大量研究表明绿泥石包膜对石英次生加大具有抑制作用且对储层物性有利[10,14],这在研究区十分普遍,但绿泥石包膜的形成对抑制例如自生石英晶粒或方解石等孔隙充填式胶结物生成的作用较弱(图7k)。研究区绿泥石包膜大都以单层结构垂直或高角度斜切于碎屑颗粒表面生长,而颗粒接触处不发育,其等厚叶片状特征表明不存在其他黏土矿物成岩转化的形态继承性,并且研究区也不存在鲕绿泥石或磁绿泥石等前驱黏土矿物[24],同时微观照片显示绿泥石包膜早于早期方解石胶结,晚于石英次生加大和中期方解石胶结。综上分析,可推测研究区绿泥石包膜更趋向于形成于早期相对较弱的机械压实之后且石英次生加大之前,是由富铁镁离子的孔隙水中新生沉淀析出的[24-25]。成岩过程中富铁镁碎屑成分的水解和溶蚀作用是铁镁离子的重要来源[24],研究区黑云母等暗色矿物较少发育,而火山岩岩屑中又以中酸性火山岩岩屑为主,中基性火山岩岩屑含量较少,成岩演化过程中铁镁离子析出有限,因而造成研究区绿泥石包膜厚度普遍较薄。而不同砂组相比,H5—H6 砂组储层变质岩岩屑相对更发育(图6a),其中 H5 砂组储层铁和钛元素含量相对较低(图9),这表明由火山岩岩屑水解或溶蚀供应的铁镁离子更加不足,导致 H5— H6砂组储层绿泥石包膜发育较差,抑制石英次生加大能力较弱,随着后期溶蚀作用的发生,铁镁离子进一步积累,此时趋向于晚期高温形成孔隙充填型绿泥石在H5—H6砂组储层就更为常见。
-
图6 西湖凹陷中央反转带中北部花港组不同砂组岩石学特征差异对比
-
Fig.6 Comparison of petrological characteristics of different sandstone layers of Huagang Formation in north-central part of central reversal structural belt in Xihu Sag
-
图7 西湖凹陷中央反转带中北部花港组不同砂组典型成岩作用特征
-
Fig.7 Typical diagenetic features in different sandstone layers of Huagang Formation in north-central part of central reversal structural belt in Xihu Sag
-
图8 不同期次方解石微量元素特征
-
Fig.8 Characteristics of trace elements in different periods of calcite
-
研究区伊/蒙混层主要以蜂窝状产出,一般包裹碎屑颗粒表面或充填于孔隙中(图7m)。伊利石主要以片状或发丝状产出,一般充填于孔喉间,常见搭桥状堵塞喉道(图7m),且在绿泥石包膜上成核继续生长。H5—H6砂组与H3—H4砂组储层相比,伊利石更为发育,常见不同产状伊/蒙混层和伊利石共生存在。封闭成岩体系中,蒙脱石伊利石化和高岭石伊利石化是研究区伊利石胶结形成的重要机制[26-28],蜂窝状伊/蒙混层以及片状或发丝状伊利石是通过蒙脱石伊利石化机制产生的,蒙脱石伊利石化大致开始于 60℃,直到 120℃时基本停止,这个过程中钾离子一般由钾长石在酸性环境下溶解供应,同时产生一定的硅质[28]。高岭石伊利石化生成发丝状伊利石,该反应的阈值为120~140℃,当地层温度低于阈值时,反应速率低,高岭石的伊利石化作用不显著;当地层温度高于阈值时,钾长石溶解动力学屏障被克服从而提供钾离子,使得钾长石的溶解可以在流体 pH 值变化受到缓冲、缺乏足够氢离子的条件下发生,最终不断反应产生一定的硅质和次生孔隙[26-27]。
-
石英胶结 石英胶结在研究区十分普遍,可见 3 期石英次生加大(图7n),流体包裹体分析显示胶结温度为 118~150℃[13],一般以围绕碎屑颗粒生长的自生加大边形式或以自生石英微晶形式沉淀于孔隙中。研究区不同砂组石英胶结差异明显,H3— H4 砂组储层相对高孔隙发育区石英胶结物含量较低,石英次生加大仅在局部发育,自生石英微晶沉淀常见(图7o),而 H5—H6 砂组储层石英胶结物含量普遍较高,常见较宽且完整的自生石英次生加大边充填孔隙(图7p)。石英胶结程度与地层温压条件、硅质来源、早期油气充注及黏土矿物或微晶石英包膜发育情况等密切相关[24-26,29]。通常认为砂岩中的硅质沉淀速率控制着石英胶结过程,当地层温度高于 70℃时,硅质沉淀速率呈指数增长,石英胶结开始产生[30-31]。近期研究也发现地层超压导致储层垂向有效应力较低,颗粒之间压溶作用受限,化学压实为主的硅质供应速率较低,因而即使在深埋高温地层条件下,石英胶结也会受到限制[32-33]。大量研究表明早期油气充注和绿泥石或微晶石英包膜能够有效抑制石英胶结速率,有助于深部储层异常高孔隙的形成[34-36]。H3—H6 砂组地层温度为 100~160℃,现今地层压力系数多为常压—弱超压,理论上已经满足石英沉淀条件,同时成藏研究表明研究区储层油气充注以晚期天然气大规模充注为主,早期油气充注对石英胶结影响较小[1,13,20]。然而花港组不同砂组石英胶结却存在较大差异,这可能与硅质来源和绿泥石包膜发育情况相关,与 H3— H4 砂组储层相比,H5—H6 砂组储层更强的化学压实作用和伊利石化过程提供了多种硅质来源,且绿泥石包膜发育较差,难以有效抑制进一步的压溶作用和后期的石英次生加大,因而 H5—H6 砂组储层普遍发育石英胶结和伊利石胶结。
-
图9 西湖凹陷中央反转带中北部花港组不同砂组铁和钛元素含量变化
-
Fig.9 Changes of Fe and Ti contents in different sandstone layers of Huagang Formation in north-central part of central reversal structural belt in Xihu Sag
-
3.1.3 溶蚀作用
-
研究区不同砂组储层具有长石和火山岩岩屑等不稳定碎屑组分的溶蚀现象,根据溶蚀增孔数据和微观薄片观察,H3—H4砂组储层溶蚀作用更强,整体溶蚀面孔率相对较高,粒间溶孔、铸膜孔和粒内溶孔等相对发育,孔隙连通性好;H5—H6砂组储层整体溶蚀面孔率相对较低,铸膜孔或粒内溶孔呈孤立状分布,孔隙连通性差。次生孔隙成因多样,一般形成机制包括有机酸溶蚀、大气淡水淋滤、黏土矿物转化、硫酸盐热化学反应以及碱性溶蚀作用等[27,36-38],溶蚀过程涉及到流体性质、成岩系统的开放封闭性以及矿物之间的化学反应等多种因素[31,39-44]。花港组不同砂组储层岩石学特征较为一致,溶蚀作用差异主要取决于溶蚀流体侵入和成岩系统开放封闭性的变化。油气成藏研究表明研究区主要存在 3 期油气充注:早期油气充注发生在距今 19~16 Ma,以低熟油充注为主,充注时间短且强度弱,不能大面积成藏,但有机质在早成熟阶段排出的有机酸性流体开始进入储层[13,40];中期油气充注发生在距今12~9 Ma,对应龙井运动中晚期,以天然气充注为主、原油充注为辅,烃类包裹体既含有 CH4,又含有与有机质脱羧相关的 CO2,说明此时有机酸溶蚀作用仍在进行[13,40-41];晚期油气充注发生在距今 5 Ma 至今,以高成熟天然气充注为主,烃类包裹体只含有 CH4,说明此时有机酸溶蚀作用可能已经停止。中期油气充注之前,花港组砂岩储层已经进入快速埋藏阶段且达到较大埋深[4],与H3—H4 砂组储层相比,H5—H6 砂组储层此时已经进入深埋状态,成岩系统相对封闭,能保留下来的原生孔隙较少,因而后期龙井运动阶段伴随油气充注进入储层的有机酸难以发生大规模溶蚀,所能形成的次生孔隙也相对较少。
-
3.2 成岩作用强度
-
研究区花港组砂岩储层整体埋深大于3 400 m,有机质镜质组反射率为 0.7%~2%,有机质成熟度高,伊/蒙混层中蒙脱石含量为 5%~25%,现今实测地层温度普遍大于120℃,可以判断H3—H4砂组储层已进入中成岩 A 晚期阶段,而 H5—H6 砂组储层已进入中成岩 B 期阶段(图10)。通过比较不同砂组储层压实减孔量、胶结减孔量和溶蚀增孔量可知:H3—H4砂组储层压实减孔量为 24.5%~30%,平均为 27.93%;H5—H6 砂组储层压实减孔量为 27.5%~31%,平均为 29.12%,H5—H6砂组储层整体压实程度比H3—H4砂组强,H3—H4砂组储层存在相对高孔隙发育区,原生孔隙较多。H3—H4 砂组储层胶结减孔量为 3%~7%,平均为 4.46%;H5—H6 砂组储层胶结减孔量为4%~7.5%,平均为5.24%,其中个别样品由于方解石胶结和石英胶结较强导致胶结减孔量较大。H3—H4砂组储层溶蚀增孔量为 0~3%,平均为 1.59%;H5—H6砂组储层溶蚀增孔量为 0~1.5%,平均为 0.73%,可见 H3—H4砂组储层溶蚀作用明显强于 H5—H6 砂组。H3—H4 砂组储层原生孔隙和溶蚀孔隙都相对发育,而 H5—H6 砂组储层主要发育溶蚀孔隙,原生孔隙较少,整体面孔率较低。
-
4 储层成岩差异演化过程
-
研究区不同砂组储层虽然都经历了统一的缓慢埋藏、快速埋藏、短暂构造抬升和区域稳定沉降4 个演化阶段,然而主要成岩作用类型和成岩强度有所不同,从而导致储层致密化进程和孔隙发育情况不同,最终造成了不同砂组储层质量的差异(图11)。
-
缓慢埋藏阶段 花港组—龙井组沉积末期经历了缓慢埋藏阶段,花港组砂岩储层主要处于早成岩晚期至中成岩早期,下伏平湖组煤系烃源岩有机质处于未成熟到早成熟阶段。花港组沉积末期,地层受花港运动影响遭受短暂的抬升剥蚀,其上段顶部遭受大气淡水淋滤,而储层主体受影响较小。此阶段机械压实作用导致储层孔隙大幅度减小,不稳定火山岩岩屑和少量火山凝灰质发生水解作用,释放出 Na+,Ca2+,Fe2+ 和 Mg2+ 等,形成早期碱性成岩环境,菱铁矿胶结、早期方解石胶结和绿泥石包膜等先后生成。期间少量有机酸和早期低熟油进入储层,发生小规模充注但影响有限。随着埋藏加深和有机质热演化的进行,地层流体逐渐由弱碱性向弱酸性转变,长石等不稳定碎屑组分开始发生少量溶解,生成部分硅质和高岭石,释放出的 K+ 促使蒙脱石伊利石化,而这个转化过程释放的 Fe2+ 和 Mg2+ 也进一步为绿泥石包膜和中后期方解石胶结提供了离子来源。缓慢埋藏阶段后期,压溶作用逐渐开始且提供了一定的硅质来源。与H3—H4砂组储层相比,H5—H6 砂组储层埋藏较深,成岩演化程度更高,较强的压实、压溶作用导致原生孔隙保存较差,同时其火山岩岩屑含量较低,早期水解作用释放的铁、镁离子有限,导致绿泥石包膜发育较差,难以抑制持续的化学压实过程和后期的石英次生加大。
-
图10 西湖凹陷中央反转带中北部花港组不同砂组成岩阶段指标参数随深度变化
-
Fig.10 Changes of parameters during diagenetic stage of different sandstone layers of Huagang Formation with depth in north-central part of central reversal structural belt in Xihu Sag
-
快速埋藏和短暂构造抬升阶段 玉泉组—柳浪组沉积时期经历了快速埋藏和短暂构造抬升阶段,花港组砂岩储层主要处于中成岩中期至末期,随着埋藏深度急剧增加,压实、压溶作用进一步增强,部分高岭石伊利石化和孔隙充填状绿泥石胶结开始发生。平湖组烃源岩进入成熟阶段,有机酸开始大量产生,强烈的龙井运动使地层发生大规模抬升剥蚀,先存油源断裂再次活动,生烃超压促使有机酸随烃类进入储层发生中期油气充注,此时地层流体环境酸性逐渐增强,长石和岩屑等不稳定碎屑组分进一步遭受溶蚀,次生孔隙大量形成,同时沉淀部分自生高岭石和自生石英。H5—H6砂组储层在快速埋藏期进一步深埋,遭受较强的压实、压溶作用,原生孔隙已所剩无几,同时部分碱性环境下产生的胶结作用导致孔隙度降低,成岩体系相对封闭,造成后续有机酸进入有限,溶蚀作用程度相对较弱。而 H3—H4 砂组储层相对较弱的压实、压溶作用使得原生孔隙有所保存,相对开放的成岩环境为后续有机酸溶蚀增孔的进行创造了条件,溶蚀作用程度相对较强。
-
图11 西湖凹陷中央反转带中北部花港组不同砂组成岩演化模式
-
Fig.11 Diagenetic evolution patterns in different sandstone layers of Huagang Formation in north-central part of central reversal structural belt in Xihu Sag
-
区域稳定沉降阶段 三潭组沉积至今,研究区进入区域稳定沉降阶段,此时平湖组烃源岩生成的有机酸开始发生脱羧作用,同时上一阶段成岩反应的有机酸消耗和金属阳离子的积累,使得地层环境酸性逐渐减弱,碱性增强,碱性成岩环境逐渐形成。孔隙水中 K+,Fe2+ 和 Mg2+ 等的积累导致高岭石伊利石化和孔隙填充状绿泥石胶结普遍发生,晚期方解石也开始沉淀,进一步占据孔隙,同时也伴随着少量碱性条件下的硅质溶蚀作用。5 Ma 以来平湖组烃源岩进入干酪根裂解大量生干气阶段,至今仍持续生气,晚期高成熟天然气选择优势通道充注花港组砂岩储层。此阶段H5—H6砂组储层已经较长时期处于碱性成岩环境,大量自生矿物胶结充填孔隙,储层逐渐致密化且物性相对较差,而H3—H4砂组储层碱性成岩作用程度低,同时原生孔隙和次生孔隙比较发育,存在相对高孔隙发育区且物性较好。
-
5 结论
-
西湖凹陷中央反转带中北部花港组储层以埋深 4 100 m 为界线,其上、下储层物性和孔隙发育类型存在明显差异,而岩石学特征较为一致,仅部分特征有所差别。埋深4 100 m以上为H3—H4砂组,储层整体物性较好,但非均质性较强,存在相对高孔隙发育区,原生孔隙和次生孔隙都相对发育;埋深4 100 m以下为H5—H6砂组,储层石英和变质岩岩屑含量较高,整体物性较差,但内部物性差异较小,主要发育次生孔隙,仅少量原生孔隙得到保存,属于低渗透-致密储层。
-
储层成岩差异演化过程造成了不同砂组储层质量的差异。H3—H4 砂组储层由于埋藏相对较浅,较弱的压实、压溶作用和普遍的绿泥石包膜共同抑制了石英次生加大,原生孔隙保存较好,有利于后期有机酸规模溶蚀,因此原生孔隙和次生孔隙都发育较好;H5—H6砂组储层埋藏相对较深,绿泥石包膜发育较差,难以有效抑制石英次生加大,强烈的压实、压溶作用使其在快速埋藏阶段就已经丧失了大量孔隙,不利于后期的有机酸溶蚀增孔作用,且由于较长时期处于碱性成岩环境,大量自生矿物胶结充填孔隙,储层相对致密。
-
参考文献
-
[1] 刘金水,邹玮,李宁,等“.储保耦合”控藏机制与西湖凹陷大中型油气田勘探实践[J].中国海上油气,2019,31(3):11-19.LIU Jinshui,ZOU Wei,LI Ning,et al.Hydrocarbon accumulation control mechanism of reservoir-conservation coupling and its large and medium-sized fields exploration practice in Xihu sag,East China Sea basin[J].China Offshore Oil and Gas,2019,31(3):11-19.
-
[2] 周心怀.西湖凹陷地质认识创新与油气勘探领域突破[J].中国海上油气,2020,32(1):1-12.ZHOU Xinhuai.Geological understanding and innovation in Xihu sag and breakthroughs in oil and gas exploration[J].China Off⁃ shore Oil and Gas,2020,32(1):1-12.
-
[3] 张国华,刘金水,秦兰芝,等.西湖凹陷渐新统花港组大型辫状河沉积体系特征[J].中国海上油气,2018,30(3):10-18.ZHANG Guohua,LIU Jinshui,QIN Lanzhi,et al.Characteristics of the large braided river depositional system of the Oligocene Huagang Formation in the Xihu sag[J].China Offshore Oil and Gas,2018,30(3):10-18.
-
[4] 林承焰,孙小龙,马存飞,等.西湖凹陷中央反转构造带花港组储层物性演化[J].中国矿业大学学报,2017,46(4):820-829.LIN Chengyan,SUN Xiaolong,MA Cunfei,et al.Physical property evolution of Huagang formation in central inversion tectonic belt in Xihu depression[J].Journal of China University of Mining & Technology,2017,46(4):820-829.
-
[5] 赵仲祥,董春梅,林承焰,等.低渗-致密砂岩储层“甜点”成因机制研究——以西湖凹陷X气田花港组为例[J].中国矿业大学学报,2018,47(5):995-1 007.ZHAO Zhongxiang,DONG Chunmei,LIN Chengyan,et al.Forma⁃ tion mechanism of“sweet spot”in low permeability and tight gas reservoirs:A case study of Huagang formation in X gas field,Xihu sag[J].Journal of China University of Mining & Technology,2018,47(5):995-1 007.
-
[6] 黄导武,段冬平,刘彬彬,等.西湖凹陷低渗-致密砂岩气藏储层特征及差异成因[J].中国海上油气,2019,31(3):99-107.HUANG Daowu,DUAN Dongping,LIU Binbin,et al.Reservoir characteristics and differential genesis of low permeability-tight sandstone gas reservoirs in Xihu sag[J].China Offshore Oil and Gas,2019,31(3):99-107.
-
[7] 高伟中,孙鹏,赵洪,等.西湖凹陷花港组深部储层特征及控制因素[J].成都理工大学学报:自然科学版,2016,43(4):396-404.GAO Weizhong,SUN Peng,ZHAO Hong,et al.Study of deep res⁃ ervoirs characters and main control factors of Huagang Formation in Xihu sag,East China Sea[J].Journal of Chengdu University of Technology:Science & Technology Edition,2016,43(4):396-404.
-
[8] 徐昉昊,徐国盛,刘勇,等.东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层控制因素[J].石油勘探与开发,2020,47(1):98-109.XU Fanghao,XU Guosheng,LIU Yong,et al.Factors controlling the development of tight sandstone reservoirs in the Huagang For⁃ mation of the central inverted structural belt in Xihu sag,East China Sea Basin[J].Petroleum Exploration and Development,2020,47(1):98-109.
-
[9] 张建培,葛和平,漆滨汶.西湖凹陷砂岩自生高岭石发育特征及其对储层物性的影响[J].海洋石油,2009,29(1):1-8.ZHANG Jianpei,GE Heping,QI Binwen.Characteristics of authi⁃ genic kaolinite in sandstones of Xihu Sag and it’s impact on reser⁃ voir physical properties[J].Offshore Oil,2009,29(1):1-8.
-
[10] 孙小龙,林承焰,董春梅,等.储层岩性控制下的绿泥石对硅质胶结的影响[J].地球科学,2017,42(9):1 599-1 607.SUN Xiaolong,LIN Chengyan,DONG Chunmei,et al.Influence of chlorite on siliceous cement under control of reservoir lithology [J].Earth Science,2017,42(9):1 599-1 607.
-
[11] 梁建设,王琪,郝乐伟,等.西湖凹陷渐新统花港组储层砂岩成岩环境演化探讨[J].天然气地球科学,2012,23(4):673-680.LIANG Jianshe,WANG Qi,HAO Lewei,et al.Evolution of diage⁃ netic environments for Oligocene Huagang Formation sandstone in Xihu Sag[J].Natural Gas Geoscience,2012,23(4):673-680.
-
[12] 苏奥,陈红汉,王存武,等.低渗致密砂岩储层的致密化机理与成岩流体演化——以东海西湖凹陷中央背斜带北部花港组为例[J].中国矿业大学学报,2016,45(5):972-981,1 029.SU Ao,CHEN Honghan,WANG Cunwu,et al.Densification mech⁃ anism and diagenesis fluid evolution of low-porosity and low-per⁃ meability tight sandstone reservoir:An example from Huagang for⁃ mation in the northern of the central anticlinal zone in Xihu de⁃ pression,East China Sea[J].Journal of China University of Min⁃ ing & Technology,2016,45(5):972-981,1 029.
-
[13] 刘勇,徐国盛,曾兵,等.东海盆地西湖凹陷花港组储层孔隙演化与油气充注关系[J].石油实验地质,2018,40(2):168-176.LIU Yong,XU Guosheng,ZENG Bing,et al.Relationship between porosity evolution and hydrocarbon charging in tight sandstone reservoirs in Oligocene Huagang Formation,Xihu Sag,East China Sea Basin[J].Petroleum Geology & Experiment,2018,40(2):168-176.
-
[14] 林建力,张宪国,林承焰,等.岩相约束下的深层致密砂岩气藏储层演化特征[J].石油与天然气地质,2019,40(4):886-899.LIN Jianli,ZHANG Xianguo,LIN Chengyan,et al.Diagenetic evo⁃ lution characteristics constrained by lithofacies in deep tight sand gas reservoir[J].Oil & Gas Geology,2019,40(4):886-899.
-
[15] 蔡华,张建培,唐贤君.西湖凹陷断裂系统特征及其控藏机制 [J].天然气工业,2014,34(10):18-26.CAI Hua,ZHANG Jianpei,TANG Xianjun.Characteristics of the fault systems and their control on hydrocarbon accumulation in the Xihu Sag,East China Sea Shelf Basin[J].Natural Gas Indus⁃ try,2014,34(10):18-26.
-
[16] 张国华,张建培.东海陆架盆地构造反转特征及成因机制探讨 [J].地学前缘,2015,22(1):260-270.ZHANG Guohua,ZHANG Jianpei.A discussion on the tectonic in⁃ version and its genetic mechanism in the East China Sea shelf ba⁃ sin[J].Earth Science Frontiers,2015,22(1):260-270.
-
[17] 袁学旭,郭英海,赵志刚,等.以米氏旋回为标尺进行测井层序划分对比——以东海西湖凹陷古近-新近系地层为例[J].中国矿业大学学报,2013,42(5):766-773.YUAN Xuexu,GUO Yinghai,ZHAO Zhigang,et al.Comparison of well-log sequence stratigraphic classification and correlation us⁃ ing Milankovitch cycles:Paleogene-Neogene strata of Xihu sag in East China Sea[J].Journal of China University of Mining & Tech⁃ nology,2013,42(5):766-773.
-
[18] 王存武,赵志刚,张功成,等.东海西湖凹陷盖层条件及对油气藏的控制作用[J].海洋石油,2013,33(2):22-27.WANG Cunwu,ZHAO Zhigang,ZHANG Gongcheng,et al.Cap rocks and influence on hydrocarbon accumulations in Xihu Sag of East China Sea[J].Offshore Oil,2013,33(2):22-27.
-
[19] FENG L,LU Y,WELLNER J,et al.Fluvial morphology and reser⁃ voir sand-body architecture in lacustrine rift basins with axial and lateral sediment supplies:Oligocene fluvial-lacustrine succession in the Xihu sag,East China Sea shelf basin[J].Australian Journal of Earth Sciences,2020,67(2):279-304.
-
[20] ZHANG J,LU Y,KRIJGSMAN W,et al.Source to sink transport in the Oligocene Huagang Formation of the Xihu Depression,East China Sea shelf basin[J].Marine & Petroleum Geology,2018,98:733-745.
-
[21] 刘金水,陆永潮,秦兰芝.源-汇系统分析方法在大型储集体研究中的应用——以西湖凹陷中央反转带花港组为例[J].石油实验地质,2019,41(3):303-310.LIU Jinshui,LU Yongchao,QIN Lanzhi.Application of source to sink system analysis in large reservoir research:a case study of Huagang Formation,Central Inversion Belt,Xihu Depression[J].Petroleum Geology & Experiment,2019,41(3):303-310.
-
[22] THOMAS R T,MELVYN R G,LORI A H,et al.Sandstone diagen⁃ esis and reservoir quality prediction:models,myths,and reality [J].AAPG Bulletin,2010,94(8):1 093-1 132.
-
[23] KNUT B.Relationships between depositional environments,burial history and rock properties.Some principal aspects of diagenetic process in sedimentary basins[J].Sedimentary Geology,2014,301:1-14.
-
[24] PATRICK J D,DAVID M H,RICHARD H W.Pre-requisites,pro⁃ cesses,and prediction of chlorite grain coatings in petroleum res⁃ ervoirs:A review of subsurface examples[J].Marine and Petro⁃ leum Geology,2012,32(1):63-75.
-
[25] ANNA B,SUSANNE G,PETER K.Porosity-preserving chlorite cements in shallow-marine volcaniclastic sandstones:Evidence from Cretaceous sandstones of the Sawan gas field,Pakistan[J].AAPG Bulletin,2009,93(5):595-615.
-
[26] FAWAD A C,KNUT B,CAROLINE L.The role of provenance in illitization of deeply buried reservoir sandstones from Haltenbank⁃ en and north Viking Graben,offshore Norway[J].Marine and Pe⁃ troleum Geology,2000,17(6):673-689.
-
[27] 黄思静,黄可可,冯文立,等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学,2009,38(5):498-506.HUANG Sijing,HUANG Keke,FENG Wenli,et al.Mass exchang⁃ es among feldspar,kaolinite and illite and their influences on sec⁃ ondary porosity formation in clastic diagenesis-A cases study on the Upper Paleozoic,Ordos basin and Xujiahe Formation,West⁃ ern Sichuan Depression[J].Geochimica,2009,38(5):498-506.
-
[28] 孟万斌,吕正祥,冯明石,等.致密砂岩自生伊利石的成因及其对相对优质储层发育的影响——以川西地区须四段储层为例 [J].石油学报,2011,32(5):783-790.MENG Wanbin,LÜ Zhengxiang,FENG Mingshi,et al.The origin of authigenic illite in tight sandstones and its effect on the forma⁃ tion of relatively high-quality reservoirs:A case study on sand⁃ stones in the 4th member of Xujiahe Formation,western Sichuan Basin[J].Acta Petrolei Sinica,2011,32(5):783-790.
-
[29] 袁桃,伊海生,兰叶芳,等.砂岩储层石英胶结物的SiO2来源研究综述[J].矿物学报,2017,37(1):168-176.YUAN Tao,YI Haisheng,LAN Yefang,et al.A review of research on the source of quartz cements in sandstone reservoirs[J].Acta Mineralogica Sinica,2017,37(1):168-176.
-
[30] EARLE F M.Quartz cement in sandstones:a review[J].Earth-Sci⁃ ence Reviews,1989,26(1/3):69-112.
-
[31] OLAV W.Temperatures of quartz cementation in Jurassic sand⁃ stones from the Norwegian continental shelf:evidence from fluid inclusions[J].Journal of Sedimentary Research,1994,64(2):311-323.
-
[32] STEPHAN S,STUART J J,NEIL T G.Importance of vertical effec⁃ tive stress for reservoir quality in the Skagerrak Formation,Cen⁃ tral Graben,North Sea[J].Marine and Petroleum Geology,2016,78:895-909.
-
[33] OLAKUNLE J O,ANDREW C A,STUART J J,et al.Vertical ef⁃ fective stress as a control on quartz cementation in sandstones[J].Marine and Petroleum Geology,2018,98:640-652.
-
[34] SALMAN B,ROBERT H L,LINDA B.Anomalously high porosity and permeability in deeply buried sandstone reservoirs:origin and predictability[J].AAPG Bulletin,2002,86(2):301-328.
-
[35] RICHARD H W,MOHAMMED B,PHILIP S.The effect of oil em⁃ placement on quartz cementation in a deeply buried sandstone res⁃ ervoir[J].AAPG Bulletin,2018,102(1):49-75.
-
[36] RICHARD H W,MARSHA W F,ELISABETTA M.Amorphous silica nanofilms result in growth of misoriented microcrystalline quartz cement maintaining porosity in deeply buried sandstones [J].Geology,2012,40(2):179-182.
-
[37] 黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用——以鄂尔多斯盆地三叠系延长组为例[J].地球科学,2003,28(4):419-424.HUANG Sijing,WU Wenhui,LIU Jie,et al.Generation of second⁃ ary porosity by meteoric water during time of subaerial exposure:An example from Yanchang Formation sandstone of Triassic of Or⁃ dos Basin[J].Earth Science,2003,28(4):419-424.
-
[38] 黄洁,朱如凯,侯读杰,等.深部碎屑岩储层次生孔隙发育机理研究进展[J].地质科技情报,2007,26(6):76-82.HUANG Jie,ZHU Rukai,HOU Dujie,et al.The new advances of secondary porosity genesis mechanism in deep clastic reservoir [J].Geological Science and Technology Information,2007,26(6):76-82.
-
[39] 远光辉,操应长,杨田,等.论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力[J].地学前缘,2013,20(5):207-219.YUAN Guanghui,CAO Yingchang,YANG Tian,et al.Porosity en⁃ hancement potential through mineral dissolution by organic acids in the diagenetic process of clastic reservoir[J].Earth Science Frontiers,2013,20(5):207-219.
-
[40] 周家全,张立强,王香增,等.鄂尔多斯盆地富县地区长8致密砂岩成岩差异性及对储层物性的影响[J].油气地质与采收率,2019,26(3):54-62.ZHOU Jiaquan,ZHANG Liqiang,WANG Xiangzeng,et al.Diage⁃ netic difference and its influence on reservoir physical properties of Chang8 tight sandstone in Fuxian area,Ordos Basin[J].Petro⁃ leum Geology and Recovery Efficiency,2019,26(3):54-62.
-
[41] 钟韬,李键,曹冰,等.西湖凹陷花港组储层致密化及其与油气成藏的关系[J].海洋地质前沿,2018,34(1):20-27.ZHONG Tao,LI Jian,CAO Bing,et al.Densification timing of res⁃ ervoir and its bearing on hydrocarbon accumulation in the Hua⁃ gang Formation of Xihu Sag[J].Marine Geology Frontiers,2018,34(1):20-27.
-
[42] 周心怀,徐国盛,崔恒远,等.东海西湖凹陷中央反转构造带古近系花港组致密砂岩储集层裂缝发育特征与油气成藏关系 [J].石油勘探与开发,2020,47(3):462-475.ZHOU Xinhuai,XU Guosheng,CUI Hengyuan,et al.Fracture de⁃ velopment and hydrocarbon accumulation in tight sandstone reser⁃ voirs of the Paleogene Huagang Formation in the central reversal tectonic belt of the Xihu Sag,East China Sea[J].Petroleum Explo⁃ ration and Development,2020,47(3):462-475.
-
[43] 刘勇,徐国盛,曾兵,等.东海盆地西湖凹陷花港组储层孔隙演化与油气充注关系[J].石油实验地质,2018,40(2):168-176.LIU Yong,XU Guosheng,ZENG Bing,et al.Relationship between porosity evolution and hydrocarbon charging in tight sandstone reservoirs in Oligocene Huagang Formation,Xihu Sag,East China Sea Basin[J].Petroleum Geology & Experiment,2018,40(2):168-176.
-
[44] 谭东萍,罗龙,谭先锋,等.东胜气田二叠系下石盒子组致密砂岩成岩作用及成储效应[J].特种油气藏,2021,28(5):68-76.TAN Dongping,LUO Long,TAN Xianfeng,et al.Diagenesis and reservoir formation effect of tight sandstone in lower Permian Shi⁃ hezi Formation,Dongsheng Gasfield[J].Special Oil & Gas Reser⁃ viors,2021,28(5):68-76.
-
摘要
西湖凹陷中央反转带中北部花港组砂岩储层埋深跨度大,不同层位储层质量存在差异。基于铸体薄片、扫描电镜、X衍射和物性数据等资料,结合区域地质背景和埋藏史,系统分析了不同层位储层基本特征及其成岩差异演化过程。研究结果表明:花港组砂岩储层纵向上以埋深 4100 m为界线,其上、下储层物性和孔隙发育类型存在明显差异。埋深4100 m以上为H3—H4砂组储层,埋藏相对较浅且火山岩岩屑含量相对较高,较弱的压实、压溶作用和普遍发育的绿泥石包膜共同抑制了石英次生加大,有效保存了原生孔隙,为后期有机酸规模溶蚀提供了条件,因此原生孔隙和次生孔隙都发育较好,存在相对高孔隙发育区;埋深4100 m以下为H5—H6砂组储层,埋藏相对较深且更富变质岩岩屑,绿泥石包膜发育较差,难以有效抑制石英次生加大,同时强烈的压实、压溶作用使其在快速埋藏阶段丧失了大量孔隙,不利于后期的有机酸溶蚀增孔作用,且由于较长时期处于碱性成岩环境,大量自生矿物胶结充填孔隙,导致储层相对致密。
Abstract
Huagang Formation sandstone has a great buried depth range in the north-central part of the central reversal structural belt in Xihu Sag,and different layers differ in reservoir quality. In virtue of the data such as mold thin sections, scanning electron microscopes(SEM),X-ray diffraction(XRD),and physical properties,this paper systematically ana- lyzed the fundamental features and the diagenetic differential evolution of different layers of sandstone reservoirs by refer- ring to the regional geological background and burial history. The study shows that the physical properties and pore types of Huagang Formation sandstone reservoirs are distinctly different above and below the vertical demarcation line with a buried depth of 4100 m. The part above 4100 m matches H3-H4 reservoirs,which are buried shallowly and relatively rich in vol- canic rock debris. The weak compaction and pressure dissolution and the common chlorite coat jointly inhibit the secondary enlargement of quartz and effectively preserve the primary pores,providing conditions for later large-scale organic acid dis-solution. As a result,both primary and secondary pores are well developed,and highly porous zones exist in the reservoirs. The part below 4100 m mainly corresponds to H5-H6 reservoirs,which are buried deeply and rich in metamorphic rock de- bris. The poorly-developed chlorite coats fail to effectively inhibit the secondary enlargement of quartz. In addition,strong compaction and pressure dissolution result in the large loss of pores in the rapid burial stage,which is inconducive to the pore increasing by organic acid dissolution in the later stage. Exposed to the alkaline diagenetic environment for a long time,pores are filled by a large amount of authigenic mineral cement,which makes the reservoirs relatively dense.