-
基岩潜山油气藏是世界油气勘探开发的一个重要领域,同时也是中国油气储量增长的重要组成部分[1-3]。基岩储层与碎屑岩、碳酸盐岩储层相比更为致密且非均质性更强,不同盆地、不同地区及构造带基岩储层的发育条件、控制因素和分布规律具有较大的差异。李延丽等对基岩储层的研究认为,基岩为溶蚀孔-裂缝型储层,储集空间类型主要包括构造缝、溶蚀缝、溶孔、溶洞等[4-6]。孙致学等对裂缝发育特征的研究认为,岩性、构造作用、岩层厚度和异常压力作用等是影响裂缝发育及分布的主要因素[7-10]。裂缝的发育为溶孔的形成提供了前提条件,裂缝对于改善储层的储渗条件起着重要的作用[3,11];裂缝的发育程度不仅直接关系到储层的油气渗流和输导能力,同时对油气成藏和单井产能起到至关重要的作用[7,12]。由此可见裂缝发育特征的研究是分析基岩储层发育和分布规律的基础,更是预测有利储层分布的关键,对基岩油气藏的勘探与开发具有重要指导意义。
-
近年来,中国辽河、准噶尔以及柴达木盆地基岩潜山油气藏的规模发现,展示了该类型油气藏良好的勘探前景。尤其是柴达木盆地阿尔金山前带新近发现了东坪、牛东、尖北、冷北等多个中-大型基岩块状整装气藏[1-6,13],成为柴达木盆地新的增储上产阵地。除此之外,位于柴达木盆地北缘(简称柴北缘)马北凸起东段的马海东地区元古界基岩潜山油藏勘探也获得较大进展,相继发现了绿梁山、马北 3、山古 1等多个(古)潜山油藏和含油气构造,成为该区除古近系之外另一有利的勘探目的层系与目标类型,展现出良好的勘探前景。由于对基岩储层发育特征及控制因素研究不足,在一定程度上制约了该区基岩有利储层分布预测和油藏的勘探。笔者根据野外露头系统观测、岩心观察、岩石薄片、 X射线衍射全岩矿物分析等资料辅助成像测井解释成果,重点剖析马海东地区元古界基岩岩性、储层发育特征及控制因素,以期为研究区有利储层分布预测及目标优选提供地质依据。
-
1 地质背景
-
马北凸起位于柴北缘东段,构造上属于盆内二级构造单元马海-大红沟凸起的北端,北邻尕西-鱼卡侏罗系生烃凹陷。马北凸起是中生代以来继承性发育的低凸起区,北部以马仙断裂为界与尕西凹陷相接,东部以绿南断裂为界与绿梁山相接(图1),是尕西凹陷侏罗系成熟油气的有利运聚区[14-18]。马海东地区位于马北凸起的东段,属绿梁山前带。
-
马北凸起自中生代以来经历了燕山晚期(白垩纪末)、喜马拉雅早中期(上新世末)、喜马拉雅晚期 (第四纪末)等 3 期大规模运动挤压改造,尤其是白垩纪末、第四纪末运动最为强烈。马海东地区受盆内近SN向和盆缘祁连山NE-SW向2组应力的双向挤压,向北发生大规模的逆冲推覆,凸起区上覆中生界剥蚀殆尽[19],古近系披覆于元古界基底之上; 来自 NE向的挤压作用造成绿梁山向凸起区逆冲叠加。受双向应力的持续挤压,在凸起区基岩中形成了受马仙和绿南断裂控制、以NW-SE走向为主的2 组派生断裂体系,因应力释放产生了大量的伴生裂缝;除此之外,元古界基岩经长期的风化淋滤剥蚀形成大量溶蚀裂缝,为基岩成为油气聚集的有利场所提供了必要条件。
-
图1 柴北缘马海东地区区域位置
-
Fig.1 Regional location of Mahaidong area at northern margin of Qaidam Basin
-
2 储层发育特征
-
2.1 岩石学特征
-
由研究区 8口基岩取心井 25 m 岩心观察、绿梁山1 450 m基岩露头观测和100余块样品薄片鉴定、 X 射线衍射全岩矿物分析及统计结果可知,研究区基岩岩性主要包括片岩、片麻岩、榴辉岩和角闪岩等4大类,石英片岩、长石片岩、云母片岩、长石片麻岩、榴辉岩、角闪岩、变质砂岩等9种岩性,其中以石英片岩、长石片麻岩最为发育(表1)。
-
片岩主要包括石英片岩、长石片岩和云母片岩类,石英片岩和长石片岩具粒状变晶结构、斑状变晶结构、变余砂结构,定向、变余层理和片状构造。云母片岩类包括石英云母片岩和云母片岩 2 种岩性,具细-中粗粒粒状片状变晶结构、斑状变晶结构,片状构造、变余层理构造。
-
长石片麻岩主要包括碱长片麻岩、二长片麻岩和斜长片麻岩,具粒状变晶结构、粒状不等粒变晶结构,片麻状构造。岩石主要矿物成分为钾长石、斜长石、石英、角闪石和黑云母,含少量帘石、榍石和绿泥石,呈有规律的相间分布,长石多具泥化和绢云母化。
-
2.2 储集空间类型
-
储集空间类型及发育程度是影响基岩储层储集性能的重要因素[20],基岩经过长期的风化淋滤和挤压改造作用所形成的溶蚀孔缝、构造裂缝等对油气储集起着决定性作用[4-5]。研究区受多期构造运动改造,产生大量的构造裂缝和在后期溶蚀改造作用下形成的溶蚀裂缝构成了研究区基岩主要的储集空间类型,其次为溶蚀孔;基岩原生孔隙、裂缝相对较少,基本不发育。岩心观察、岩石薄片、铸体薄片、扫描电镜及成像测井解释结果表明,研究区基岩储集空间包括裂缝和溶蚀孔 2 大类共 6 种类型 (图2)。裂缝包括构造裂缝和溶蚀裂缝2种,构造裂缝包括水平裂缝、斜交裂缝、高角度裂缝(图2a,2d, 2j,2m)以及多期次裂缝相互切割形成的网状裂缝 (图2e,2f,2g),以高角度裂缝为主。溶蚀孔大都以与裂缝共存的形式出现,裂缝的发育为溶蚀孔的形成提供了前提条件,裂缝对于改善基岩储层的渗滤性能起着重要的作用;部分层段溶蚀孔扩大为溶洞 (图2a,2d),在裂缝发育段,溶蚀孔在裂缝及溶蚀裂缝的共同作用下连成串状、片状,可有效地增大储层的储集空间和渗流性能,如马北 3 井(图2b,2h, 2i,2k)。
-
根据2种储集空间类型所起作用的差异将储层划分为裂缝型、溶孔-裂缝型和裂缝-溶孔型。裂缝型、溶孔-裂缝型储层储集空间以裂缝占主导作用,如山古 1 井 1 987.72~1 990.92 m 荧光-油斑片麻岩取心段,裂缝较发育,裂缝长度为 100~220 mm,裂缝宽度为 0.5~1.0 mm,裂缝密度约为 6~8条/m,裂缝未被充填或部分被方解石充填,原油沿裂缝面呈斑块状分布(图2f);马北3井1 632~1 660 m井段同为溶孔-裂缝型储层(图2j)。裂缝-溶孔型储层以溶蚀孔为主要储集空间,裂缝起沟通溶蚀孔隙的桥梁作用,如马北 3 井 1 685~1 710 和 1 716~1 742 m 井段(图2k)。
-
2.3 物性特征
-
研究区岩心物性分析与测井解释成果表明(表2),孔隙度主要为 2.46%~9.96%,最大可达 21.43%;渗透率为 0.04~15.81 mD,最大为 34.41 mD,总体上属低孔-(特)低渗透储层。作为双重介质储层,基岩储层发育程度,尤其是渗透性受裂缝发育程度的影响较大。从山古1、山古101井基岩段成像测井裂缝密度与解释结果的对比来看(表2),裂缝发育程度较高的基岩段多为Ⅰ—Ⅱ类层,而裂缝发育程度较低的基岩段一般为Ⅲ类层。基岩段测试产液量的对比结果也显示出,产液量受裂缝发育程度的影响较大。如马北3井1 685.0~1 708.4 m 基岩段,孔隙度为 6.65%,渗透率为 14.73 mD,日产液量为 3.2 m3 /d;而 1 716.0~1 742.0 m基岩段,孔隙度为 6.93%,渗透率为 11.57 mD,日产液量为 4.6 m3 / d;山古 1 井 1 987.7~1 990.9 m 基岩段,孔隙度为 4.33%~7.65%,渗透率为 0.14~1.25 mD,日产液量为 8.3 m3 /d;而与山古 1 井基岩段物性相当、断裂和裂缝更为发育的山 3 井 2 394.0~2 407.1 m 基岩段测试日产液量达 14.8 m3 /d。由此来看,研究区基岩裂缝发育程度不仅控制储层溶蚀孔、缝的发育,更是基岩储层获得高产的关键。
-
3 储层发育控制因素
-
查明储层发育的控制因素是识别和预测基岩储层的基础,就研究区而言,可归结为对基岩裂缝发育控制因素的研究。
-
图2 马海东地区基岩储层储集空间类型
-
Fig.2 Reservoir space types of Proterozoic bedrock reservoirs in Mahaidong area
-
3.1 岩性
-
不同岩性的岩石抗压、抗剪强度不同,相同应力条件下裂缝发育程度也会有较大差异[20],脆性矿物含量高的岩石要比韧性矿物含量高的岩石更发育裂缝;同时,沿岩石片理、片麻理等薄弱面也易形成裂缝。研究区露头裂缝观测、岩石薄片、铸体薄片分析结果表明,以片状、片麻状构造为主的石英片岩、长石片岩、长石片麻岩等岩性脆性矿物含量高,可达 80% 以上(图3a),在应力作用下易发生破裂,裂缝发育程度最高,裂缝密度可达 10~30 条/m (图3b);裂缝多呈“Y”字形、网状分布,裂缝宽度为 0.02~0.20 mm。云母片岩韧性矿物含量高,在应力作用下易发生塑性变形,裂缝欠发育,裂缝密度小于 5 条/m;块状构造角闪岩类韧性矿物含量大都在 90%以上,裂缝基本不发育。
-
注:括号内数据为平均值。
-
3.2 构造作用
-
野外观测及统计结果表明,受断裂影响的裂缝发育程度差异主要体现在距断裂距离、构造位置、活动强度和活动期次4个方面。
-
3.2.1 距断裂距离
-
对绿梁山南沟基岩剖面 1 100 m 范围内的长石片麻岩裂缝密度的统计结果显示,裂缝密度随着距断裂距离的增加而减小,随着逐渐远离绿南断裂,裂缝密度由 25~30 条/m 降低至 5~10 条/m(图4); 在断裂带附近,基岩多呈碎裂状,原油呈浸染状,含油程度高,达富含油级别。
-
断裂级别与活动强度的差异,是影响基岩裂缝发育段厚度的另一主要因素,断裂级别与活动强度越大、活动时期越长,基岩裂缝发育段的厚度就越大,反之就越小。如绿南断裂为盆内控带的二级断裂,其对裂缝发育段的影响厚度约为 450 m(图4 测量点 P13—P10),在这一厚度内裂缝的发育程度最高;控圈的三—四级断裂的影响厚度为 50~120 m,如过山古 1 井钻遇的基岩内部断裂,断裂两侧裂缝发育段的厚度约为90 m;露头观测基岩内部小型断裂影响厚度一般仅为10~20 m。
-
图3 不同岩性脆性主要矿物含量与裂缝密度统计
-
Fig.3 Statistics of brittle mineral content and fracture density in different lithologies
-
图4 距绿南断裂距离与裂缝密度的关系
-
Fig.4 Relationship between distance from Lünan fault and fracture density
-
3.2.2 构造位置
-
马海东地区在近 SN向和 NE-SW 向 2组挤压应力以及白垩纪末、上新世末、第四纪末等多期次构造作用下,形成的马仙和绿南2组NW-SE向派生断裂体系,在剖面上表现为相互切割结构特征,并将基岩分割为一系列菱形断块,不同构造位置的基岩裂缝发育程度具有一定的差异。基岩露头观测结果显示,断裂上盘岩体受外力作用发生的位移量大,岩石更为碎裂,裂缝发育程度明显高于断裂下盘岩体;在断裂的交汇处,岩体呈破碎状特征,裂缝发育程度最高,其含油性也最好;在远离断裂基岩中,原油多沿裂缝面分布(图5)。
-
3.2.3 断裂活动期次
-
研究区多期构造运动改造和断裂的多期活动,形成了多期发育的裂缝。野外露头显示,早期(白垩纪末)形成的裂缝多被后期方解石、石英等充填,属于无效裂缝,断裂带内一般无油气显示;而在白垩纪—上新世末持续活动的断裂形成的裂缝大都未被充填,对油气输导和储层改造起到较好的促进作用。如山古 1 井 2 180 m 处的断裂为一持续活动断裂,断裂附近 2 110~2 200 m 厚度为 90 m 的基岩段裂缝发育程度明显增加,且未被充填,储层物性变好,多为Ⅰ—Ⅱ类层。山古101井2 450 m处的断裂为白垩纪末形成,后期不活动,未切穿基岩上覆古近系路乐河组;成像测井显示该断裂附近裂缝发育程度较相邻层段有所增加,但多被充填,属于无效裂缝;成像测井上裂缝多显示为亮黄色高阻缝,储层基本不发育,为Ⅲ类层。
-
图5 鱼卡河基岩剖面不同构造位置裂缝发育及含油特征
-
Fig.5 Fracture development and oil-bearing characteristics at different structural positions of Yuka River bedrock section
-
4 储层发育模式
-
根据研究区基岩储层发育特征及其控制因素分析结果,结合已发现油藏的成藏特点,建立马海东地区元古界基岩储层发育模式(图6):马海东地区受双向逆冲挤压改造,马仙和绿南断裂派生的 2 组断裂体系在基岩推覆体中相互切割,形成网状断裂结构。元古界基岩在长期风化淋滤和构造改造双重作用下,形成裂缝、溶蚀孔双重介质储层。裂缝-溶蚀孔发育带的厚度受断裂和古地形的控制,古凸起处的风化、溶蚀作用最强,裂缝-溶蚀孔发育带的厚度也最大;如位于凸起高部位的马北3井,裂缝-溶蚀孔发育带的厚度约为140 m;而在古地形的低部位,风化作用相对较弱,如山古102井发育带厚度仅为 50 m。同时受古地形和风化后形成的黏土矿物、方解石等充填裂缝的影响,在斜坡区和低部位的储层顶部形成一层厚度为 5~20 m 的致密层,与下伏裂缝-溶蚀孔发育带形成良好的储盖组合。
-
不同级别、不同性质的断裂在多期构造运动作用下产生的大量裂缝为基岩储层的发育创造了良好条件,同时也为油气垂向运移提供了良好通道。基岩内部早期(白垩纪末)断裂形成的裂缝多被充填,沿断裂形成致密带,对圈闭形成和油气聚集起到良好的遮挡作用;白垩纪—上新世末持续活动断裂所形成的裂缝发育带为油气的运聚提供了良好的运移通道和储集空间,是基岩储层的有利发育区。断裂级别越大、活动强度越大、距离断裂越近裂缝及储层发育程度越高,位于断裂上盘交汇处的基岩裂缝和储层最为发育,是有利储层分布区。
-
图6 马海东地区元古界基岩储层发育模式
-
Fig.6 Development modes of Proterozoic bedrock reservoirs in Mahaidong area
-
5 结论
-
柴北缘马海东地区元古界基岩主要发育片岩、片麻岩、榴辉岩、角闪岩等 4 大类 9 种岩性,储层储集空间包括裂缝和溶蚀孔 2 大类 6 种类型,构造裂缝和溶蚀裂缝是主要的储集空间类型,其次为溶蚀孔;裂缝型、溶孔-裂缝型储层是主要的储层发育类型。研究区基岩总体为低孔-(特)低渗透储层,裂缝的发育控制溶蚀孔、缝的发育,也是基岩储层获得高产的关键。岩性是影响基岩储层发育的内在因素,以片状、片麻状构造为主,长英质脆性矿物含量高的石英片岩、长石片岩、长石片麻岩裂缝发育程度高。断裂是影响储层发育的外在因素,断裂级别、距断裂距离、所处的构造位置和活动期次共同控制裂缝发育程度。白垩纪末活动的断裂,其形成的裂缝大都被充填,为无效裂缝,储层不发育,是一套较好的油气遮挡层;白垩纪—上新世末持续活动的断裂形成的裂缝未被充填,为有效裂缝。断裂级别越高、距离断裂越近,裂缝发育程度越高,二级控带断裂对裂缝发育带的影响厚度约为 450 m,三— 四级控圈断裂的影响厚度约为 50~120 m,基岩内部小型断裂影响厚度一般仅为 10~20 m;断裂上盘和断裂交汇处裂缝和储层发育程度最高,是优势储层发育和油气聚集的有利分布区。
-
参考文献
-
[1] 马龙,刘全新,张景廉,等.论基岩油气藏的勘探前景[J].天然气工业,2006,26(1):8-11.MA Long,LIU Quanxin,ZHANG Jinglian,et al.A discussion of exploration potentials of basement hydrocarbon reservoir[J].Natu⁃ ral Gas Industry,2006,26(1):8-11.
-
[2] 付锁堂,马达德,陈琰,等.柴达木盆地阿尔金山前东段天然气勘探[J].中国石油勘探,2015,20(6):1-13.FU Suotang,MA Dade,CHEN Yan,et al.Natural gas exploration in eastern segment of Alkin Piedmont,northern Qaidam Basin[J].China Petroleum Exploration,2015,20(6):1-13.
-
[3] 程建,周卓明,段铁军,等.梨树断陷基岩潜山油气成藏主控因素分析与勘探前景[J].特种油气藏,2020,27(4):26-32.CHENG Jian,ZHOU Zhuoming,DUAN Tiejun,et al.Main-con⁃ trolling factor analysis of hydrocarbon accumulation in the bed⁃ rock buried-hill of Lishu Fault-Depression and its exploration prospect[J].Special Oil & Gas Reservoirs,2020,27(4):26-32.
-
[4] 李延丽,苟迎春,马新民,等.柴达木盆地坪西地区基岩气藏储层特征[J].天然气地球科学,2019,30(2):219-227.LI Yanli,GOU Yingchun,MA Xinmin,et al.Reservoir characteris⁃ tics of bedrock gas reservoir in Pingxi area,Qaidam Basin[J].Nat⁃ ural Gas Geoscience,2019,30(2):219-227.
-
[5] 赵健,张光亚,刘爱香,等.苏丹Muglad盆地6区基岩储层发育特征及其勘探意义[J].中国石油勘探,2020,25(4):133-142.ZHAO Jian,ZHANG Guangya,LIU Aixiang,et al.Development characteristics and exploration significance of basement reser⁃ voirs in block-6 of the Muglad Basin,Sudan[J].China Petroleum Exploration,2020,25(4):133-142.
-
[6] 马峰,阎存凤,马达德,等.柴达木盆地东坪地区基岩储集层气藏特征[J].石油勘探与开发,2015,42(3):266-273.MA Feng,YAN Cunfeng,MA Dade,et al.Bedrock gas reservoirs in Dongping area of Qaidam Basin,NW China[J].Petroleum Ex⁃ ploration and Development,2015,42(3):266-273.
-
[7] 孙致学,姜宝胜,肖康,等.基于新型集成学习算法的基岩潜山油藏储层裂缝开度预测算法[J].油气地质与采收率,2020,27(3):32-38.SUN Zhixue,JIANG Baosheng,XIAO Kang,et al.Prediction of fracture aperture in bedrock buried hill oil reservoir based on nov⁃ el ensemble learning algorithm[J].Petroleum Geology and Recov⁃ ery Efficiency,2020,27(3):32-38.
-
[8] 周新桂,张林炎,范昆.含油气盆地低渗透储层构造裂缝定量预测方法和实例[J].天然气地球科学,2007,18(3):328-333.ZHOU Xingui,ZHANG Linyan,FAN Kun.Methods for quantita⁃ tive prediction of tectonic fractures in compact reservoirs in petro⁃ liferous basins and a case study[J].Natural Gas Geoscience,2007,18(3):328-333.
-
[9] 李翔,刘应如,柴小颖,等.柴达木盆地东坪基岩气藏裂缝发育规律研究[J].西南石油大学学报:自然科学版,2019,41(1):68-76.LI Xiang,LIU Yingru,CHAI Xiaoying,et al.Patterns and compre⁃ hensive predictions of fracture development in bedrock gas reser⁃ voirs in Dongping,Qaidam Basin[J].Journal of Southwest Petro⁃ leum University:Science & Technology Edition,2019,41(1):68-76.
-
[10] 汪立群,徐凤银,庞雄奇,等.马海-大红沟凸起油气勘探成果与柴达木盆地北缘的勘探方向[J].石油学报,2005,26(3):21-25,32.WANG Liqun,XU Fengyin,PANG Xiongqi,et al.Potential explo⁃ ration targets of the northern margin of Qaidam Basin suggested from the breakthrough of Mahai Dahonggou Uplift[J].Acta Petro⁃ lei Sinica,2005,26(3):21-25,32.
-
[11] 曹许迪.柴北缘马北隆起带断层演化与油气成藏[D].大庆:东北石油大学,2013.CAO Xudi.Fault evolution and hydrocarbon accumulation in Ma⁃ bei uplift belt,north of Qaidam Basin[D].Daqing:Northeast Pe⁃ troleum University,2013.
-
[12] 马新民,司丹,马峰,等.柴达木盆地北缘马北地区古今构造与油气藏的耦合[J].现代地质,2014,28(1):131-138.MA Xinmin,SI Dan,MA Feng,et al.Coupling between inchoatenowadays geological structures and hydrocarbon reservoirs in Ma⁃ bei area,northern margin of Qaidam Basin[J].Geoscience,2014,28(1):131-138.
-
[13] 谢琳,杨玥,李杰,等.昆北油田切12井区基岩油藏产能主控因素及高效开发实践[J].油气地质与采收率,2017,24(6):114-119.XIE Lin,YANG Yue,LI Jie,et al.Main controlling factors on the productivity of the basement oil reservoir and the practice of effi⁃ cient development for Well Block Qie12 in Kunbei Oilfield[J].Petroleum Geology and Recovery Efficiency,2017,24(6):114-119.
-
[14] 刘元,罗群,庞雄奇,等.柴达木盆地马海气田地质特征及运聚成藏机理模式[J].石油实验地质,2005,27(2):158-163. LIU Yuan,LUO Qun,PANG Xiongqi,et al.Geologic feature and migration-accumulation mechanism of the Mahai Gas Field,the Qaidam Basin[J].Petroleum Geology & Experiment,2005,27(2):158-163.
-
[15] 王大华,王金铎,肖永军,等.柴北缘大柴旦地区山前带构造建模及演化研究[J].地学前缘,2016,23(5):1-10. WANG Dahua,WANG Jinduo,XIAO Yongjun,et al.Structure modeling and evolution of piedmont zone in Dachaidan area,north margin of Qaidam Basin[J].Earth Science Frontiers,2016,23(5):1-10.
-
[16] 秦小双,师永民,吴文娟,等.准噶尔盆地石炭系火山岩储层主控因素分析[J].北京大学学报:自然科学版,2012,48(1):54-60. QIN Xiaoshuang,SHI Yongmin,WU Wenjuan,et al.Analysis of predominant factors of volcanic reservoirs in Carboniferous of Junggar Basin[J].Acta Scientiarum Naturalium Universitatis Pe⁃ kinensis,2012,48(1):54-60.
-
[17] 王小军,赵飞,张琴,等.准噶尔盆地金龙油田佳木河组火山岩储层孔隙类型及特征[J].石油与天然气地质,2017,38(1):144-151.WANG Xiaojun,ZHAO Fei,ZHANG Qin,et al.Pore types and characteristics of volcanic reservoirs of the Jiamuhe Formation in Jinlong oilfield,Junggar Basin[J].Oil & Gas Geology,2017,38(1):144-151.
-
[18] 马尚伟,罗静兰,陈春勇,等.火山岩储层微观孔隙结构分类评价——以准噶尔盆地东部西泉地区石炭系火山岩为例[J].石油实验地质,2017,39(5):647-654.MA Shangwei,LUO Jinglan,CHEN Chunyong,et al.Classification and evaluation of micro pore structure of volcanic rock reservoirs:A case study of the Carboniferous volcanic reservoirs in Xiquan area,eastern Junggar Basin[J].Petroleum Geology & Experiment,2017,39(5):647-654.
-
[19] 陈琰.柴达木盆地马北油田变质基岩储层描述[D].武汉:中国地质大学(武汉),2010.CHEN Yan.Description of metamorphic basement rock reservoir of Ma Bei oil field in Qaidam Basin[D].Wuhan:China University of Geosciences(Wuhan),2010.
-
[20] 范存辉,秦启荣,支东明,等.准噶尔盆地西北缘中拐凸起石炭系火山岩储层裂缝发育特征及主控因素[J].天然气地球科学,2012,23(1):81-87.FAN Cunhui,QIN Qirong,ZHI Dongming,et al.Controlling fac⁃ tors and characteristic of Carboniferous volcanic reservoir frac⁃ tures of Zhongguai uplift in northwestern margin of Junggar Basin [J].Natural Gas Geoscience,2012,23(1):81-87.
-
摘要
元古界基岩潜山油气藏是柴达木盆地北缘马海东地区油气勘探的重要领域之一,储层是影响基岩储集体油气富集的主要因素之一。根据野外露头、岩心、薄片、扫描电镜和成像测井等资料,对基岩储层的发育特征及控制因素进行研究。结果表明:马海东地区元古界基岩储层发育片岩、片麻岩、榴辉岩和角闪岩等4大类9种岩性,裂缝和溶蚀孔等2大类6种储集空间类型,储层物性以低孔-(特)低渗透为主;基岩裂缝是影响溶蚀孔、溶蚀裂缝发育和储层能否获得高产的关键,裂缝的发育程度主要受岩性、构造2个因素的控制,脆性矿物含量高的片岩、片麻岩裂缝发育程度高,断裂级别越大、活动时间越长、距离断裂越近,裂缝发育程度越高;断裂上盘、断裂交汇处是优势储层发育区。
Abstract
The buried-hill reservoir in Proterozoic bedrock is one of the important fields of oil and gas exploration in Ma- haidong area,northern margin of Qaidam Basin,and the reservoir represents one of the main factors affecting oil and gas ac- cumulation in bedrock. According to the data of the outcrop,core,thin section,scanning electron microscopy,imaging log- ging,etc.,the development and influencing factors of bedrock reservoirs were studied. The results demonstrate that the Pro- terozoic bedrock reservoirs in Mahaidong area developed 9 rock types in 4 categories,including schist,gneiss,eclogite,and amphibole,and 6 reservoir space types in 2 categories,including fractures and dissolution pores,and the reservoir petro- physical properties are dominated by low porosity and(extra-)low permeability. Moreover,the bedrock fracture is a key factor influencing the development of dissolution pores and dissolution fractures as well as the high yield of a reservoir. The development of fractures is mainly controlled by lithology and structure. Fractures of schist and gneiss with a high content of brittle minerals are highly developed,and more fractures are developed when they are closer to the fault at a higher grade and with a longer active time. In addition,the hanging wall and intersection of faults are the dominant development areas for reservoirs.
Keywords
Proterozoic ; bedrock ; reservoir characteristics ; controlling factors ; Mahaidong area ; Qaidam Basin