en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

姜彬(1984—),男,山东烟台人,高级工程师,在读博士研究生,从事油气田开发及综合调整研究工作。E-mail:jiangbin@cnooc.com.cn。

中图分类号:TE343

文献标识码:A

文章编号:1009-9603(2022)02-0124-07

DOI:10.13673/j.cnki.cn37-1359/te.2022.02.015

参考文献 1
黄世军,康博韬,程林松,等.海上普通稠油油藏多层合采层间干扰定量表征与定向井产能预测[J].石油勘探与开发,2015,42(4):488-495.HUANG Shijun,KANG Botao,CHENG Linsong,et al.Quantita⁃ tive characterization of interlayer interference and productivity prediction of directional wells in the multilayer commingled pro⁃ duction of ordinary offshore heavy oil reservoirs[J].Petroleum Ex⁃ ploration and Development,2015,42(4):488-495.
参考文献 2
马奎前,刘英宪,苏彦春.渤海S油田高含水期加密井产能评价 [J].断块油气田,2013,20(1):71-73.MA Kuiqian,LIU Yingxian,SU Yanchun.Productivity evaluation of infill well at high water cut stage in S Oilfield,Bohai Bay[J].Fault-Block Oil and Gas Field,2013,20(1):71-73.
参考文献 3
陈胜宏,范白涛,张仁勇,等.海上稠油油田投产及生产管理探索[J].断块油气田,2009,16(5):69-71. CHEN Shenghong,FAN Baitao,ZHANG Renyong,et al.Discus⁃ sion on oilfield putting into production and production manage⁃ ment in offshore heavy oil oilfield[J].Fault-Block Oil and Gas Field,2009,16(5):69-71.
参考文献 4
康凯,刘超,许万坤,等.薄互储层油藏层间干扰定量化表征新方法[J].复杂油气藏,2019,12(3):46-50.KANG Kai,LIU Chao,XU Wankun,et al.New quantitative char⁃ acterization method for interlayer interference of thin interbedded reservoir[J].Complex Hydrocarbon Reservoirs,2019,12(3):46-50.
参考文献 5
缪飞飞,黄凯,胡勇,等.渤海油田层间干扰物理模拟研究及应用[J].特种油气藏,2019,26(1):136-140.MIAO Feifei,HUANG Kai,HU Yong,et al.Physical simulation of inter-layer interference and its application in Bohai Oilfield[J].Special Oil & Gas Reservoirs,2019,26(1):136-140.
参考文献 6
马子麟,师永民,李宜强,等.用于多层油藏层间干扰预测的渗流阻力计算方法[J].油气地质与采收率,2021,28(3):104-110.MA Zilin,SHI Yongmin,LI Yiqiang,et al.Calculation method of seepage resistance for prediction of interlayer interference in mul⁃ tilayer reservoirs[J].Petroleum Geology and Recovery Efficiency,2021,28(3):104-110.
参考文献 7
孙强,黄世军,李权.多层稠油油藏水驱动用程度评价方法[J].断块油气田,2020,27(3):323-326.SUN Qiang,HUANG Shijun,LI Quan.Evaluation method of water driving degree of multi-layer heavy oil reservoir[J].Fault-Block Oil and Gas Field,2020,27(3):323-326.
参考文献 8
康博韬,张迎春,姜彬,等.海上薄互层砂岩油藏层系划分及射孔优化方法——以蓬莱 19-3油田为例[J].科学技术与工程,2021,21(17):7 067-7 073.KANG Botao,ZHANG Yingchun,JIANG Bin,et al.Stratification and perforation optimization method for offshore thin interbedded sandstone reservoir:A case study of PL19-3,Bohai[J].Science Technology and Engineering,2021,21(17):7 067-7 073.
参考文献 9
陈楠.基于高含水期油田水驱特征的相渗曲线计算方法[J].石油化工应用,2021,40(5):23-27.CHEN Nan.Computation method of phase permeability curve based on water flooding characteristics of oilfield in high water cut period[J].Petrochemical Industry Application,2021,40(5):23-27.
参考文献 10
刘洪杰.常规油藏多层合采层间干扰系数确定新方法[J].石油地质与工程,2013,27(5):80-82.LIU Hongjie.New determination method of interlayer interference coefficient among commingling production layers in conventional reservoirs[J].Petroleum Geology and Engineering,2013,27(5):80-82.
参考文献 11
周文胜,李倩茹,耿站立,等.合采井层间干扰现象数学模拟研究[J].西南石油大学学报:自然科学版,2017,39(6):109-116.ZHOU Wensheng,LI Qianru,GENG Zhanli,et al.Mathematical simulation study on interlayer interference in commingled produc⁃ tion[J].Journal of Southwest Petroleum University:Science & Technology Edition,2017,39(6):109-116.
参考文献 12
许家峰,张金庆,程林松,等.多层合采砂岩稠油油藏层间干扰动态表征及应用[J].中国海上油气,2016,28(4):48-54.XU Jiafeng,ZHANG Jinqing,CHENG Linsong,et al.The dynamic characterization and application of interlayer interference for sandstone heavy oil multilayer commingled producing[J].China Offshore Oil and Gas,2016,28(4):48-54.
参考文献 13
贾晓飞,苏彦春,邓景夫,等.多层合采砂岩油藏动态干扰及其影响因素[J].断块油气田,2016,23(3):334-337,353.JIA Xiaofei,SU Yanchun,DENG Jingfu,et al.Interlayer dynamic interference caused by commingled production and its influencing factors on sandstone reservoir[J].Fault-Block Oil and Gas Field,2016,23(3):334-337,353.
参考文献 14
刘彦成,罗宪波,康凯,等.陆相多层砂岩油藏渗透率表征与定向井初期产能预测——以蓬莱19-3油田为例[J].石油勘探与开发,2017,44(1):97-103.LIU Yancheng,LUO Xianbo,KANG Kai,et al.Permeability char⁃ acterization and directional wells initial productivity prediction in the continental multilayer sandstone reservoirs:A case from Peng⁃ lai19-3 oil field,Bohai Bay Basin[J].Petroleum Exploration and Development,2017,44(1):97-103.
参考文献 15
刘彦成,蒋曙鸿,康凯,等.渤海典型多层砂岩油藏中高含水期定向井产能预测新方法[J].地质科技情报,2019,38(1):214-220.LIU Yancheng,JIANG Shuhong,KANG Kai,et al.A new method of productivity prediction in the multilayer commingled produc⁃ tion with medium-high water-cut period[J].Geological Science and Technology Information,2019,38(1):214-220.
参考文献 16
赵秀娟,左松林,吴家文,等.大庆油田特高含水期层系井网重构技术研究与应用[J].油气地质与采收率,2019,26(4):82-87.ZHAO Xiujuan,ZUO Songlin,WU Jiawen,et al.Study and appli⁃ cation of strata & well pattern reconstruction technique at extra high water cut stage in Daqing Oilfield[J].Petroleum Geology and Recovery Efficiency,2019,26(4):82-87.
参考文献 17
郜益华,姜彬,张迎春,等.海上老油田多层油藏加密井产能评价方法——以渤海A油田N区块为例[J].油气地质与采收率,2021,28(4):120-130.GAO Yihua,JIANG Bin,ZHANG Yingchun,et al.Evaluation method for infill well productivity of multi-layer reservoirs in old offshore oilfields:A case of Block N in Bohai A Oilfield[J].Petro⁃ leum Geology and Recovery Efficiency,2021,28(4):120-130.
参考文献 18
华溱,张昂昂,呼园平,等.一种新的注采连通研究方法在南泥湾油田偏桥区的应用[J].石化技术,2019,26(5):40-41.HUA Qin,ZHANG Angang,HU Yuanping,et al.Application of a new research method of injection-production connection in Bianq⁃ iao area of Nanniwan Oilfield[J].Petrochemical Industry Technol⁃ ogy,2019,26(5):40-41.
参考文献 19
王海更,汪利兵,刘洪杰,等.利用生产动态及地震资料分析井间河流相砂体连通性[J].海洋石油,2014,34(3):66-71,105.WANG Haigeng,WANG Libing,LIU Hongjie,et al.Analysis of fluvial sand connectivity with production and seismic data[J].Off⁃ shore Oil,2014,34(3):66-71,105.
参考文献 20
康博韬,杨宝泉,张迎春,等.深水浊积砂岩油田动态相渗规律分析及应用[J].特种油气藏,2019,26(5):106-111.KANG Botao,YANG Baoquan,ZHANG Yingchun,et al.Dynamic relative-permeability analysis and its application in deepwater turbidite sandstone oilfield[J].Special Oil & Gas Reservoirs,2019,26(5):106-111.
参考文献 21
吕新东,冯文光,杨宇,等.利用动态数据计算相渗曲线的新方法[J].特种油气藏,2009,16(5):65-66,75.LÜ Xindong,FENG Wenguang,YANG Yu,et al.A new method of calculating relative permeability curve with performance data[J].Special Oil & Gas Reservoirs,2009,16(5):65-66,75.
参考文献 22
崔传智,郑文乾,李立峰,等.基于动态数据反演的相渗曲线及应用效果[J].石油钻采工艺,2019,41(4):516-520.CUI Chuanzhi,ZHENG Wenqian,LI Lifeng,et al.The relative permeability curve based on dynamic data inversion and its appli⁃ cation effect[J].Oil Drilling & Production Technology,2019,41(4):516-520.
参考文献 23
杜殿发,林新宇,巴忠臣,等.利用甲型水驱特征曲线计算相对渗透率曲线[J].特种油气藏,2013,20(5):93-96.DU Dianfa,LIN Xinyu,BA Zhongchen,et al.Calculation of rela⁃ tive permeability curve with Type A characteristic curve of water drive[J].Special Oil & Gas Reservoirs,2013,20(5):93-96.
参考文献 24
郭伟峰,马鸿来,王作进,等.单井动态相渗曲线的建立及应用 [J].吐哈油气,2006,11(2):151-154.GUO Weifeng,MA Honglai,WANG Zuojin,et al.The establish⁃ ment of dynamic relative permeability curve of single well and ap⁃ plication in low permeability reservoir[J].Tuha Oil & Gas,2006,11(2):151-154.
参考文献 25
潘杰,汪全林,凌浩川,等.基于生产数据确定海上稀油油田合理提液时机[J].复杂油气藏,2018,11(3):52-54,67.PAN Jie,WANG Quanlin,LING Haochuan,et al.Reasonable tim⁃ ing of increasing liquid production of offshore light oilfields based on production data[J].Complex Hydrocarbon Reservoirs,2018,11(3):52-54,67.
参考文献 26
张金庆,安桂荣,许家峰,等.广适水驱曲线适应性分析及推广应用[J].中国海上油气,2013,25(6):56-60.ZHANG Jinqing,AN Guirong,XU Jiafeng,et al.Analyzing the ap⁃ plicability of an eurytopic water-drive curve and its extensible ap⁃ plications[J].China Offshore Oil and Gas,2013,25(6):56-60.
参考文献 27
张金庆.水驱油田产量预测模型[M].北京:石油工业出版社,2013.ZHANG Jinqing.Production prediction model of water drive oil⁃ field[M].Beijing:Petroleum Industry Press,2013.
目录contents

    摘要

    多层砂岩油藏开发进入中高含水期,层间矛盾突出,层间干扰加剧,新钻调整井的产能预测难度大、精度低。为进一步分析油田不同含水率对多层砂岩油藏产能的影响,通过回归P油田不同流动能力突进系数下的层间干扰系数随含水率的变化趋势,建立层间干扰动态表征模型,形成层间干扰系数与流动能力突进系数和含水率变化关系图版,实现不同流动能力突进系数下对层间干扰系数随含水率变化的定量表征。通过建立无层间干扰条件下采油指数与地层流动系数的产能回归公式,指导P油田中高含水期调整井的产能评价。研究结果表明,基于层间干扰校正预测的P油田新投产调整井的产能误差为20%,低于层间干扰校正前,预测结果可靠。

    Abstract

    At the middle and high water cut stages of multi-layer sandstone reservoir,the development between layers is un- even,and the interlayer interference is obvious,leading to the great difficulty and low accuracy of productivity prediction for newly drilled adjustment wells. To further analyze the influence of different water cuts on the productivity of multi-layer sandstone reservoirs,this paper constructed the dynamic prediction model of interlayer interference after the variation of in- terlayer interference coefficients with water cuts was analyzed under different breakthrough coefficients of flow capacity in P Oilfield. The relationship chart of interlayer interference coefficients with the breakthrough coefficients and water cuts was drawn to quantitatively characterize the variation of interlayer interference coefficient with water cuts under different breakthrough coefficients of flow capacity. The productivity formula between productivity index and formation flow coeffi- cient without interlayer interference was constructed to guide the well productivity evaluation of P Oilfield at middle and high water cut stages. The results indicate that the productivity error of new adjustment wells in P Oilfield predicted by in- terlayer interference correction is 20%,which is lower than that before the correction,indicating a reliable productivity pre- diction result.

  • 多层砂岩油藏合采过程中的物性差异是导致开发不均衡的主要原因。多层砂岩油藏开发初期常以一套层系合采,开发以主力厚层为主,兼顾薄互层。但随着开发的不断深入,层间矛盾更加突出,进而加剧了层间干扰,增大了油田二次调整的难度,尤其是在中高含水期,新钻调整井的产能预测精度相对较低。

  • 目前产能预测的普遍方法是根据平面径向稳定渗流达西公式,通过统计分析,建立组合参数流度或地层流动系数与产能的回归公式。进入中高含水期后,在调整井的产能预测过程中通常对采油指数只进行含水率校正。但对于多层砂岩油藏来说,不同含水率条件下产能受层间干扰的影响较大,上述方法得到的预测结果并不理想,仍需进一步考虑不同含水率条件下的层间干扰系数校正。黄世军等分别通过物理模拟实验和动态研究方法证明了普通稠油油藏不同含水期层间干扰的变化规律及对开发效果的影响[1-9]。但目前对于油田开发全过程层间干扰的影响程度依然缺乏系统的认识,缺少层间干扰动态预测的手段,无法直接指导油田中高含水期的产能评价。

  • 笔者利用 P 油田多层砂岩油藏的实际生产数据,建立了不同流动能力突进系数下的单井层间干扰系数随含水率变化关系,定量表征流动能力突进系数、含水率等变化对层间干扰系数的影响,用于指导油田中高含水期的产能评价,也为同类型油田层间矛盾的定量评价及配产配注提供借鉴。

  • 1 油田概况

  • P油田为在渤南低凸起基底隆起背景上发育的受北东向和南北向走滑断层控制的断背斜构造,其断裂发育,平面上划分为22个区块。主力含油层系馆陶组为辫状河三角洲沉积,储层埋藏深度为 1 000~1 400 m,纵向跨度大,达 300 m,共划分为 9 个油组40个小层,属于典型的多层砂岩油藏。研究区纵向各层之间的储层物性、流体性质及注采连通状况差异非常明显,非均质性严重。主力含油层系厚度大、连续性好,非主力含油层系层数多、连续性差,其中厚度在5 m以下储层的占比达50%。

  • P油田主体区 2018年已进入高含水期,2020年含水率达 87%。由于前期采用大段合采,纵向各层间储量动用程度差异明显,主力含油层系采出程度为 30%,非主力含油层系采出程度仅为 7%~15%。由于纵向层数多,对层间干扰规律缺乏系统认识,调整井产量预测难度大,实施效果不理想。

  • 2 多层砂岩油藏层间干扰动态表征

  • 2.1 层间干扰动态反演模型

  • 许多学者从不同的应用角度对层间干扰系数进行了定义[10-17],笔者将层间干扰系数定义为油井在相同的工作制度下各层分采时采油指数之和与多层合采时采油指数的差值除以各层分采时的采油指数之和,即合采时产能相比分采时总产能下降的幅度[5]。其表达式为:

  • α=i=1n Jdoi-J0i=1n Jdoi
    (1)
  • 由定向井的产量公式可知:

  • Q=542.87i=1n KroiKihipe-pwfμoBolnRevrwe+Sθ+Sd
    (2)
  • J=Qpe-pwf=542.87i=1n KroiKihiμoBolnRevrwe+Sθ+Sd
    (3)
  • 其中:

  • rwe=L4×0.454sin2πrwvhhL
    (4)
  • 随着开发的进行,不同层间的采出程度差异引起层间含水率的变化,进一步影响各小层中油相的相对流动能力[18-27]。将油相相对渗透率随含水率的变化引入(3)式,并与(1)式联立,即可以得到层间干扰系数的动态表达式为:

  • α=1-0.00184Q'lnRevrwe+Sθ+Sdpe-pwfμoBoi=1n KihiKroifwi
    (5)
  • 由(5)式可知,除绝对渗透率、有效厚度等静态参数差异外,由于层间含水期不同引起的油相相对渗透率的差异也是影响层间干扰系数差异的重要因素之一。

  • 2.2 层间干扰程度的变化规律

  • 文献[5]开展了考虑渗透率单一因素差异下层间干扰系数随含水率变化的物理模拟实验,确定了层间干扰系数与含水率和渗透率突进系数的函数关系。考虑实际生产中储层厚度、流体黏度等差异,笔者进一步引入流动能力突进系数、平均流动能力以及基准流动能力等参数对实际油田生产过程中的层间干扰系数随含水率的变化进行定量表征。

  • 定义 Fi 为各小层的地层流动系数,其表达式为:

  • Fi=KiHiμi
    (6)
  • 定义T f为流动能力突进系数,其表达式为:

  • Tf=FmaxF-
    (7)
  • 将研究区单井各小层的地层流动系数的最小值作为基准流动能力。选取 P油田 3口具有不同流动能力突进系数的典型调整井,利用(5)式计算各井的层间干扰系数随含水率的变化(图1)。3 口典型调整井的初期日产量、初始含水率、基准流动能力及流动能力突进系数见表1。

  • 图1 P油田典型调整井层间干扰系数随含水率变化规律

  • Fig.1 Variation of interlayer interference coefficient with water cuts in typical adjustment wells of P Oilfield

  • 表1 P油田3口典型调整井不同含水率下的产能及流动能力统计

  • Table1 Productivity and flow capacity of three typical adjustment wells at different water cuts in P Oilfield

  • 去除噪点后通过三次样条插值进行简化处理,分别对3口典型调整井不同含水率下的层间干扰系数进行分段多元拟合,确定 P 油田层间干扰系数与流动能力突进系数、基准流动能力以及含水率等变量的相关关系式为:

  • α=κλ+fw3-fw2+fwTfωln1+Fmin γ
    (8)
  • 为进一步确定P油田κλγω这4个相关系数的参数范围,对 P油田 30口生产井按流动能力突进系数分类,进行多元非线性回归,计算结果如表2所示。并绘制P油田不同流动能力突进系数下层间干扰系数随含水率变化的图版(图2)。

  • 表2 P油田层间干扰系数的相关系数取值

  • Table2 Correlation coefficients of interlayer interference coefficients in P Oilfield

  • 图2 P油田不同流动能力突进系数下层间干扰系数随含水率的变化

  • Fig.2 Variation of interference coefficients with water cuts under different breakthrough coefficients of flow capacity in P Oilfield

  • 由图2 可以看出,当 P 油田 2.0<T f ≤5.0,其中低含水期层间干扰程度相对较弱且变化平缓,并随含水率的升高,层间干扰程度加剧。若5.0<T f ≤7.0,层间干扰程度稳步上升,抑制作用持续增强。当7.0< T f ≤16.0,其中低含水期层间干扰程度快速上升,并迅速达到较高水平,对油井整体产能抑制作用较强,进入高含水期后单层突进现象明显,层间干扰程度在较高水平保持稳定。

  • 3 基于层间干扰动态表征的产能评价

  • 3.1 基于层间干扰动态表征的比采油指数校正方法

  • 根据产量计算公式,假设 Q o为不考虑层间干扰的日产量,则考虑层间干扰且层间干扰随含水率动态变化后,(3)式中的采油指数J可以改写为:

  • Jαofw=Qope-pwf1-αfw=Jofw1-αfw
    (9)
  • 根据无因次采油指数的定义,可以得到考虑层间干扰的无因次采油指数为:

  • JαDofw=JαofwJofw=01-αf(w=0)=Jofw1-αfwJofw=01-αfw=0
    (10)
  • 因此,校正后的无水采油期下不考虑层间干扰的采油指数可以表示为:

  • Jofw=JαDofw1-αfw1-αfw=0Jofw=0
    (11)
  • 3.2 实例应用

  • 应用基于层间干扰动态表征的比采油指数校正方法,分别计算 P油田 N区块 20口生产井的采油指数、投产初期含水率及初期含水率条件下的层间干扰系数、无水采油期下的层间干扰系数及无因次采油指数等,生产井采油指数计算参数见表3,绘制考虑层间干扰校正后采油指数与地层流动系数图版,并与层间干扰校正前的采油指数与地层流动系数关系进行对比(图3)可以看出,经过层间干扰系数校正后,P 油田 N 区块无水采油期下的采油指数与地层流动系数的拟合关系更好。

  • 3.3 效果分析

  • 基于P油田N区块考虑层间干扰校正前后采油指数与地层流动系数关系(图3),进一步对 N 区块新投产的3口调整井进行产能预测(表4),发现计算结果与实际产能测试结果基本一致,层间干扰校正前的平均相对误差为40%,校正后为20%,可以满足矿场产能预测要求,表明该方法预测结果可靠,可以用于指导现场配产。

  • 4 结论

  • 开发中后期层间含水率的差异是影响多层砂岩油藏产能的重要因素。基于层间干扰动态反演模型,对 P 油田不同流动能力突进系数下的单井层间干扰系数随含水率变化趋势进行拟合,得到了层间干扰系数与流动能力突进系数、基准流动能力以及含水率的相关关系。据此建立的不同流动能力突进系数下层间干扰系数与含水率的关系图版,可以分类表征不同流动能力突进系数取值范围下层间干扰程度的变化规律。基于层间干扰校正预测的 P 油田新投产调整井产能误差为 20%,低于层间干扰校正前,预测结果可靠,可以为同类型油田制定合理的开发对策提供借鉴。在实际油田开发过程中,需结合研究人员对各小层的岩石类型、储层类型及相渗特征等的分类表征和精细描述成果,进一步提高该方法的预测精度。

  • 表3 P油田N区块生产井采油指数计算参数

  • Table3 Parameters of oil productivity index calculation of production wells in N Block,P Oilfield

  • 图3 P油田N区块考虑层间干扰校正前后采油指数与地层流动系数关系

  • Fig.3 Relationship between productivity index and formation flow coefficient before and after interlayer interference correction in N Block,P Oilfield

  • 表4 考虑层间干扰动态表征的产能评价准确性对比

  • Table4 Comparison of accuracy of productivity evaluation considering dynamic predicted interlayer interference

  • 符号解释

  • B o——原油体积系数;

  • f w——含水率,%;

  • f wi ——第i层的含水率,%;

  • F-—— 单井各小层的平均地层流动系数,mD · m/ (mPa·s);

  • Fi ——单井各小层的地层流动系数,mD·m/(mPa·s);

  • F max——单井各小层的地层流动系数的最大值,mD· m/(mPa·s);

  • F min——单井各小层的地层流动系数的最小值,即基准流动能力,mD·m/(mPa·s);

  • h ——有效厚度,m;

  • hi ——第i层的有效厚度,m;

  • Hi ——单井各小层的有效厚度,m;

  • i ——某一单层;

  • J ——采油指数,m3 /(d·MPa);

  • J doi ——第i层的采油指数,m3 /(d·MPa);

  • J o——合采采油指数,m3 /(d·MPa);

  • Jofw=0——含水率为 0时不考虑层间干扰的采油指数, m3 /(d·MPa);

  • Jofw——含水率为f w时不考虑层间干扰的采油指数,m3 / (d·MPa);

  • Jαofw ——含水率为 f w 时考虑层间干扰的采油指数,m3 /(d·MPa);

  • JαDofw——含水率为f w时考虑层间干扰的无因次采油指数;

  • Ki ——第i层的绝对渗透率,D;

  • K roi ——第i层的油相相对渗透率;

  • Kroi fwi ——第i层含水率为f wi时的油相相对渗透率;

  • L ——定向井的等效长度,m;

  • n ——小层总数;

  • p e——供给压力,MPa;

  • p wf——井底流压,MPa;

  • Q ——不考虑层间干扰的合采日产量,m3 /d;

  • Q’——考虑层间干扰的合采日产量,m3 /d;

  • Q o——不考虑层间干扰的日产量,m3 /d;

  • r we——有效井的井筒半径,m;

  • r wv——定向井的井筒半径,m;

  • R ev——供给半径,m;

  • S d——完井表皮系数;

  • Sθ——井身结构表皮系数;

  • T f ——流动能力突进系数;

  • α——层间干扰系数;

  • αfw——含水率为f w时的层间干扰系数;

  • αfw=0 ——含水率为0时的层间干扰系数;

  • θ——井斜角,rad;

  • μi ——各小层的原油黏度,mPa•s;

  • μo——原油黏度,mPa•s;

  • κλγω——相关系数。

  • 参考文献

    • [1] 黄世军,康博韬,程林松,等.海上普通稠油油藏多层合采层间干扰定量表征与定向井产能预测[J].石油勘探与开发,2015,42(4):488-495.HUANG Shijun,KANG Botao,CHENG Linsong,et al.Quantita⁃ tive characterization of interlayer interference and productivity prediction of directional wells in the multilayer commingled pro⁃ duction of ordinary offshore heavy oil reservoirs[J].Petroleum Ex⁃ ploration and Development,2015,42(4):488-495.

    • [2] 马奎前,刘英宪,苏彦春.渤海S油田高含水期加密井产能评价 [J].断块油气田,2013,20(1):71-73.MA Kuiqian,LIU Yingxian,SU Yanchun.Productivity evaluation of infill well at high water cut stage in S Oilfield,Bohai Bay[J].Fault-Block Oil and Gas Field,2013,20(1):71-73.

    • [3] 陈胜宏,范白涛,张仁勇,等.海上稠油油田投产及生产管理探索[J].断块油气田,2009,16(5):69-71. CHEN Shenghong,FAN Baitao,ZHANG Renyong,et al.Discus⁃ sion on oilfield putting into production and production manage⁃ ment in offshore heavy oil oilfield[J].Fault-Block Oil and Gas Field,2009,16(5):69-71.

    • [4] 康凯,刘超,许万坤,等.薄互储层油藏层间干扰定量化表征新方法[J].复杂油气藏,2019,12(3):46-50.KANG Kai,LIU Chao,XU Wankun,et al.New quantitative char⁃ acterization method for interlayer interference of thin interbedded reservoir[J].Complex Hydrocarbon Reservoirs,2019,12(3):46-50.

    • [5] 缪飞飞,黄凯,胡勇,等.渤海油田层间干扰物理模拟研究及应用[J].特种油气藏,2019,26(1):136-140.MIAO Feifei,HUANG Kai,HU Yong,et al.Physical simulation of inter-layer interference and its application in Bohai Oilfield[J].Special Oil & Gas Reservoirs,2019,26(1):136-140.

    • [6] 马子麟,师永民,李宜强,等.用于多层油藏层间干扰预测的渗流阻力计算方法[J].油气地质与采收率,2021,28(3):104-110.MA Zilin,SHI Yongmin,LI Yiqiang,et al.Calculation method of seepage resistance for prediction of interlayer interference in mul⁃ tilayer reservoirs[J].Petroleum Geology and Recovery Efficiency,2021,28(3):104-110.

    • [7] 孙强,黄世军,李权.多层稠油油藏水驱动用程度评价方法[J].断块油气田,2020,27(3):323-326.SUN Qiang,HUANG Shijun,LI Quan.Evaluation method of water driving degree of multi-layer heavy oil reservoir[J].Fault-Block Oil and Gas Field,2020,27(3):323-326.

    • [8] 康博韬,张迎春,姜彬,等.海上薄互层砂岩油藏层系划分及射孔优化方法——以蓬莱 19-3油田为例[J].科学技术与工程,2021,21(17):7 067-7 073.KANG Botao,ZHANG Yingchun,JIANG Bin,et al.Stratification and perforation optimization method for offshore thin interbedded sandstone reservoir:A case study of PL19-3,Bohai[J].Science Technology and Engineering,2021,21(17):7 067-7 073.

    • [9] 陈楠.基于高含水期油田水驱特征的相渗曲线计算方法[J].石油化工应用,2021,40(5):23-27.CHEN Nan.Computation method of phase permeability curve based on water flooding characteristics of oilfield in high water cut period[J].Petrochemical Industry Application,2021,40(5):23-27.

    • [10] 刘洪杰.常规油藏多层合采层间干扰系数确定新方法[J].石油地质与工程,2013,27(5):80-82.LIU Hongjie.New determination method of interlayer interference coefficient among commingling production layers in conventional reservoirs[J].Petroleum Geology and Engineering,2013,27(5):80-82.

    • [11] 周文胜,李倩茹,耿站立,等.合采井层间干扰现象数学模拟研究[J].西南石油大学学报:自然科学版,2017,39(6):109-116.ZHOU Wensheng,LI Qianru,GENG Zhanli,et al.Mathematical simulation study on interlayer interference in commingled produc⁃ tion[J].Journal of Southwest Petroleum University:Science & Technology Edition,2017,39(6):109-116.

    • [12] 许家峰,张金庆,程林松,等.多层合采砂岩稠油油藏层间干扰动态表征及应用[J].中国海上油气,2016,28(4):48-54.XU Jiafeng,ZHANG Jinqing,CHENG Linsong,et al.The dynamic characterization and application of interlayer interference for sandstone heavy oil multilayer commingled producing[J].China Offshore Oil and Gas,2016,28(4):48-54.

    • [13] 贾晓飞,苏彦春,邓景夫,等.多层合采砂岩油藏动态干扰及其影响因素[J].断块油气田,2016,23(3):334-337,353.JIA Xiaofei,SU Yanchun,DENG Jingfu,et al.Interlayer dynamic interference caused by commingled production and its influencing factors on sandstone reservoir[J].Fault-Block Oil and Gas Field,2016,23(3):334-337,353.

    • [14] 刘彦成,罗宪波,康凯,等.陆相多层砂岩油藏渗透率表征与定向井初期产能预测——以蓬莱19-3油田为例[J].石油勘探与开发,2017,44(1):97-103.LIU Yancheng,LUO Xianbo,KANG Kai,et al.Permeability char⁃ acterization and directional wells initial productivity prediction in the continental multilayer sandstone reservoirs:A case from Peng⁃ lai19-3 oil field,Bohai Bay Basin[J].Petroleum Exploration and Development,2017,44(1):97-103.

    • [15] 刘彦成,蒋曙鸿,康凯,等.渤海典型多层砂岩油藏中高含水期定向井产能预测新方法[J].地质科技情报,2019,38(1):214-220.LIU Yancheng,JIANG Shuhong,KANG Kai,et al.A new method of productivity prediction in the multilayer commingled produc⁃ tion with medium-high water-cut period[J].Geological Science and Technology Information,2019,38(1):214-220.

    • [16] 赵秀娟,左松林,吴家文,等.大庆油田特高含水期层系井网重构技术研究与应用[J].油气地质与采收率,2019,26(4):82-87.ZHAO Xiujuan,ZUO Songlin,WU Jiawen,et al.Study and appli⁃ cation of strata & well pattern reconstruction technique at extra high water cut stage in Daqing Oilfield[J].Petroleum Geology and Recovery Efficiency,2019,26(4):82-87.

    • [17] 郜益华,姜彬,张迎春,等.海上老油田多层油藏加密井产能评价方法——以渤海A油田N区块为例[J].油气地质与采收率,2021,28(4):120-130.GAO Yihua,JIANG Bin,ZHANG Yingchun,et al.Evaluation method for infill well productivity of multi-layer reservoirs in old offshore oilfields:A case of Block N in Bohai A Oilfield[J].Petro⁃ leum Geology and Recovery Efficiency,2021,28(4):120-130.

    • [18] 华溱,张昂昂,呼园平,等.一种新的注采连通研究方法在南泥湾油田偏桥区的应用[J].石化技术,2019,26(5):40-41.HUA Qin,ZHANG Angang,HU Yuanping,et al.Application of a new research method of injection-production connection in Bianq⁃ iao area of Nanniwan Oilfield[J].Petrochemical Industry Technol⁃ ogy,2019,26(5):40-41.

    • [19] 王海更,汪利兵,刘洪杰,等.利用生产动态及地震资料分析井间河流相砂体连通性[J].海洋石油,2014,34(3):66-71,105.WANG Haigeng,WANG Libing,LIU Hongjie,et al.Analysis of fluvial sand connectivity with production and seismic data[J].Off⁃ shore Oil,2014,34(3):66-71,105.

    • [20] 康博韬,杨宝泉,张迎春,等.深水浊积砂岩油田动态相渗规律分析及应用[J].特种油气藏,2019,26(5):106-111.KANG Botao,YANG Baoquan,ZHANG Yingchun,et al.Dynamic relative-permeability analysis and its application in deepwater turbidite sandstone oilfield[J].Special Oil & Gas Reservoirs,2019,26(5):106-111.

    • [21] 吕新东,冯文光,杨宇,等.利用动态数据计算相渗曲线的新方法[J].特种油气藏,2009,16(5):65-66,75.LÜ Xindong,FENG Wenguang,YANG Yu,et al.A new method of calculating relative permeability curve with performance data[J].Special Oil & Gas Reservoirs,2009,16(5):65-66,75.

    • [22] 崔传智,郑文乾,李立峰,等.基于动态数据反演的相渗曲线及应用效果[J].石油钻采工艺,2019,41(4):516-520.CUI Chuanzhi,ZHENG Wenqian,LI Lifeng,et al.The relative permeability curve based on dynamic data inversion and its appli⁃ cation effect[J].Oil Drilling & Production Technology,2019,41(4):516-520.

    • [23] 杜殿发,林新宇,巴忠臣,等.利用甲型水驱特征曲线计算相对渗透率曲线[J].特种油气藏,2013,20(5):93-96.DU Dianfa,LIN Xinyu,BA Zhongchen,et al.Calculation of rela⁃ tive permeability curve with Type A characteristic curve of water drive[J].Special Oil & Gas Reservoirs,2013,20(5):93-96.

    • [24] 郭伟峰,马鸿来,王作进,等.单井动态相渗曲线的建立及应用 [J].吐哈油气,2006,11(2):151-154.GUO Weifeng,MA Honglai,WANG Zuojin,et al.The establish⁃ ment of dynamic relative permeability curve of single well and ap⁃ plication in low permeability reservoir[J].Tuha Oil & Gas,2006,11(2):151-154.

    • [25] 潘杰,汪全林,凌浩川,等.基于生产数据确定海上稀油油田合理提液时机[J].复杂油气藏,2018,11(3):52-54,67.PAN Jie,WANG Quanlin,LING Haochuan,et al.Reasonable tim⁃ ing of increasing liquid production of offshore light oilfields based on production data[J].Complex Hydrocarbon Reservoirs,2018,11(3):52-54,67.

    • [26] 张金庆,安桂荣,许家峰,等.广适水驱曲线适应性分析及推广应用[J].中国海上油气,2013,25(6):56-60.ZHANG Jinqing,AN Guirong,XU Jiafeng,et al.Analyzing the ap⁃ plicability of an eurytopic water-drive curve and its extensible ap⁃ plications[J].China Offshore Oil and Gas,2013,25(6):56-60.

    • [27] 张金庆.水驱油田产量预测模型[M].北京:石油工业出版社,2013.ZHANG Jinqing.Production prediction model of water drive oil⁃ field[M].Beijing:Petroleum Industry Press,2013.

  • 参考文献

    • [1] 黄世军,康博韬,程林松,等.海上普通稠油油藏多层合采层间干扰定量表征与定向井产能预测[J].石油勘探与开发,2015,42(4):488-495.HUANG Shijun,KANG Botao,CHENG Linsong,et al.Quantita⁃ tive characterization of interlayer interference and productivity prediction of directional wells in the multilayer commingled pro⁃ duction of ordinary offshore heavy oil reservoirs[J].Petroleum Ex⁃ ploration and Development,2015,42(4):488-495.

    • [2] 马奎前,刘英宪,苏彦春.渤海S油田高含水期加密井产能评价 [J].断块油气田,2013,20(1):71-73.MA Kuiqian,LIU Yingxian,SU Yanchun.Productivity evaluation of infill well at high water cut stage in S Oilfield,Bohai Bay[J].Fault-Block Oil and Gas Field,2013,20(1):71-73.

    • [3] 陈胜宏,范白涛,张仁勇,等.海上稠油油田投产及生产管理探索[J].断块油气田,2009,16(5):69-71. CHEN Shenghong,FAN Baitao,ZHANG Renyong,et al.Discus⁃ sion on oilfield putting into production and production manage⁃ ment in offshore heavy oil oilfield[J].Fault-Block Oil and Gas Field,2009,16(5):69-71.

    • [4] 康凯,刘超,许万坤,等.薄互储层油藏层间干扰定量化表征新方法[J].复杂油气藏,2019,12(3):46-50.KANG Kai,LIU Chao,XU Wankun,et al.New quantitative char⁃ acterization method for interlayer interference of thin interbedded reservoir[J].Complex Hydrocarbon Reservoirs,2019,12(3):46-50.

    • [5] 缪飞飞,黄凯,胡勇,等.渤海油田层间干扰物理模拟研究及应用[J].特种油气藏,2019,26(1):136-140.MIAO Feifei,HUANG Kai,HU Yong,et al.Physical simulation of inter-layer interference and its application in Bohai Oilfield[J].Special Oil & Gas Reservoirs,2019,26(1):136-140.

    • [6] 马子麟,师永民,李宜强,等.用于多层油藏层间干扰预测的渗流阻力计算方法[J].油气地质与采收率,2021,28(3):104-110.MA Zilin,SHI Yongmin,LI Yiqiang,et al.Calculation method of seepage resistance for prediction of interlayer interference in mul⁃ tilayer reservoirs[J].Petroleum Geology and Recovery Efficiency,2021,28(3):104-110.

    • [7] 孙强,黄世军,李权.多层稠油油藏水驱动用程度评价方法[J].断块油气田,2020,27(3):323-326.SUN Qiang,HUANG Shijun,LI Quan.Evaluation method of water driving degree of multi-layer heavy oil reservoir[J].Fault-Block Oil and Gas Field,2020,27(3):323-326.

    • [8] 康博韬,张迎春,姜彬,等.海上薄互层砂岩油藏层系划分及射孔优化方法——以蓬莱 19-3油田为例[J].科学技术与工程,2021,21(17):7 067-7 073.KANG Botao,ZHANG Yingchun,JIANG Bin,et al.Stratification and perforation optimization method for offshore thin interbedded sandstone reservoir:A case study of PL19-3,Bohai[J].Science Technology and Engineering,2021,21(17):7 067-7 073.

    • [9] 陈楠.基于高含水期油田水驱特征的相渗曲线计算方法[J].石油化工应用,2021,40(5):23-27.CHEN Nan.Computation method of phase permeability curve based on water flooding characteristics of oilfield in high water cut period[J].Petrochemical Industry Application,2021,40(5):23-27.

    • [10] 刘洪杰.常规油藏多层合采层间干扰系数确定新方法[J].石油地质与工程,2013,27(5):80-82.LIU Hongjie.New determination method of interlayer interference coefficient among commingling production layers in conventional reservoirs[J].Petroleum Geology and Engineering,2013,27(5):80-82.

    • [11] 周文胜,李倩茹,耿站立,等.合采井层间干扰现象数学模拟研究[J].西南石油大学学报:自然科学版,2017,39(6):109-116.ZHOU Wensheng,LI Qianru,GENG Zhanli,et al.Mathematical simulation study on interlayer interference in commingled produc⁃ tion[J].Journal of Southwest Petroleum University:Science & Technology Edition,2017,39(6):109-116.

    • [12] 许家峰,张金庆,程林松,等.多层合采砂岩稠油油藏层间干扰动态表征及应用[J].中国海上油气,2016,28(4):48-54.XU Jiafeng,ZHANG Jinqing,CHENG Linsong,et al.The dynamic characterization and application of interlayer interference for sandstone heavy oil multilayer commingled producing[J].China Offshore Oil and Gas,2016,28(4):48-54.

    • [13] 贾晓飞,苏彦春,邓景夫,等.多层合采砂岩油藏动态干扰及其影响因素[J].断块油气田,2016,23(3):334-337,353.JIA Xiaofei,SU Yanchun,DENG Jingfu,et al.Interlayer dynamic interference caused by commingled production and its influencing factors on sandstone reservoir[J].Fault-Block Oil and Gas Field,2016,23(3):334-337,353.

    • [14] 刘彦成,罗宪波,康凯,等.陆相多层砂岩油藏渗透率表征与定向井初期产能预测——以蓬莱19-3油田为例[J].石油勘探与开发,2017,44(1):97-103.LIU Yancheng,LUO Xianbo,KANG Kai,et al.Permeability char⁃ acterization and directional wells initial productivity prediction in the continental multilayer sandstone reservoirs:A case from Peng⁃ lai19-3 oil field,Bohai Bay Basin[J].Petroleum Exploration and Development,2017,44(1):97-103.

    • [15] 刘彦成,蒋曙鸿,康凯,等.渤海典型多层砂岩油藏中高含水期定向井产能预测新方法[J].地质科技情报,2019,38(1):214-220.LIU Yancheng,JIANG Shuhong,KANG Kai,et al.A new method of productivity prediction in the multilayer commingled produc⁃ tion with medium-high water-cut period[J].Geological Science and Technology Information,2019,38(1):214-220.

    • [16] 赵秀娟,左松林,吴家文,等.大庆油田特高含水期层系井网重构技术研究与应用[J].油气地质与采收率,2019,26(4):82-87.ZHAO Xiujuan,ZUO Songlin,WU Jiawen,et al.Study and appli⁃ cation of strata & well pattern reconstruction technique at extra high water cut stage in Daqing Oilfield[J].Petroleum Geology and Recovery Efficiency,2019,26(4):82-87.

    • [17] 郜益华,姜彬,张迎春,等.海上老油田多层油藏加密井产能评价方法——以渤海A油田N区块为例[J].油气地质与采收率,2021,28(4):120-130.GAO Yihua,JIANG Bin,ZHANG Yingchun,et al.Evaluation method for infill well productivity of multi-layer reservoirs in old offshore oilfields:A case of Block N in Bohai A Oilfield[J].Petro⁃ leum Geology and Recovery Efficiency,2021,28(4):120-130.

    • [18] 华溱,张昂昂,呼园平,等.一种新的注采连通研究方法在南泥湾油田偏桥区的应用[J].石化技术,2019,26(5):40-41.HUA Qin,ZHANG Angang,HU Yuanping,et al.Application of a new research method of injection-production connection in Bianq⁃ iao area of Nanniwan Oilfield[J].Petrochemical Industry Technol⁃ ogy,2019,26(5):40-41.

    • [19] 王海更,汪利兵,刘洪杰,等.利用生产动态及地震资料分析井间河流相砂体连通性[J].海洋石油,2014,34(3):66-71,105.WANG Haigeng,WANG Libing,LIU Hongjie,et al.Analysis of fluvial sand connectivity with production and seismic data[J].Off⁃ shore Oil,2014,34(3):66-71,105.

    • [20] 康博韬,杨宝泉,张迎春,等.深水浊积砂岩油田动态相渗规律分析及应用[J].特种油气藏,2019,26(5):106-111.KANG Botao,YANG Baoquan,ZHANG Yingchun,et al.Dynamic relative-permeability analysis and its application in deepwater turbidite sandstone oilfield[J].Special Oil & Gas Reservoirs,2019,26(5):106-111.

    • [21] 吕新东,冯文光,杨宇,等.利用动态数据计算相渗曲线的新方法[J].特种油气藏,2009,16(5):65-66,75.LÜ Xindong,FENG Wenguang,YANG Yu,et al.A new method of calculating relative permeability curve with performance data[J].Special Oil & Gas Reservoirs,2009,16(5):65-66,75.

    • [22] 崔传智,郑文乾,李立峰,等.基于动态数据反演的相渗曲线及应用效果[J].石油钻采工艺,2019,41(4):516-520.CUI Chuanzhi,ZHENG Wenqian,LI Lifeng,et al.The relative permeability curve based on dynamic data inversion and its appli⁃ cation effect[J].Oil Drilling & Production Technology,2019,41(4):516-520.

    • [23] 杜殿发,林新宇,巴忠臣,等.利用甲型水驱特征曲线计算相对渗透率曲线[J].特种油气藏,2013,20(5):93-96.DU Dianfa,LIN Xinyu,BA Zhongchen,et al.Calculation of rela⁃ tive permeability curve with Type A characteristic curve of water drive[J].Special Oil & Gas Reservoirs,2013,20(5):93-96.

    • [24] 郭伟峰,马鸿来,王作进,等.单井动态相渗曲线的建立及应用 [J].吐哈油气,2006,11(2):151-154.GUO Weifeng,MA Honglai,WANG Zuojin,et al.The establish⁃ ment of dynamic relative permeability curve of single well and ap⁃ plication in low permeability reservoir[J].Tuha Oil & Gas,2006,11(2):151-154.

    • [25] 潘杰,汪全林,凌浩川,等.基于生产数据确定海上稀油油田合理提液时机[J].复杂油气藏,2018,11(3):52-54,67.PAN Jie,WANG Quanlin,LING Haochuan,et al.Reasonable tim⁃ ing of increasing liquid production of offshore light oilfields based on production data[J].Complex Hydrocarbon Reservoirs,2018,11(3):52-54,67.

    • [26] 张金庆,安桂荣,许家峰,等.广适水驱曲线适应性分析及推广应用[J].中国海上油气,2013,25(6):56-60.ZHANG Jinqing,AN Guirong,XU Jiafeng,et al.Analyzing the ap⁃ plicability of an eurytopic water-drive curve and its extensible ap⁃ plications[J].China Offshore Oil and Gas,2013,25(6):56-60.

    • [27] 张金庆.水驱油田产量预测模型[M].北京:石油工业出版社,2013.ZHANG Jinqing.Production prediction model of water drive oil⁃ field[M].Beijing:Petroleum Industry Press,2013.