en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

徐珂(1991—),男,新疆库尔勒人,高级工程师,博士,从事构造地质学与地质力学方面的研究。E-mail:xuke-tlm@petrochina.com.cn。

中图分类号:TE122.2

文献标识码:A

文章编号:1009-9603(2022)02-0034-12

DOI:10.13673/j.cnki.cn37-1359/te.2022.02.004

参考文献 1
谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2 161-2 178.XIE Heping,GAO Feng,JU Yang.Research and development of rock mechanics in deep ground engineering[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2 161-2 178.
参考文献 2
戴金星,黄士鹏,刘岩,等.中国天然气勘探开发60年的重大进展[J].石油与天然气地质,2010,31(6):689-698.DAI Jinxing,HUANG Shipeng,LIU Yan,et al.Significant ad⁃ vancement in natural gas exploration and development in China during the past sixty years[J].Oil & Gas Geology,2010,31(6):689-698.
参考文献 3
李剑,佘源琦,高阳,等.中国陆上深层—超深层天然气勘探领域及潜力[J].中国石油勘探,2019,24(4):403-417.LI Jian,SHE Yuanqi,GAO Yang,et al.Onshore deep and ultradeep natural gas exploration fields and potentials in China[J].China Petroleum Exploration,2019,24(4):403-417.
参考文献 4
田军,杨海军,吴超,等.博孜9井的发现与塔里木盆地超深层天然气勘探潜力[J].天然气工业,2020,40(1):11-19.TIAN Jun,YANG Haijun,WU Chao,et al.Discovery of Well Bozi9 and ultra-deep natural gas exploration potential in the Kelasu tectonic zone of the Tarim Basin[J].Natural Gas Industry,2020,40(1):11-19.
参考文献 5
杨海军,陈永权,田军,等.塔里木盆地轮探1井超深层油气勘探重大发现与意义[J].中国石油勘探,2020,25(2):62-72.YANG Haijun,CHEN Yongquan,TIAN Jun,et al.Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J].China Petroleum Exploration,2020,25(2):62-72.
参考文献 6
唐雁刚,周鹏,徐振平,等.应力环境对克拉苏构造带盐下储层的影响[J].高校地质学报,2017,23(1):95-103.TANG Yangang,ZHOU Peng,XU Zhenping,et al.The influence of stress environment on reservoir under salt in Kelasu structure belt[J].Geological Journal of China Universities,2017,23(1):95-103.
参考文献 7
吴双,汤达祯,李松,等.煤层气储层孔渗参数的应力响应特征 [J].油气地质与采收率,2019,26(6):80-86.WU Shuang,TANG Dazhen,LI Song,et al.Stress response charac⁃ teristics of porosity and permeability of coalbed methane reser⁃ voirs[J].Petroleum Geology and Recovery Efficiency,2019,26(6):80-86.
参考文献 8
SUN Shuai,HOU Guiting,ZHENG Chunfang.Fracture zones con⁃ strained by neutral surfaces in a fault-related fold:Insights from the Kelasu tectonic zone,Kuqa Depression[J].Journal of Structur⁃ al Geology,2017,104:112-124.
参考文献 9
刘春,赵继龙,章学歧,等.应力垂向分带对储层的控制作用——以库车前陆冲断带为例[J].天然气勘探与开发,2019,42(3):21-31.LIU Chun,ZHAO Jilong,ZHANG Xueqi,et al.Effect of stress ver⁃ tical zoning on reservoirs:An example from Kuqa foreland thrust belt[J].Natural Gas Exploration and Development,2019,42(3):21-31.
参考文献 10
王志民,张辉,徐珂,等.库车山前突发构造现今地应力分布特征及对气藏勘探开发的影响[J].地质论评,2020,66(S1):93-95.WANG Zhimin,ZHANG Hui,XU Ke,et al.Current in-situ stress within pop-up structure in Kuqa foreland of Tarim Basin:Implica⁃ tions for gas exploration and development[J].Geological Review,2020,66(S1):93-95.
参考文献 11
ZHANG Fuxiang,ZHANG Hui,YUAN Fang,et al.Geomechanical mechanism of hydraulic fracturing and fracability of natural frac⁃ tured tight sandstone reservoir in Keshen Gasfield in Tarim Basin [C].Abu Dhabi:SPE Abu Dhabi International Petroleum Exhibi⁃ tion and Conference,2015:1-10.
参考文献 12
张辉,尹国庆,王海应.塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J].天然气地球科学,2019,30(3):379-388.ZHANG Hui,YIN Guoqing,WANG Haiying.Effects of natural fractures geomechanical response on gas well productivity in Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2019,30(3):379-388.
参考文献 13
江同文,张辉,徐珂,等.克深气田储层地质力学特征及其对开发的影响[J].西南石油大学学报:自然科学版,2020,42(4):1-12.JIANG Tongwen,ZHANG Hui,XU Ke,et al.Reservoir geome⁃ chanical characteristics and the influence on development in Kes⁃ hen gas field[J].Journal of Southwest Petroleum University:Sci⁃ ence & Technology Edition,2020,42(4):1-12.
参考文献 14
杨海军,孙雄伟,潘杨勇,等.塔里木盆地克拉苏构造带西部构造变形规律与油气勘探方向[J].天然气工业,2020,40(1):31-37.YANG Haijun,SUN Xiongwei,PAN Yangyong,et al.Structural deformation laws and oil & gas exploration direction in the west⁃ ern Kelasu tectonic zone of the Tarim Basin[J].Natural Gas In⁃ dustry,2020,40(1):31-37.
参考文献 15
徐珂,田军,杨海军,等.库车坳陷克拉苏构造带超深储层地质力学特征及天然气勘探[C].北京:中国油气勘探技术交流大会,2020:192-199.XU Ke,TIAN Jun,YANG Haijun,et al.Geomechanical character⁃ istics of ultra-deep reservoirs and natural gas exploration in Kela⁃ su structural belt of Kuqa Depression[C].Beijing:China Oil and Gas Exploration Technology Exchange Conference,2020:192-199.
参考文献 16
ZHANG T,FANG X,SONG C.Cenozoic tectonic deformation and uplift of the south Tian Shan:Implications from magnetostratigra⁃ phy and balanced cross-section restoration of the Kuqa depression [J].Tectonophysics,2014,628:172-187.
参考文献 17
周鹏,唐雁刚,尹宏伟,等.塔里木盆地克拉苏构造带克深2气藏储层裂缝带发育特征及与产量关系[J].天然气地球科学,2017,28(1):135-145.ZHOU Peng,TANG Yangang,YIN Hongwei,et al.Relationship between characteristics of fracture belt and production of Kesh⁃ en2 gas reservoir in Kelasu tectonic zone,Tarim Basin[J].Natural Gas Geoscience,2017,28(1):135-145.
参考文献 18
冯许魁,刘军,刘永雷,等.库车前陆冲断带突发构造发育特点 [J].成都理工大学学报:自然科学版,2015,42(3):296-302.FENG Xukui,LIU Jun,LIU Yonglei,et al.Development character⁃ istics of pop-up structure in Kuqa foreland thrust belt,northern Tarim Basin,China[J].Journal of Chengdu University of Technol⁃ ogy:Science and Technology Edition,2015,42(3):296-302.
参考文献 19
塔里木油田公司.大北1202钻井地质设计[R].库尔勒:塔里木油田公司,2019:32-33.Tarim Oilfield Company.Drilling geological design of Well Da⁃ bei903[R].Korla:Tarim Oilfield Company,2019:32-33.
参考文献 20
李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997:145-153.LI Zhiming,ZHANG Jinzhu.In-situ stress and exploration and de⁃ velopment of oil and gas[M].Beijing:Petroleum Industry Press,1997:145-153.
参考文献 21
陆诗阔,王迪,李玉坤,等.鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究[J].天然气地球科学,2015,26(10):1 844-1 850.LU Shikuo,WANG Di,LI Yukun,et al.Research on three-dimen⁃ sional mechanical parameters'distribution of the tight sandstone reservoirs in Daniudi gasfield[J].Natural Gas Geoscience,2015,26(10):1 844-1 850.
参考文献 22
ZOBACK M D,BARTON C A,BRUDY M,et al.Determination of stress orientation and magnitude in deep wells[J].International Journal of Rock Mechanics & Mining Sciences,2003,40(7/8):1 049-1 076.
参考文献 23
ZOBACK M D.Reservoir geomechanics[M].Cambridge:Cam⁃ bridge University Press,2007:206-265.
参考文献 24
王珂.克深气田碎屑岩储层裂缝定量描述[D].青岛:中国石油大学(华东),2014.WANG Ke.Quantitative description of fracture of clastic reservoir in Keshen gas field[D].Qingdao:China University of Petroleum(East China),2014.
参考文献 25
徐珂,戴俊生,冯建伟,等.南堡凹陷高深北区三维非均质应力场精细预测[J].中国矿业大学学报,2018,47(6):1 276-1 286.XU Ke,DAI Junsheng,FENG Jianwei,et al.Prediction of 3D het⁃ erogeneous in-situ stress field of northern area in Gaoshen,Nan⁃ pu sag,Bohai Bay Basin,China[J].Journal of China University of Minim & Technology,2018,47(6):1 276-1 286.
参考文献 26
徐珂,田军,杨海军,等.深层致密砂岩储层现今地应力场预测及应用——以塔里木盆地克拉苏构造带克深10气藏为例[J].中国矿业大学学报,2020,49(4):708-720.XU Ke,TIAN Jun,YANG Haijun,et al.Prediction of current insitu stress filed and its application of deeply buried tight sand⁃ stone reservoir:A case study of Keshen10 gas reservoir in Kelasu structural belt,Tarim Basin[J].Journal of China University of Mining & Technology,2020,49(4):708-720.
参考文献 27
徐珂,戴俊生,商琳,等.南堡凹陷现今地应力特征及影响因素 [J].中国矿业大学学报,2019,48(3):570-583.XU Ke,DAI Junsheng,SHANG Lin,et al.Characteristics and in⁃ fluencing factors of in-situ stress of Nanpu sag,Bohai Bay basin,China[J].Journal of China University of Mining & Technology,2019,48(3):570-583.
参考文献 28
许寻,李中超,刘广英,等.深层高压低渗透砂岩油藏储层应力敏感性模型及开发指标变化规律——以文东油田为例[J].油气地质与采收率,2020,27(6):122-129.XU Xun,LI Zhongchao,LIU Guangying,et al.Stress sensitivity model and development index trend in deep high-pressure and low-permeability sandstone reservoirs:A case study of Wendong Oilfield[J].Petroleum Geology and Recovery Efficiency,2020,27(6):122-129.
参考文献 29
王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.
参考文献 30
谢仁海,渠天祥,钱光谟.构造地质学[M].徐州:中国矿业大学出版社,2007.XIE Renhai,QU Tianxiang,QIAN Guangmo.Structural geology [M].Xuzhou:Press of China University of Mining and Technolo⁃ gy,2007.
参考文献 31
徐素国,梁卫国,莫江,等.软弱泥岩夹层对层状盐岩体力学特性影响研究[J].地下空间与工程学报,2009,5(5):878-883.XU Suguo,LIANG Weiguo,MO Jiang,et al.Influence of weak mudstone intercalated layer on mechanical properties of laminat⁃ ed salt rock[J].Chinese Journal of Underground Space and Engi⁃ neering,2009,5(5):878-883.
参考文献 32
周青春.温度、孔隙水和应力作用下砂岩的力学特性研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2006.ZHOU Qingchun.Study on the mechanical property of a sandstone under geothermal-mechanical and hydraulic-mechanical cou⁃ pling[D].Wuhan:Graduate University of Chinese Academy of Sciences(Wuhan Institute of Rock and Soil Mechanics),2006.
参考文献 33
胡文瑞.地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J].中国石油勘探,2017,22(1):1-5.HU Wenrui.Geology-engineering integration-a necessary way to realize profitable exploration and development of complex reser⁃ voirs[J].China Petroleum Exploration,2017,22(1):1-5.
参考文献 34
张辉,杨海军,尹国庆,等.地质工程一体化关键技术在克拉苏构造带高效开发中的应用实践[J].中国石油勘探,2020,25(2):120-132.ZHANG Hui,YANG Haijun,YIN Guoqing,et al.Application practice of key technologies of geology-engineering integration in efficient development in Kelasu structural belt[J].China Petro⁃ leum Exploration,2020,25(2):120-132.
参考文献 35
杨海军,张辉,尹国庆,等.基于地质力学的地质工程一体化助推缝洞型碳酸盐岩高效勘探——以塔里木盆地塔北隆起南缘跃满西区块为例[J].中国石油勘探,2018,23(2):27-36.YANG Haijun,ZHANG Hui,YIN Guoqing,et al.Geomechanics-based geology-engineering integration boosting high-efficiency exploration of fractured-vuggy carbonate reservoirs-a case study on West Yueman block,northern Tarim Basin[J].China Petro⁃ leum Exploration,2018,23(2):27-36.
参考文献 36
刘向君,罗平亚,孟英峰.地应力场对井眼轨迹设计及稳定性的影响研究[J].天然气工业,2004,24(9):57-59.LIU Xiangjun,LUO Pingya,MENG Yingfeng.Influence of ground stress field on borehole trajectory design and wellface stability[J].Natural Gas Industry,2004,24(9):57-59.
参考文献 37
李玉飞,付永强,唐庚,等.地应力类型影响定向井井壁稳定的规律[J].天然气工业,2012,32(3):78-80.LI Yufei,FU Yongqiang,TANG Geng,et al.Laws of the effects of earth stress patterns on wellbore stability in a directional well[J].Natural Gas Industry,2012,32(3):78-80.
参考文献 38
王志民,张辉,徐珂,等.超深裂缝性砂岩气藏增产地质工程一体化关键技术与实践[C].重庆:第32届全国天然气学术年会,2020.WANG Zhimin,ZHANG Hui,XU Ke,et al.Key technology and practice of geological engineering integration for increasing pro⁃ duction of ultra-deep fractured sandstone gas reservoir[C].Chongqing:32nd National Natural Gas Academic Annual Confer⁃ ence,2020.
目录contents

    摘要

    为了明确深层复杂背景条件下储层现今地应力的分布特征,基于库车坳陷克拉苏构造带大北12气藏,开展现今地应力研究,探讨地应力非均质分布机理,并据此提出支持井位部署的相关建议。研究结果表明:克拉苏构造带埋深超过 4500 m 的储层为走滑型地应力机制,大北 12 气藏最大水平主应力为 125~160 MPa,最小水平主应力为 118~130 MPa,地应力非均质性强且井间差异大。复杂的地质边界条件和储层的互层岩性造成地应力分布具有极强的非均质性,地应力有利区和不利区交替分布,在构造高部位也可能钻遇地应力不利区,不能简单地采用“沿长轴、占高点”的方案部署井位。定向井具有有利区穿越广、裂缝钻遇率高、井眼轨迹安全稳定及避障避险的多重优势,是复杂地质背景条件下的优势井型,建议沿地应力低、裂缝发育且井壁稳定的方向设计井眼轨迹,并根据地应力状态选择合理的储层改造方式。

    Abstract

    The research on the in-situ stress of Dabei12 gas reservoir in Kelasu structural belt of Kuqa Depression was car- ried out to clarify the distribution of in-situ stress in deep reservoirs and explore the heterogeneous distribution mechanism of the in-situ stress. In addition,suggestions were put forward for well placement against a complex geological background. The results demonstrate that the reservoir at more than 4500 m in Kelasu structural belt follows a strike-slip in-situ stress mechanism. The maximum horizontal principal stress in Dabei12 gas reservoir ranges from 125 to 160 MPa,and the mini- mum horizontal principal stress is 118-130 MPa. The in-situ stress shows strong heterogeneity and the difference between wells is evident. Complex geological boundary conditions and interbedded lithology of the reservoir lead to the extremely heterogeneous in-situ stress distribution. Favorable and unfavorable areas of in-situ stress are alternately distributed,and the unfavorable area may also be drilled in the structural high. Therefore,the plan of“occupying the high point along the long axis”cannot be simply implemented for well placement. Moreover,a directional well crosses a wide favorable area, with a high probability of penetration of fractures as well as a safe and stable well trajectory,and it can avoid obstacles and risks. Accordingly,it is a preferable well type against a complex geological background. It is suggested that the well trajecto- ry should be designed in the direction with low stress,well-developed fracture,and high borehole wall stability,and a rea-sonable reservoir simulation mode should be selected according to in-situ stress.

  • 在世界经济高速发展的背景下,资源开发不断走向地球深部[1]。油气资源勘探开发向深层-超深层挺进,是中国油气接替战略的重大需求和必然战略抉择[2-3]。近年来,中国在深层-超深层油气勘探领域陆续取得了诸多重要进展[4-5],但随着埋深越来越大,地质条件愈加复杂,在深层-超深层油气勘探开发和钻探工程施工方面仍然面临着巨大的挑战,特别是深部钻探过程中频发的复杂事故和面临的巨大井控安全风险说明深部岩体性质可能完全异于浅部,深部处于高地应力环境且聚集高强度能量。目前对超深部地质体理论的认识滞后于人类工程实践活动,难以进行有效科学的指导[1]

  • 塔里木盆地库车坳陷克拉苏构造带是中国深层-超深层天然气勘探开发的重要区块之一,多年来经过不断探索,发现地应力因素和裂缝的规模发育是其高产稳产的重要保障[6-7],并针对断背斜构造提出了基于中和面理论模型的断背斜应力控储认识[8],划分了垂向分带性[9],优选了储层的有利区,支持了克拉苏构造带东部的克拉-克深区带井位部署方案[10],并取得了良好应用效果,地应力研究在深层油气勘探开发中的重要性也逐渐被广泛接受[11-12]。然而随着塔里木油田勘探开发进程向克拉苏构造带西部的博孜-大北区带挺进,上述地应力控储认识面临一系列新的挑战,主要表现为地应力的垂向分带性不规律、平面非均质性更强,比如背斜高部位的地应力值高于低部位,单井上部地应力值高于下部等,井位部署方案的适用性有所降低,依据“沿长轴、占高点”[13] 部署的井也出现失利,因此亟需革新认识以加快博孜-大北区带的勘探开发进程。

  • 克拉苏构造带具有东西分段的特征。西部的博孜-大北区带相比东部的克拉-克深区带,地质背景更为复杂,表现为挤压更为强烈,构造更为破碎,纵向上叠置更显著,且目的层广泛发育砂泥互层结构,储层非均质性更强[14-17];即使形态相对简单的构造,岩石力学性质、地应力及裂缝分布也非常复杂,井位部署面临难题。由于埋藏深、岩性复杂、构造叠置、井距大,该区三维建模难度大且精度低。为此,笔者以大北 12 气藏为研究对象,开展现今地应力场研究,采用“大连片+高叠置+全层系+非均质” 地应力场预测技术,明确了现今地应力分布特征,建立了地应力与储层品质和产能的关系,提出了更适用于克拉苏构造带西部的井位部署建议。

  • 1 地质概况

  • 大北12气藏位于库车坳陷克拉苏构造带博孜大北区带中部(图1),为受2条逆冲断裂夹持的突发构造。钻遇地层自下而上依次为:白垩系舒善河组 (K1s)、巴西改组(K1bx)、巴什基奇克组(K1bs),古近系库姆格列木群(E1-2km)、苏维依组(E2-3s),新近系吉迪克组(N1j)、康村组(N1-2k)、库车组(N2k),第四系西域组(Q1x)。其中库姆格列木群为一套厚度变化巨大的膏盐岩层,其具有塑性流动特征,控制盐下断冲构造的发育及储层的演化,大北12气藏的形成与这种塑性膏盐层有极大的关联[18]

  • 大北 12 气藏储层为白垩系巴西改组和巴什基奇克组,巴西改组一、二段为辫状河三角洲前缘沉积,其中二段主要为水下分流河道、河口砂坝微相沉积;巴什基奇克组一段受古沉积环境影响而缺失,二、 三段分别为辫状河三角洲前缘、扇三角洲前缘沉积,发育水下分流河道及分流间湾微相。白垩系储层岩性以中细-细粒长石岩屑砂岩为主;储集空间以原生粒间孔和粒间溶孔为主,其次为微孔隙和粒内溶孔。孔隙度一般为4.0%~11.0%,平均为7.0%; 渗透率主要为0.035~0.5 mD,平均为0.234 mD。

  • 图1 库车坳陷构造单元划分与大北12气藏白垩系顶面构造图

  • Fig.1 Division of structural units in Kuqa Depression and Cretaceous top structure of Dabei12 gas reservoir

  • 大北 12 气藏甲烷含量较高,平均为 96.43%, CO2 平均含量为 0.97%,地层水平均矿化度为 198 050 mg/L,水型为 CaCl2型且封闭条件较好[19]。目前大北 12气藏有 7口井正在开采,日产气量约为 10×104~50×104 m3 /d。

  • 2 地应力场预测流程

  • 大北12气藏所处的克拉苏构造带博孜-大北区带,在构造形态、互层岩性和复杂地质边界条件等多重因素影响下,其复杂性和特殊性相比克拉苏构造带东部的克拉-克深区带大大增强,造成储层具有更强的非均质性。具体表现为:一是构造形态,克拉-克深区带具有宽阔且较为完整的背斜形态,而西部博孜-大北区带的构造更为破碎,多呈鳞片状或牛眼状且叠置程度非常高;二是岩性,克拉-克深区带的目的层为白垩系巴什基奇克组,多为厚层砂岩,而博孜-大北区带目的层是白垩系巴什基奇克组和巴西改组,特别是巴西改组砂泥互层现象显著;三是区域挤压背景,克拉-克深区带南北向变形空间宽阔且北部受力相对均匀,而博孜-大北区带上覆地层和侧向地层造成构造之间相互挤压程度和挤压方式的复杂化,均对研究区的地应力分布有影响,另外发育的变换构造派生的走滑型地应力场也加剧了地应力场的复杂性。

  • 为满足生产需求的精度,现今地应力场研究有必要充分体现其非均质性,并全面考虑上述 3 方面特殊因素进行三维建模。基于此,三维非均质地应力场预测流程如图2所示,具体步骤包括:①构建过大北 12 构造的大连片+高叠置+全层系三维构造格架模型。其中断层模型是建模的重点,断层的交接关系需保证其合理性,使构造空间关系更符合地下深部真实状态。②构建三维非均质岩石力学参数的分布,并将三维构造格架模型转换为三维有限元模型,在保证模型精度的前提下,选择合适的网格单元进行有限元网格的划分,再将所构建的三维非均质岩石力学参数赋予到目的层的每个有限元网格中,为了权衡预测精度与运算效率,非目的层则根据岩性横向差异分布赋予不同的岩石力学参数。③进行单井全井段的地应力参数解释,划分纵向分带性,剖析非均质分布的机理,作为三维非均质地应力场预测的约束条件。④以上述单井地应力为约束,结合研究区所处的大地构造背景并充分考虑构造之间的相互作用,对模型施加非均匀地质边界条件。

  • 图2 非均质地应力场预测流程

  • Fig.2 Workflow for heterogeneous in-situ stress field prediction

  • 3 单井地应力测井解释

  • 综合常规测井和成像测井,并借助钻井工程信息标定单井现今地应力状态,明确其方向和数值。根据塔里木油田实践经验,组合弹簧模型最适用于挤压环境的地应力计算,其表达式为[20]

  • SHmax=μ1-μSV-αpp+EξH1-μ2+μEξh1-μ2+αpp
    (1)
  • Shmin=μ1-μSV-αpp+Eξh1-μ2+μEξH1-μ2+αpp
    (2)
  • 其中(1)式和(2)式中的 ξHξh 利用井壁行迹信息确定,Eμ 通过测井资料计算获取[21]。钻井过程中,若井壁发生的应力集中超过井周岩石破裂强度,就会发生井壁崩落[22] (图3),而崩落宽度与岩石单轴抗压强度以及地应力状态存在定量的数学计算关系[23]。因此,可从成像测井图像上读取井壁崩落宽度,再根据相应崩落深度的岩石单轴抗压强度来反演 S hminS Hmax的梯度范围,据此初步确定 ξHξh 的取值,再结合钻井泥浆密度、钻井复杂情况等钻井工程信息检验计算结果的合理性。利用井壁破裂信息可以反映现今地应力方向,一般来说,钻井诱导缝方位为最大水平主应力方向,而崩落方位为最小水平主应力方向[22] (图3a),据此判断 A1 井S Hmax方位为170°(图3b)。

  • 图3 FMI成像测井判别最大水平主应力方向

  • Fig.3 Orientation of maximum horizontal principal stress distinguished by FMI logging

  • 根据以上方法,对大北12气藏中多口井进行了地应力测井解释。从大北12气藏A1井白垩系综合柱状图(图4)可知,白垩系弹性模量约为 22~38 GPa,泊松比约为 0.2~0.25,3 个主应力随埋深变化的规律比较明显,最小水平主应力梯度、最大水平主应力梯度、垂向主应力梯度分别为2.15,2.6~2.7,2.5 MPa/hm。最小水平主应力、最大水平主应力、垂向主应力的平均值分别约为 117,142,135 MPa,表现出 S Hmax> S V> S hmin,为走滑型地应力机制。A1 井地应力纵向分层明显,总体呈现逐渐增大的趋势,大致分为 3 段:S hmin在埋深为 5 391~5 440 m 的平均值为 113 MPa;在埋深为 5 440~5 600 m 的平均值为 116 MPa;埋深为 5 600 m 以下较高,平均值为 123 MPa。巴什基奇克组二、三段的脆性较高,脆性指数甚至超过60。A1井裂缝比较发育,共识别出83条,以中高倾角为主且走向多为近SN向和NW—SE向。

  • 4 地应力场数值模拟

  • 采用目前主流的有限元方法进行地应力场的空间分布预测,首先将地质体进行离散化处理,再将相应的岩石力学参数赋予到对应的单元中,根据边界受力条件和节点平衡条件,求取节点的位移,进而对每个单元内的地应力和应变值进行计算[24]。笔者在模型建立、参数赋予、地质边界条件设置等方面进行了改进[25-26],并针对高叠置的逆冲构造,建立了“大连片”三维地质模型,同时对大北 15-大北 16-大北12-大北14-大北9-大北10构造整体建模,赋予非均质力学参数、加载非均匀地质边界条件 (图5)。

  • 通过井震结合构建大北 12 气藏目的层三维岩石力学参数(图6),再将三维岩石力学参数赋予到目的层模型的每个有限元网格中,实现非均质有限元模型的构建,根据岩性分布赋予围岩的岩石力学参数(表1)。以大北 12 气藏单井地应力解释为约束,最终确定最优的边界载荷加载方式(图5e),该条件下模拟结果与单井地应力状态最为吻合。

  • 4.1 预测结果和误差分析

  • 从预测结果和实测结果的对比(表2)可见,最大水平主应力和最小水平主应力的误差一般在 7 MPa以内,最大水平主应力方向的误差最大为 15°,总体均在行业允许的误差范围内,表明预测结果具有较高的可靠性。

  • 从大北 12 气藏白垩系巴什基奇克组顶面现今最大水平主应力方向分布(图7a)可以看出,总体为近 NS向,在构造高部位和断层附近出现一些变化,往往顺着断层走向偏转,转为 NE 或 NW 向,而远离断层的部位,现今地应力方向则比较均匀。从最小水平主应力分布(图7b)可知,总体分布规律与构造形态关联较大且呈环状分布,在背斜高部位为低值,向翼部逐渐增大,地应力一般为 118~130 MPa。但在非均质岩石力学参数和非均匀地质边界条件的控制下,大北12气藏地应力分布的非均质性非常强,构造高部位也存在局部高值区。同处于相似较高部位的相邻井,其地应力值也有明显差异。从最大水平主应力分布(图7c)可知,总体分布规律与最小水平主应力类似,最大水平主应力为 125~160 MPa。垂向主应力同样表现为较明显的非均质性,其地应力为125~150 MPa且井间差异大(图7d)。

  • 4.2 地应力非均质分布机理

  • 地应力是地壳内部应力的总和,赋存于组成地质体的岩石中,影响地应力分布的因素非常多[27]。对于油气藏来说,影响因素主要包括所处的构造背景引起的受力情况(地质边界条件)、储层岩性、断裂、流体、温度以及勘探开发过程[28-29] 等,不同类型的油气藏主控因素不一。

  • 大北12气藏目前处于开发初期,井点少且人为扰动程度低,造成该气藏地应力非均质分布的 2 个主控因素是地质边界条件和储层的互层岩性。

  • 图4 大北12气藏A1井白垩系综合柱状图

  • Fig.4 Composite columnar section of Well A1 in Dabei12 gas reservoir

  • 不同地质边界条件会造成地应力状态分布的很大差异。从地质边界条件引起的地应力非均质分布(图8)可以看出:第1种地应力状态为水平挤压自上而下逐渐增大,且在同一水平面上两端挤压不等,左端大于右端(图8a),该地质边界条件下的最大主应力方向变化非常明显,断裂潜在发育区的分布范围大于稳定区的分布范围;第 2 种地应力状态为水平挤压从左端自上向下先增大再减小,右端保持均匀,并且自左至右呈指数递减,该状态下2个主应力方向变化尤为显著,且稳定区分布范围大于断裂潜在发育区,后者局限于左端的狭窄地段;第3种地应力状态为在岩体底部上作用着正弦曲线状的垂向应力,两端为自上到下逐渐增加的水平挤压,这种地应力状态下地应力和潜在断裂的分布比较复杂,稳定区和断裂潜在发育区交替分布。

  • 图5 大北12气藏非均质地应力场预测流程

  • Fig.5 Workflow for heterogeneous in-situ stress field prediction in Dabei12 gas reservoir

  • 图6 大北12气藏目的层三维岩石力学参数分布

  • Fig.6 Distribution of 3D rock mechanical parameters of target layer in Dabei12 gas reservoir

  • 表1 大北12气藏围岩的岩石力学参数

  • Table1 Rock mechanics parameters of surrounding rock in Dabei12 gas reservoir

  • 表2 预测结果与实测结果对比

  • Table2 Comparison between predicted and measured results

  • 综上所述,非均匀地质边界条件加剧了地应力和断裂分布的复杂性,而不均匀受压是自然界常见情况,甚至更为复杂,真实地质边界条件下控制的地应力场分布的非均质性会更强。

  • 储层的互层岩性也是影响地应力非均质分布的重要因素,其能够造成地应力值的变化和地应力方向的偏转,岩石力学参数与二者具有定量计算的关系[2731]。由大北 12 气藏多口井的地质力学综合测井解释结果绘制的地应力值与岩性、裂缝发育、含气性等参数之间关系的模式图(图9)可知,地应力值与岩性、裂缝、含气性的关联比较明显,裂缝发育的含气层,其地应力值最低;裂缝不发育的含气层,其地应力值较高;泥岩段或泥质含量高的层段,其地应力值更高;而厚层且不含气的干层,往往地应力值最高。即地应力值从低到高的层段为:裂缝发育的含气砂岩< 无/少裂缝的含气砂岩< 泥岩< 干层砂岩。而常规岩石力学实验结果往往是砂岩地应力高,泥岩地应力低,之所以有这样的现象,是因为深部地下储层的流体(油、气、水等)能够弱化岩石力学性质[32],从而降低了砂岩储层的地应力值;其次储层岩石发育的裂缝在形成过程中释放了部分能量,同样降低了岩石中富集的地应力;另外,当砂泥岩同时受力时,深部泥岩具有一定塑性不易破裂且能量聚集,因此赋予了较高的地应力,砂岩则通过产生裂缝释放部分能量,内部聚集的地应力较低,而未产生裂缝的砂岩则依旧聚集了很高的地应力。

  • 图7 大北12气藏白垩系巴什基奇克组顶面现今地应力场数值模拟

  • Fig.7 Numerical simulation of current in-situ stress field of K1bs in Dabei12 gas reservoir

  • 图8 地质边界条件引起的地应力非均质分布 (据文献[30]修改)

  • Fig.8 Heterogeneous distribution of in-situ stress caused by geological boundary conditions (Modified by Reference[30]

  • 图9 地应力分布模式

  • Fig.9 Distribution modes of in-situ stress

  • 5 地应力预测结果在油气勘探开发中的应用

  • 近年来,多学科融合、多技术集成的地质工程一体化理念不断创新和发展,这种以提高产能为关键问题开展具有针对性、预测性、指导性、实效性及时效性的动态研究和及时应用的理念是实现复杂油气藏效益勘探开发的必由之路[33]。地质工程一体化增产方案需要从地质认识的源头出发,在井位部署时,优选能够兼顾安全、稳定、高效及利于改造的井型和井眼轨迹,取代传统的地质研究与工程施工割裂的工作模式。这种一体化理念和工作模式中,以地应力研究为核心的地质力学能够将地质信息解译为工程施工必需的定量参数,具有桥梁作用[34-35]

  • 5.1 考虑地应力的井位部署对策

  • 对于大北12气藏的深层储层,极强的水平挤压和裂缝的规模发育是其高产稳产的重要保障,地应力低值区和裂缝发育带是钻遇目标。然而,由于地质背景复杂,地应力和裂缝分布的非均质性极强,且储层埋深大,地震资料品质不高,精准钻井难度大,导致常规直井与裂缝及地应力有利区的钻遇率较低。为了在非均质储层中尽可能多钻遇地应力低值区和裂缝发育带,大斜度井和水平井这类定向井是优势井型。其原因为:①定向井比直井钻遇有利区的几率更大(图10a)。②大北12气藏所处的克拉苏构造带普遍发育高角度-近直立裂缝[1315],定向井比直井能更多更稳地穿越裂缝(图10b)以达到少井高效的目的。③从钻井的稳定性角度考虑,在走滑型地应力机制(S Hmax> S V> S hmin)下,沿垂向主应力方向是最不稳定的方向,即直井并不是安全稳定的井型,而沿着最大水平主应力方向或与其呈 45°夹角的范围是最稳定的优势方位区间[36-37]。④逆冲推覆构造叠置程度高,定向井能避开断层[25],保障钻井安全。

  • 图10 不同井型的有利区和裂缝钻遇率

  • Fig.10 Probability of penetration of favorable areas and fractures with different well types

  • 从有利区钻遇率、钻井井壁稳定性及避障避险角度考虑,定向井能够兼顾安全稳定和高效提产,是深层复杂地质背景条件下的最优井型,建议在构造形态和储层物性的有利区范围内,进一步部署定向井,朝着地应力低值区、裂缝发育且井壁稳定的方向钻进,以此定量选择最优井眼轨迹。比如大北 12气藏,建议在背斜高部位的地应力低值区部署定向井,井眼方位角为 45°~135°,在井壁安全稳定的前提下尽可能多钻遇地应力低值区。

  • 目前,定向井正逐渐应用于库车坳陷深层油气勘探开发且应用效果显著。克拉苏构造带博孜-大北区带大斜度井的平均裂缝钻遇率能够比同构造直井高 78%[38];另外,合理的斜井方案能提高钻井效率,比如克拉苏构造带克深10气藏斜井的钻井周期缩短了24.7%、钻井复杂事故减少了20%[25]

  • 5.2 考虑地应力状态的储层改造对策

  • 压裂改造是提高深层裂缝性储层单井产量的关键措施,目的是最大限度沟通井周裂缝。明确地应力状态,进而预测井周裂缝的开启性,为压裂改造提供合理对策。

  • 大北12气藏2口井的裂缝开启率预测如图11。 A1 井目的层发育 83 条裂缝,走向为近 NS 向和 NW—SE向,现今最大水平主应力方向为165°,在当前地应力状态下,当井底净压力梯度为1.84 MPa/hm 时,有6条裂缝开启,开启率约为7%;当井底净压力梯度为 1.95 MPa/hm 时,开启率约为 65%;当井底净压力梯度为 2.05 MPa/hm 时,开启率约为 80%。而 A1-1 井目的层发育 20 条裂缝,走向为 NNW 向,现今最大水平主应力方向为 170°,在当前地应力状态下,当井底净压力梯度为 1.99 MPa/hm 时,有 1 条裂缝开启,开启率约为 5%;当井底净压力梯度为 2.05 MPa/hm 时,开启率约为 55%;当井底净压力梯度为 2.15 MPa/hm 时,开启率约为 90%。一般来说,井底净压力梯度为 2.05 MPa/hm 是工程上能够实现的压力上限,所以 A1井比 A1-1井裂缝更容易开启。针对不同的裂缝开启率,可采用不同的改造方式。若裂缝发育、最大水平主应力方向与裂缝走向的夹角 (力-缝夹角)较小,且裂缝开启率高时,采用小型酸压的改造方式,解堵疏通裂缝即可;若力-缝夹角较大且裂缝开启率较低(< 50%),则需考虑采用缝网酸压、缝网压裂改造方式来激活裂缝和人工造复杂缝网;若裂缝不发育且力-缝夹角较大或近于垂直,则需采用加砂压裂的方式人工造主缝。因此现今地应力分析有助于油气提产增效,是储层改造前的重要评价环节。

  • 6 结论

  • 大北 12 气藏所处的克拉苏构造带白垩系储层埋深超过 4 500 m,属于走滑型地应力机制(S Hmax> S V> S hmin),大北12气藏地应力分布的非均质性很强,其最大水平主应力为 125~160 MPa,最小水平主应力为118~130 MPa。非均匀地质边界条件加剧了地应力场分布的复杂性,储层的互层岩性造成地应力值的变化和地应力方向的偏转,二者共同导致了地应力场的非均质性。由于地应力的有利区和不利区交替分布,在构造高部位也可能钻遇地应力不利区,部署井位不能简单地采用“沿长轴、占高点”的方案。考虑到定向井具有有利区穿越广、裂缝钻遇率高、井眼轨迹安全稳定及避障避险的多重优势,认为其是当前条件下克服非均质性的有效手段,是复杂地质背景条件下的优势井型,建议朝着地应力低、裂缝发育且井壁稳定的方向设计井眼轨迹。以地应力研究为核心的地质力学在地质工程一体化理念和工作模式中具有重要桥梁作用,地应力相关研究能够将地质信息解译为工程施工必需的定量参数,在深层-超深层油气勘探领域具有广阔的发展应用前景。

  • 符号解释

  • E ——弹性模量,GPa;

  • p p ——孔隙压力,MPa;

  • 图11 大北12气藏2口井的裂缝开启率

  • Fig.11 Open rates of fractures in two wells in Dabei12 gas reservoir

  • S hmin——最小水平主应力,MPa;

  • S Hmax——最大水平主应力,MPa;

  • S V——垂向主应力,MPa;

  • α——Biot系数;

  • ξh——最小水平主应力系数;

  • ξH——最大水平主应力系数;

  • μ——泊松比。

  • 参考文献

    • [1] 谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2 161-2 178.XIE Heping,GAO Feng,JU Yang.Research and development of rock mechanics in deep ground engineering[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2 161-2 178.

    • [2] 戴金星,黄士鹏,刘岩,等.中国天然气勘探开发60年的重大进展[J].石油与天然气地质,2010,31(6):689-698.DAI Jinxing,HUANG Shipeng,LIU Yan,et al.Significant ad⁃ vancement in natural gas exploration and development in China during the past sixty years[J].Oil & Gas Geology,2010,31(6):689-698.

    • [3] 李剑,佘源琦,高阳,等.中国陆上深层—超深层天然气勘探领域及潜力[J].中国石油勘探,2019,24(4):403-417.LI Jian,SHE Yuanqi,GAO Yang,et al.Onshore deep and ultradeep natural gas exploration fields and potentials in China[J].China Petroleum Exploration,2019,24(4):403-417.

    • [4] 田军,杨海军,吴超,等.博孜9井的发现与塔里木盆地超深层天然气勘探潜力[J].天然气工业,2020,40(1):11-19.TIAN Jun,YANG Haijun,WU Chao,et al.Discovery of Well Bozi9 and ultra-deep natural gas exploration potential in the Kelasu tectonic zone of the Tarim Basin[J].Natural Gas Industry,2020,40(1):11-19.

    • [5] 杨海军,陈永权,田军,等.塔里木盆地轮探1井超深层油气勘探重大发现与意义[J].中国石油勘探,2020,25(2):62-72.YANG Haijun,CHEN Yongquan,TIAN Jun,et al.Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J].China Petroleum Exploration,2020,25(2):62-72.

    • [6] 唐雁刚,周鹏,徐振平,等.应力环境对克拉苏构造带盐下储层的影响[J].高校地质学报,2017,23(1):95-103.TANG Yangang,ZHOU Peng,XU Zhenping,et al.The influence of stress environment on reservoir under salt in Kelasu structure belt[J].Geological Journal of China Universities,2017,23(1):95-103.

    • [7] 吴双,汤达祯,李松,等.煤层气储层孔渗参数的应力响应特征 [J].油气地质与采收率,2019,26(6):80-86.WU Shuang,TANG Dazhen,LI Song,et al.Stress response charac⁃ teristics of porosity and permeability of coalbed methane reser⁃ voirs[J].Petroleum Geology and Recovery Efficiency,2019,26(6):80-86.

    • [8] SUN Shuai,HOU Guiting,ZHENG Chunfang.Fracture zones con⁃ strained by neutral surfaces in a fault-related fold:Insights from the Kelasu tectonic zone,Kuqa Depression[J].Journal of Structur⁃ al Geology,2017,104:112-124.

    • [9] 刘春,赵继龙,章学歧,等.应力垂向分带对储层的控制作用——以库车前陆冲断带为例[J].天然气勘探与开发,2019,42(3):21-31.LIU Chun,ZHAO Jilong,ZHANG Xueqi,et al.Effect of stress ver⁃ tical zoning on reservoirs:An example from Kuqa foreland thrust belt[J].Natural Gas Exploration and Development,2019,42(3):21-31.

    • [10] 王志民,张辉,徐珂,等.库车山前突发构造现今地应力分布特征及对气藏勘探开发的影响[J].地质论评,2020,66(S1):93-95.WANG Zhimin,ZHANG Hui,XU Ke,et al.Current in-situ stress within pop-up structure in Kuqa foreland of Tarim Basin:Implica⁃ tions for gas exploration and development[J].Geological Review,2020,66(S1):93-95.

    • [11] ZHANG Fuxiang,ZHANG Hui,YUAN Fang,et al.Geomechanical mechanism of hydraulic fracturing and fracability of natural frac⁃ tured tight sandstone reservoir in Keshen Gasfield in Tarim Basin [C].Abu Dhabi:SPE Abu Dhabi International Petroleum Exhibi⁃ tion and Conference,2015:1-10.

    • [12] 张辉,尹国庆,王海应.塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J].天然气地球科学,2019,30(3):379-388.ZHANG Hui,YIN Guoqing,WANG Haiying.Effects of natural fractures geomechanical response on gas well productivity in Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2019,30(3):379-388.

    • [13] 江同文,张辉,徐珂,等.克深气田储层地质力学特征及其对开发的影响[J].西南石油大学学报:自然科学版,2020,42(4):1-12.JIANG Tongwen,ZHANG Hui,XU Ke,et al.Reservoir geome⁃ chanical characteristics and the influence on development in Kes⁃ hen gas field[J].Journal of Southwest Petroleum University:Sci⁃ ence & Technology Edition,2020,42(4):1-12.

    • [14] 杨海军,孙雄伟,潘杨勇,等.塔里木盆地克拉苏构造带西部构造变形规律与油气勘探方向[J].天然气工业,2020,40(1):31-37.YANG Haijun,SUN Xiongwei,PAN Yangyong,et al.Structural deformation laws and oil & gas exploration direction in the west⁃ ern Kelasu tectonic zone of the Tarim Basin[J].Natural Gas In⁃ dustry,2020,40(1):31-37.

    • [15] 徐珂,田军,杨海军,等.库车坳陷克拉苏构造带超深储层地质力学特征及天然气勘探[C].北京:中国油气勘探技术交流大会,2020:192-199.XU Ke,TIAN Jun,YANG Haijun,et al.Geomechanical character⁃ istics of ultra-deep reservoirs and natural gas exploration in Kela⁃ su structural belt of Kuqa Depression[C].Beijing:China Oil and Gas Exploration Technology Exchange Conference,2020:192-199.

    • [16] ZHANG T,FANG X,SONG C.Cenozoic tectonic deformation and uplift of the south Tian Shan:Implications from magnetostratigra⁃ phy and balanced cross-section restoration of the Kuqa depression [J].Tectonophysics,2014,628:172-187.

    • [17] 周鹏,唐雁刚,尹宏伟,等.塔里木盆地克拉苏构造带克深2气藏储层裂缝带发育特征及与产量关系[J].天然气地球科学,2017,28(1):135-145.ZHOU Peng,TANG Yangang,YIN Hongwei,et al.Relationship between characteristics of fracture belt and production of Kesh⁃ en2 gas reservoir in Kelasu tectonic zone,Tarim Basin[J].Natural Gas Geoscience,2017,28(1):135-145.

    • [18] 冯许魁,刘军,刘永雷,等.库车前陆冲断带突发构造发育特点 [J].成都理工大学学报:自然科学版,2015,42(3):296-302.FENG Xukui,LIU Jun,LIU Yonglei,et al.Development character⁃ istics of pop-up structure in Kuqa foreland thrust belt,northern Tarim Basin,China[J].Journal of Chengdu University of Technol⁃ ogy:Science and Technology Edition,2015,42(3):296-302.

    • [19] 塔里木油田公司.大北1202钻井地质设计[R].库尔勒:塔里木油田公司,2019:32-33.Tarim Oilfield Company.Drilling geological design of Well Da⁃ bei903[R].Korla:Tarim Oilfield Company,2019:32-33.

    • [20] 李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997:145-153.LI Zhiming,ZHANG Jinzhu.In-situ stress and exploration and de⁃ velopment of oil and gas[M].Beijing:Petroleum Industry Press,1997:145-153.

    • [21] 陆诗阔,王迪,李玉坤,等.鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究[J].天然气地球科学,2015,26(10):1 844-1 850.LU Shikuo,WANG Di,LI Yukun,et al.Research on three-dimen⁃ sional mechanical parameters'distribution of the tight sandstone reservoirs in Daniudi gasfield[J].Natural Gas Geoscience,2015,26(10):1 844-1 850.

    • [22] ZOBACK M D,BARTON C A,BRUDY M,et al.Determination of stress orientation and magnitude in deep wells[J].International Journal of Rock Mechanics & Mining Sciences,2003,40(7/8):1 049-1 076.

    • [23] ZOBACK M D.Reservoir geomechanics[M].Cambridge:Cam⁃ bridge University Press,2007:206-265.

    • [24] 王珂.克深气田碎屑岩储层裂缝定量描述[D].青岛:中国石油大学(华东),2014.WANG Ke.Quantitative description of fracture of clastic reservoir in Keshen gas field[D].Qingdao:China University of Petroleum(East China),2014.

    • [25] 徐珂,戴俊生,冯建伟,等.南堡凹陷高深北区三维非均质应力场精细预测[J].中国矿业大学学报,2018,47(6):1 276-1 286.XU Ke,DAI Junsheng,FENG Jianwei,et al.Prediction of 3D het⁃ erogeneous in-situ stress field of northern area in Gaoshen,Nan⁃ pu sag,Bohai Bay Basin,China[J].Journal of China University of Minim & Technology,2018,47(6):1 276-1 286.

    • [26] 徐珂,田军,杨海军,等.深层致密砂岩储层现今地应力场预测及应用——以塔里木盆地克拉苏构造带克深10气藏为例[J].中国矿业大学学报,2020,49(4):708-720.XU Ke,TIAN Jun,YANG Haijun,et al.Prediction of current insitu stress filed and its application of deeply buried tight sand⁃ stone reservoir:A case study of Keshen10 gas reservoir in Kelasu structural belt,Tarim Basin[J].Journal of China University of Mining & Technology,2020,49(4):708-720.

    • [27] 徐珂,戴俊生,商琳,等.南堡凹陷现今地应力特征及影响因素 [J].中国矿业大学学报,2019,48(3):570-583.XU Ke,DAI Junsheng,SHANG Lin,et al.Characteristics and in⁃ fluencing factors of in-situ stress of Nanpu sag,Bohai Bay basin,China[J].Journal of China University of Mining & Technology,2019,48(3):570-583.

    • [28] 许寻,李中超,刘广英,等.深层高压低渗透砂岩油藏储层应力敏感性模型及开发指标变化规律——以文东油田为例[J].油气地质与采收率,2020,27(6):122-129.XU Xun,LI Zhongchao,LIU Guangying,et al.Stress sensitivity model and development index trend in deep high-pressure and low-permeability sandstone reservoirs:A case study of Wendong Oilfield[J].Petroleum Geology and Recovery Efficiency,2020,27(6):122-129.

    • [29] 王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.

    • [30] 谢仁海,渠天祥,钱光谟.构造地质学[M].徐州:中国矿业大学出版社,2007.XIE Renhai,QU Tianxiang,QIAN Guangmo.Structural geology [M].Xuzhou:Press of China University of Mining and Technolo⁃ gy,2007.

    • [31] 徐素国,梁卫国,莫江,等.软弱泥岩夹层对层状盐岩体力学特性影响研究[J].地下空间与工程学报,2009,5(5):878-883.XU Suguo,LIANG Weiguo,MO Jiang,et al.Influence of weak mudstone intercalated layer on mechanical properties of laminat⁃ ed salt rock[J].Chinese Journal of Underground Space and Engi⁃ neering,2009,5(5):878-883.

    • [32] 周青春.温度、孔隙水和应力作用下砂岩的力学特性研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2006.ZHOU Qingchun.Study on the mechanical property of a sandstone under geothermal-mechanical and hydraulic-mechanical cou⁃ pling[D].Wuhan:Graduate University of Chinese Academy of Sciences(Wuhan Institute of Rock and Soil Mechanics),2006.

    • [33] 胡文瑞.地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J].中国石油勘探,2017,22(1):1-5.HU Wenrui.Geology-engineering integration-a necessary way to realize profitable exploration and development of complex reser⁃ voirs[J].China Petroleum Exploration,2017,22(1):1-5.

    • [34] 张辉,杨海军,尹国庆,等.地质工程一体化关键技术在克拉苏构造带高效开发中的应用实践[J].中国石油勘探,2020,25(2):120-132.ZHANG Hui,YANG Haijun,YIN Guoqing,et al.Application practice of key technologies of geology-engineering integration in efficient development in Kelasu structural belt[J].China Petro⁃ leum Exploration,2020,25(2):120-132.

    • [35] 杨海军,张辉,尹国庆,等.基于地质力学的地质工程一体化助推缝洞型碳酸盐岩高效勘探——以塔里木盆地塔北隆起南缘跃满西区块为例[J].中国石油勘探,2018,23(2):27-36.YANG Haijun,ZHANG Hui,YIN Guoqing,et al.Geomechanics-based geology-engineering integration boosting high-efficiency exploration of fractured-vuggy carbonate reservoirs-a case study on West Yueman block,northern Tarim Basin[J].China Petro⁃ leum Exploration,2018,23(2):27-36.

    • [36] 刘向君,罗平亚,孟英峰.地应力场对井眼轨迹设计及稳定性的影响研究[J].天然气工业,2004,24(9):57-59.LIU Xiangjun,LUO Pingya,MENG Yingfeng.Influence of ground stress field on borehole trajectory design and wellface stability[J].Natural Gas Industry,2004,24(9):57-59.

    • [37] 李玉飞,付永强,唐庚,等.地应力类型影响定向井井壁稳定的规律[J].天然气工业,2012,32(3):78-80.LI Yufei,FU Yongqiang,TANG Geng,et al.Laws of the effects of earth stress patterns on wellbore stability in a directional well[J].Natural Gas Industry,2012,32(3):78-80.

    • [38] 王志民,张辉,徐珂,等.超深裂缝性砂岩气藏增产地质工程一体化关键技术与实践[C].重庆:第32届全国天然气学术年会,2020.WANG Zhimin,ZHANG Hui,XU Ke,et al.Key technology and practice of geological engineering integration for increasing pro⁃ duction of ultra-deep fractured sandstone gas reservoir[C].Chongqing:32nd National Natural Gas Academic Annual Confer⁃ ence,2020.

  • 参考文献

    • [1] 谢和平,高峰,鞠杨.深部岩体力学研究与探索[J].岩石力学与工程学报,2015,34(11):2 161-2 178.XIE Heping,GAO Feng,JU Yang.Research and development of rock mechanics in deep ground engineering[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(11):2 161-2 178.

    • [2] 戴金星,黄士鹏,刘岩,等.中国天然气勘探开发60年的重大进展[J].石油与天然气地质,2010,31(6):689-698.DAI Jinxing,HUANG Shipeng,LIU Yan,et al.Significant ad⁃ vancement in natural gas exploration and development in China during the past sixty years[J].Oil & Gas Geology,2010,31(6):689-698.

    • [3] 李剑,佘源琦,高阳,等.中国陆上深层—超深层天然气勘探领域及潜力[J].中国石油勘探,2019,24(4):403-417.LI Jian,SHE Yuanqi,GAO Yang,et al.Onshore deep and ultradeep natural gas exploration fields and potentials in China[J].China Petroleum Exploration,2019,24(4):403-417.

    • [4] 田军,杨海军,吴超,等.博孜9井的发现与塔里木盆地超深层天然气勘探潜力[J].天然气工业,2020,40(1):11-19.TIAN Jun,YANG Haijun,WU Chao,et al.Discovery of Well Bozi9 and ultra-deep natural gas exploration potential in the Kelasu tectonic zone of the Tarim Basin[J].Natural Gas Industry,2020,40(1):11-19.

    • [5] 杨海军,陈永权,田军,等.塔里木盆地轮探1井超深层油气勘探重大发现与意义[J].中国石油勘探,2020,25(2):62-72.YANG Haijun,CHEN Yongquan,TIAN Jun,et al.Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J].China Petroleum Exploration,2020,25(2):62-72.

    • [6] 唐雁刚,周鹏,徐振平,等.应力环境对克拉苏构造带盐下储层的影响[J].高校地质学报,2017,23(1):95-103.TANG Yangang,ZHOU Peng,XU Zhenping,et al.The influence of stress environment on reservoir under salt in Kelasu structure belt[J].Geological Journal of China Universities,2017,23(1):95-103.

    • [7] 吴双,汤达祯,李松,等.煤层气储层孔渗参数的应力响应特征 [J].油气地质与采收率,2019,26(6):80-86.WU Shuang,TANG Dazhen,LI Song,et al.Stress response charac⁃ teristics of porosity and permeability of coalbed methane reser⁃ voirs[J].Petroleum Geology and Recovery Efficiency,2019,26(6):80-86.

    • [8] SUN Shuai,HOU Guiting,ZHENG Chunfang.Fracture zones con⁃ strained by neutral surfaces in a fault-related fold:Insights from the Kelasu tectonic zone,Kuqa Depression[J].Journal of Structur⁃ al Geology,2017,104:112-124.

    • [9] 刘春,赵继龙,章学歧,等.应力垂向分带对储层的控制作用——以库车前陆冲断带为例[J].天然气勘探与开发,2019,42(3):21-31.LIU Chun,ZHAO Jilong,ZHANG Xueqi,et al.Effect of stress ver⁃ tical zoning on reservoirs:An example from Kuqa foreland thrust belt[J].Natural Gas Exploration and Development,2019,42(3):21-31.

    • [10] 王志民,张辉,徐珂,等.库车山前突发构造现今地应力分布特征及对气藏勘探开发的影响[J].地质论评,2020,66(S1):93-95.WANG Zhimin,ZHANG Hui,XU Ke,et al.Current in-situ stress within pop-up structure in Kuqa foreland of Tarim Basin:Implica⁃ tions for gas exploration and development[J].Geological Review,2020,66(S1):93-95.

    • [11] ZHANG Fuxiang,ZHANG Hui,YUAN Fang,et al.Geomechanical mechanism of hydraulic fracturing and fracability of natural frac⁃ tured tight sandstone reservoir in Keshen Gasfield in Tarim Basin [C].Abu Dhabi:SPE Abu Dhabi International Petroleum Exhibi⁃ tion and Conference,2015:1-10.

    • [12] 张辉,尹国庆,王海应.塔里木盆地库车坳陷天然裂缝地质力学响应对气井产能的影响[J].天然气地球科学,2019,30(3):379-388.ZHANG Hui,YIN Guoqing,WANG Haiying.Effects of natural fractures geomechanical response on gas well productivity in Kuqa Depression,Tarim Basin[J].Natural Gas Geoscience,2019,30(3):379-388.

    • [13] 江同文,张辉,徐珂,等.克深气田储层地质力学特征及其对开发的影响[J].西南石油大学学报:自然科学版,2020,42(4):1-12.JIANG Tongwen,ZHANG Hui,XU Ke,et al.Reservoir geome⁃ chanical characteristics and the influence on development in Kes⁃ hen gas field[J].Journal of Southwest Petroleum University:Sci⁃ ence & Technology Edition,2020,42(4):1-12.

    • [14] 杨海军,孙雄伟,潘杨勇,等.塔里木盆地克拉苏构造带西部构造变形规律与油气勘探方向[J].天然气工业,2020,40(1):31-37.YANG Haijun,SUN Xiongwei,PAN Yangyong,et al.Structural deformation laws and oil & gas exploration direction in the west⁃ ern Kelasu tectonic zone of the Tarim Basin[J].Natural Gas In⁃ dustry,2020,40(1):31-37.

    • [15] 徐珂,田军,杨海军,等.库车坳陷克拉苏构造带超深储层地质力学特征及天然气勘探[C].北京:中国油气勘探技术交流大会,2020:192-199.XU Ke,TIAN Jun,YANG Haijun,et al.Geomechanical character⁃ istics of ultra-deep reservoirs and natural gas exploration in Kela⁃ su structural belt of Kuqa Depression[C].Beijing:China Oil and Gas Exploration Technology Exchange Conference,2020:192-199.

    • [16] ZHANG T,FANG X,SONG C.Cenozoic tectonic deformation and uplift of the south Tian Shan:Implications from magnetostratigra⁃ phy and balanced cross-section restoration of the Kuqa depression [J].Tectonophysics,2014,628:172-187.

    • [17] 周鹏,唐雁刚,尹宏伟,等.塔里木盆地克拉苏构造带克深2气藏储层裂缝带发育特征及与产量关系[J].天然气地球科学,2017,28(1):135-145.ZHOU Peng,TANG Yangang,YIN Hongwei,et al.Relationship between characteristics of fracture belt and production of Kesh⁃ en2 gas reservoir in Kelasu tectonic zone,Tarim Basin[J].Natural Gas Geoscience,2017,28(1):135-145.

    • [18] 冯许魁,刘军,刘永雷,等.库车前陆冲断带突发构造发育特点 [J].成都理工大学学报:自然科学版,2015,42(3):296-302.FENG Xukui,LIU Jun,LIU Yonglei,et al.Development character⁃ istics of pop-up structure in Kuqa foreland thrust belt,northern Tarim Basin,China[J].Journal of Chengdu University of Technol⁃ ogy:Science and Technology Edition,2015,42(3):296-302.

    • [19] 塔里木油田公司.大北1202钻井地质设计[R].库尔勒:塔里木油田公司,2019:32-33.Tarim Oilfield Company.Drilling geological design of Well Da⁃ bei903[R].Korla:Tarim Oilfield Company,2019:32-33.

    • [20] 李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社,1997:145-153.LI Zhiming,ZHANG Jinzhu.In-situ stress and exploration and de⁃ velopment of oil and gas[M].Beijing:Petroleum Industry Press,1997:145-153.

    • [21] 陆诗阔,王迪,李玉坤,等.鄂尔多斯盆地大牛地气田致密砂岩储层三维岩石力学参数场研究[J].天然气地球科学,2015,26(10):1 844-1 850.LU Shikuo,WANG Di,LI Yukun,et al.Research on three-dimen⁃ sional mechanical parameters'distribution of the tight sandstone reservoirs in Daniudi gasfield[J].Natural Gas Geoscience,2015,26(10):1 844-1 850.

    • [22] ZOBACK M D,BARTON C A,BRUDY M,et al.Determination of stress orientation and magnitude in deep wells[J].International Journal of Rock Mechanics & Mining Sciences,2003,40(7/8):1 049-1 076.

    • [23] ZOBACK M D.Reservoir geomechanics[M].Cambridge:Cam⁃ bridge University Press,2007:206-265.

    • [24] 王珂.克深气田碎屑岩储层裂缝定量描述[D].青岛:中国石油大学(华东),2014.WANG Ke.Quantitative description of fracture of clastic reservoir in Keshen gas field[D].Qingdao:China University of Petroleum(East China),2014.

    • [25] 徐珂,戴俊生,冯建伟,等.南堡凹陷高深北区三维非均质应力场精细预测[J].中国矿业大学学报,2018,47(6):1 276-1 286.XU Ke,DAI Junsheng,FENG Jianwei,et al.Prediction of 3D het⁃ erogeneous in-situ stress field of northern area in Gaoshen,Nan⁃ pu sag,Bohai Bay Basin,China[J].Journal of China University of Minim & Technology,2018,47(6):1 276-1 286.

    • [26] 徐珂,田军,杨海军,等.深层致密砂岩储层现今地应力场预测及应用——以塔里木盆地克拉苏构造带克深10气藏为例[J].中国矿业大学学报,2020,49(4):708-720.XU Ke,TIAN Jun,YANG Haijun,et al.Prediction of current insitu stress filed and its application of deeply buried tight sand⁃ stone reservoir:A case study of Keshen10 gas reservoir in Kelasu structural belt,Tarim Basin[J].Journal of China University of Mining & Technology,2020,49(4):708-720.

    • [27] 徐珂,戴俊生,商琳,等.南堡凹陷现今地应力特征及影响因素 [J].中国矿业大学学报,2019,48(3):570-583.XU Ke,DAI Junsheng,SHANG Lin,et al.Characteristics and in⁃ fluencing factors of in-situ stress of Nanpu sag,Bohai Bay basin,China[J].Journal of China University of Mining & Technology,2019,48(3):570-583.

    • [28] 许寻,李中超,刘广英,等.深层高压低渗透砂岩油藏储层应力敏感性模型及开发指标变化规律——以文东油田为例[J].油气地质与采收率,2020,27(6):122-129.XU Xun,LI Zhongchao,LIU Guangying,et al.Stress sensitivity model and development index trend in deep high-pressure and low-permeability sandstone reservoirs:A case study of Wendong Oilfield[J].Petroleum Geology and Recovery Efficiency,2020,27(6):122-129.

    • [29] 王镜惠,梅明华,梁正中,等.煤层气储层应力敏感性定量表征及影响因素研究[J].石油实验地质,2018,40(6):859-863.WANG Jinghui,MEI Minghua,LIANG Zhengzhong,et al.Con⁃ trols and quantitative characterization of stress sensitivity for coal seams[J].Petroleum Geology & Experiment,2018,40(6):859-863.

    • [30] 谢仁海,渠天祥,钱光谟.构造地质学[M].徐州:中国矿业大学出版社,2007.XIE Renhai,QU Tianxiang,QIAN Guangmo.Structural geology [M].Xuzhou:Press of China University of Mining and Technolo⁃ gy,2007.

    • [31] 徐素国,梁卫国,莫江,等.软弱泥岩夹层对层状盐岩体力学特性影响研究[J].地下空间与工程学报,2009,5(5):878-883.XU Suguo,LIANG Weiguo,MO Jiang,et al.Influence of weak mudstone intercalated layer on mechanical properties of laminat⁃ ed salt rock[J].Chinese Journal of Underground Space and Engi⁃ neering,2009,5(5):878-883.

    • [32] 周青春.温度、孔隙水和应力作用下砂岩的力学特性研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2006.ZHOU Qingchun.Study on the mechanical property of a sandstone under geothermal-mechanical and hydraulic-mechanical cou⁃ pling[D].Wuhan:Graduate University of Chinese Academy of Sciences(Wuhan Institute of Rock and Soil Mechanics),2006.

    • [33] 胡文瑞.地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J].中国石油勘探,2017,22(1):1-5.HU Wenrui.Geology-engineering integration-a necessary way to realize profitable exploration and development of complex reser⁃ voirs[J].China Petroleum Exploration,2017,22(1):1-5.

    • [34] 张辉,杨海军,尹国庆,等.地质工程一体化关键技术在克拉苏构造带高效开发中的应用实践[J].中国石油勘探,2020,25(2):120-132.ZHANG Hui,YANG Haijun,YIN Guoqing,et al.Application practice of key technologies of geology-engineering integration in efficient development in Kelasu structural belt[J].China Petro⁃ leum Exploration,2020,25(2):120-132.

    • [35] 杨海军,张辉,尹国庆,等.基于地质力学的地质工程一体化助推缝洞型碳酸盐岩高效勘探——以塔里木盆地塔北隆起南缘跃满西区块为例[J].中国石油勘探,2018,23(2):27-36.YANG Haijun,ZHANG Hui,YIN Guoqing,et al.Geomechanics-based geology-engineering integration boosting high-efficiency exploration of fractured-vuggy carbonate reservoirs-a case study on West Yueman block,northern Tarim Basin[J].China Petro⁃ leum Exploration,2018,23(2):27-36.

    • [36] 刘向君,罗平亚,孟英峰.地应力场对井眼轨迹设计及稳定性的影响研究[J].天然气工业,2004,24(9):57-59.LIU Xiangjun,LUO Pingya,MENG Yingfeng.Influence of ground stress field on borehole trajectory design and wellface stability[J].Natural Gas Industry,2004,24(9):57-59.

    • [37] 李玉飞,付永强,唐庚,等.地应力类型影响定向井井壁稳定的规律[J].天然气工业,2012,32(3):78-80.LI Yufei,FU Yongqiang,TANG Geng,et al.Laws of the effects of earth stress patterns on wellbore stability in a directional well[J].Natural Gas Industry,2012,32(3):78-80.

    • [38] 王志民,张辉,徐珂,等.超深裂缝性砂岩气藏增产地质工程一体化关键技术与实践[C].重庆:第32届全国天然气学术年会,2020.WANG Zhimin,ZHANG Hui,XU Ke,et al.Key technology and practice of geological engineering integration for increasing pro⁃ duction of ultra-deep fractured sandstone gas reservoir[C].Chongqing:32nd National Natural Gas Academic Annual Confer⁃ ence,2020.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告