-
川南长宁—威远页岩气区块已实现持续突破[1],成功打造了多个日产百万方平台,实现了中深层压裂工艺 1.0 向 2.0 迈进。泸州—渝西深层页岩气区块资源量占川南全区的 86%,实现了对薄储层拓边区、低产老区、复杂构造区的单点突破,同时打造了日产百万方单井,但主要集中在泸州区块[2-6]。渝西区块作为四川盆地海相页岩气持续规模上产的关键区块,Z202井区是目前渝西区块的主要评价与试采区,已有诸多学者对该区进行了研究,但更多地聚焦在储层孔隙结构等方面[7-9]。缝网压裂是实现页岩气效益开发的核心手段,结合多级裂缝刻画、缝网综合可压性评价,实施高强度注液、低孔数、低浓度段塞式加砂等工艺,实现对 Z203 井的有效改造,获得日产量为21.3×104 m3 /d,成为该区产量最高的标杆井[10]。但在后续工艺模式的复刻过程中发现,区内整体的单井增产效果明显不及长宁、泸州等区块。对泸州—渝西深层区块沉积、成岩作用机理的分析认为,储层地质因素也可能制约增产效果,而压裂施工过程中也可能存在工艺技术对储层的不适用。因此,通过搜集 Z202 井区 10 口评价井分析实验、地球物理解释成果、压裂施工与气相示踪剂产能测试资料,并以提高单井产量为目的,客观评价井区地质条件以及其中制约产量的主控因素[11],再通过大数据分析方法,系统分析工程因素对区内单井产量的适应性,优选井区最适宜的缝网压裂参数配置[12],从以往“蛮力改造”向“精细动用”转变,有效指导 Z203H1平台拉链式压裂取得显著成效,为渝西区块规模效益开发打下基础。
-
1 面临的地质挑战
-
Z202井区位于渝西区块北东位置,连片面积为 942 km2,区内呈现西侧平缓向斜、东侧狭窄背斜夹持宽缓向斜的构造特征,埋深大于 4 000 m 的区域占整个区块的69.2%。整体上背斜区域断裂更为发育,且伴生大量天然裂缝带;向斜区域多小型断裂,呈北东向发育。储层纵向上包括五峰组和龙马溪组一段一亚段,其中龙马溪组一段一亚段可划分为 4个小层,分别为龙一1 1、龙一1 2、龙一1 3 和龙一1 4。然而,渝西区块具有多项区别于川南长宁、泸州等区块的特殊地质条件,成为了该区储层改造面临的地质挑战。
-
1.1 储层厚度
-
相比川南长宁—威远、泸州等区块,渝西区块页岩气储层不仅厚度较薄,而且在Ⅰ类储层厚度、U/ Th> 1.25 储层厚度等方面展现相对的劣势,分别仅为 2~8 m 和 1~3 m(图1),这使得水力压裂时,即使对储层纵向上实现充分动用,获得较好的储层改造效果,也难以获得较好的资源产出。
-
图1 长宁—威远—泸州—渝西区块龙马溪组页岩气储层厚度对比
-
Fig.1 Comparison between shale gas reservoir thicknesses in Longmaxi Formation of Changning-Weiyuan, Luzhou,and western Chongqing Block
-
水平井穿行层位的优选是气井增产获得成功的重要保障[13-14]。渝西区块页岩气储层展现出了与长宁—威远、泸州等其他川南区块不同的特征,具体体现在地质和工程条件峰值分布的小层上:长宁、泸州区块龙一1 1 和龙一1 3 为储集物性峰值层,是具有高孔隙度、高总有机碳含量(TOC)、高含气量的地质“甜点”层;龙一1 2 为可压性峰值层,是具有高脆性矿物质量分数、高弹性模量的工程“甜点”层[15]; 渝西区块的储集物性、可压性峰值层均集中在龙一11(表1),是地质和工程的“双甜点”层。因此,储层改造策略与长宁—威远、泸州等区块有所差异。
-
1.2 孔缝特征
-
对比长宁—威远、泸州等区块,渝西区块储层面孔率较低,按孔隙大小划分,区内以介孔为主,次为宏孔,其中龙一1 1 宏孔所占比例最高;按成因划分,区内以无机孔为主,平均占 77%,孔隙间均孤立不连通发育,有机孔欠发育,大部分有机质并未发育孔隙,或局部孤立不连通发育,有机孔所占比例仅为 0.9%,远低于长宁 — 威远区块的 22.8%~33.8%。岩心观察结果还表明,区块内米级及以下尺度天然裂缝发育,主要集中在五峰组和龙一1 1 且裂缝密度较大,裂缝在储层内多呈方解石完全充填的状态,以水平缝、高角度缝和羽状缝为主。镜下观察结果表明,区内微裂缝极为发育,仍以水平缝为主,龙一1 1 的微裂缝发育程度最大可达80条/cm2,且具有较高的层理缝发育程度,有利于储层改造时水力裂缝沟通储层(表1),但孔隙与微裂缝同样呈现不连通的特征。整体上看,微裂缝发育对渝西区块水力压裂形成复杂缝网均呈现积极作用,但孔隙与孔隙、孔隙与裂缝之间不连通的关系对水力裂缝沟通储层的要求会更高。
-
1.3 断裂系统与地应力条件
-
通常,Ⅱ级及以上断裂不仅影响页岩气资源富集,而且影响水力裂缝扩展;Ⅲ和Ⅳ级断裂则主要起一定程度的扩展阻断作用。此外,断裂系统附近的应力状态也会恶化,导致应力差异增大,加大了改造难度。另一方面,断裂系统的过度发育,也将影响压后排采阶段返排液矿化度的大幅升高,同时导致压力快速下降。因此,渝西区块如何规避断裂系统、如何克服井周断裂系统的影响,是水力压裂取得效果的关键。
-
渝西区块是目前川南地区地应力条件最为苛刻的页岩气评价区:就平均最小水平主应力而言,长宁区块为 40~75 MPa,威远区块为 55~85 MPa,泸州区块为 70~95 MPa,而渝西区块为 75~95 MPa;就平均地应力差而言,长宁区块为 6~12 MPa,威远区块为8~15 MPa,泸州区块为11~17 MPa,而渝西区块为16~20 MPa。地应力差反映渝西区块水力压裂形成复杂缝网的难度较大。
-
2 压裂参数与工艺优化对策及适应性分析
-
2.1 压裂参数与工艺优化对策
-
目前,大多数深层页岩气压裂技术均是围绕地应力进行单因素考虑,对储层厚度、孔渗特征考虑较少,未深入剖析内在机理[16-21]。工程上给出地质上面临各项挑战的对策,更多体现在压裂参数上,由此,建立了渝西区块压裂参数优化对策:①针对储层厚度较薄的特征,将突破层理、全三维充分体积改造的思路[22-23] 更换为对优质薄储层径向上呈似 “饼状”进行充分的缝网改造,即保持渝西区块地质工程“双甜点”龙一1 1 的高钻遇率,同时保持高用液强度以实现优势层位最大限度的资源动用。②针对孔缝连通性较差的特征,基于缝网压裂理论,可通过缩短簇间距、增大加砂强度等方式,迫使水力裂缝产生更多分支进行人为沟通,使原本孤立存在的孔缝尽可能联结在一起,提高缝网复杂度,促使水力裂缝网络化发育,增加储层渗流能力。③针对发育的断裂系统与高地应力及差异带来的负面影响,应规避大型断裂系统,确保能被改造的区域均被充分改造,同时能够具备克服高地应力的施工能力,即采取大排量、暂堵转向工艺等手段提升裂缝复杂度。根据对策所对应的靶体、用液强度、加砂强度、射孔参数、施工排量和新工艺等变化趋势,分析已压井在该趋势下的适应性,进而为后续压裂井提供矿场支撑。
-
2.2 参数适应性分析
-
2.2.1 优质储层单段日产气贡献量
-
渝西区块五峰组、龙马溪组页岩气储层特征与渝东南焦石坝区块相似。因此,分析了五峰组和龙一1 1 的改造效果。以Z202H3-2井为例,进行液相示踪剂测试共计 24段,其中穿行五峰组共 12段、同时穿行五峰组至龙一1 1 共 2段、穿行龙一1 1 共 10段(表2)。测试结果表明,穿行五峰组时,平均每米日产气贡献量仅为 63.56 m3/(m·d),而龙一1 1达 215.23 m3/(m·d),折算至单段日产气贡献量分别为 0.38× 104 和 1.40×104 m3/d,展现了渝西区块龙一1 1 卓越的供产能力,与渝西区块参数优化对策一致。
-
2.2.2 用液强度
-
充足的压裂液能保证在层理控制下的水力裂缝沿径向得到充分扩展。大量数学模型研究结果表明水力裂缝长度与压裂液用量呈正相关关系,但随着压裂时间推移,水力裂缝扩展程度将逐渐降低。选取了目前整个渝西区块已压井各压裂段用液强度与各段微地震监测储层改造体积(简称 SRV)、示踪剂监测单段日产气贡献量(部分井未进行示踪剂监测)进行关联分析(图2)。结果表明,用液强度为 40 m3 /m时能取得较大单段 SRV和单段日产气贡献量,且单段 SRV 仍存在继续增大可能,但单段日产气贡献量却已存在拐点,推测与用液强度较大造成段间干扰有关。因此,尽管增大用液强度有助于增加单段 SRV,但考虑到对产量的贡献增幅已受到限制,故认为用液强度可维持高强度,但不宜进一步提升。该结果与参数优化对策一致。
-
2.2.3 簇间距
-
大量理论与实践研究均表明,簇间距的缩减对储层的动用程度有着积极作用,能将储层“打得更碎”。对于渝西区块,由于孔隙与微裂缝的连通性较差,亟需通过人为改造手段建立更多“高速通道”实现资源动用。同样以上述各已压井的单段段内平均簇间距与单段 SRV 和单段日产气贡献量进行关联分析(图3)。结果表明,不论是单井内各段,还是井与井之间,随着簇间距的缩短,单段 SRV、单井 SRV 均呈现增大的趋势;但段内平均簇间距与单段日产气贡献量的关系存在 2 个峰值,段内簇数为 3 簇的井在段内平均簇间距约为 18 m、大于 3 簇的井在段内平均簇间距约为12 m时能获得较高产量,表明单段3簇和多簇工艺均能取得较好效果。但对比多簇与 3 簇井的裂缝复杂度(即微地震监测裂缝宽度除以裂缝长度)和单井加砂强度可知(表3),多簇压裂还能起到增加裂缝复杂度,提高加砂强度等优势,对促进沟通储层、长期维持导流能力具有积极作用,可确保多簇井长期累积产能优于 3 簇井。因此,进一步缩短簇间距是可行的。
-
图2 渝西区块已压井各段用液强度与单段SRV、单段日产气贡献量的关系
-
Fig.2 Relationship of fracturing fluid intensity with single-stage SRV and single-stage daily gas production in each stage of fractured wells in western Chongqing Block
-
2.2.4 加砂强度
-
加砂强度的提升对页岩气单井产量的作用明显[24],且已在长宁区块矿场实践得以证实。渝西区块埋深大,孔缝连通不佳,更需要大量支撑剂用以支撑水力裂缝维持渗流能力。因此,提高液体的携砂效率,即单位体积压裂液承载的支撑剂量越大,加砂强度也就越高。分析已压井单段携砂效率、加砂强度与单段日产气贡献量的关系(图4)认为,随着液体携砂效率的提升,加砂强度的逐渐增大,水力裂缝能够被充分支撑提供良好的渗流通道,进而对应较高产量。由此可见,提高加砂强度的对策是可行的。
-
图3 渝西区块已压井各段平均簇间距与单段SRV、单段日产气贡献量的关系
-
Fig.3 Relationship of average cluster spacing with single-stage SRV and single-stage daily gas production in each stage of fractured wells in western Chongqing Block
-
2.2.5 施工排量
-
施工排量的提高能够提供足够的净压力作用于水力裂缝,促进水力裂缝转向扩展,增加储层改造规模[25-26]。分析已压井各段施工排量与单段 SRV、单段日产气贡献量的关系(图5)认为,随着施工排量的增加,单段 SRV 呈明显增大的趋势,并具有更高的单段日产气贡献量。在地面施工设备能够满足要求的前提下,可进一步提高施工排量实现渝西区块资源动用率的提升。
-
图4 渝西区块已压井各段液体携砂效率、加砂强度与单段日产气贡献量的关系
-
Fig.4 Relationship of proppant-carrying efficiency of fracturing fluid and proppant concentration with single-stage daily gas production in each stage of fractured wells in western Chongqing Block
-
图5 渝西区块已压井各段施工排量与单段SRV、单段日产气贡献量的关系
-
Fig.5 Relationship of pump rates with single-stage SRV and single-stage daily gas production in each stage of fractured wells in western Chongqing Block
-
2.3 暂堵转向工艺的适应性
-
不论是多簇还是 3 簇压裂,难免会造成簇效率不均衡的情况,部分簇或未开启,或未得到充分扩展。压裂过程中投注暂堵剂、暂堵球能有效解决非均匀扩展的问题[27]。不仅如此,暂堵转向能有效克服水力裂缝遇大型断裂和天然裂缝带造成的滤失,能及时封堵已形成的高滤失裂缝。对已压井实施了暂堵转向工艺、对未实施暂堵转向工艺的压裂段进行区分,分别统计与单段SRV和单段日产气贡献量的关系(图6)。结果表明,实施了暂堵转向的压裂段,不仅能获得更大的单段 SRV,还能具有更高的单段日产气贡献量。若实施进一步缩短簇间距的举措,簇数进一步增加,簇间的非均匀扩展将会更明显,暂堵转向工艺的实施将能更好地发挥积极作用。
-
图6 渝西区块已压井暂堵转向、未暂堵转向压裂与单段SRV、单段日产气贡献量的关系
-
Fig.6 Relationship of temporary plugging and diversion technique with single-stage SRV and single-stage daily gas production of fractured wells in western Chongqing Block
-
2.4 压裂参数及暂堵转向工艺的敏感性
-
利用层次分析法,对压裂优化参数与单段 SRV、单段日产气贡献量进行了敏感性分析。结果表明,簇间距与单段 SRV、单段日产气贡献量呈负相关关系,加砂强度、用液强度、施工排量等参数与单段 SRV、单段日产气贡献量呈正相关关系。其中,对单段 SRV 影响权重由大到小依次为簇间距 (-0.659)、施工排量(0.443)、用液强度(0.33)、加砂强度(0.289)、暂堵转向是否实施(0.16);对单段日产气贡献量影响权重由大到小依次为簇间距 (-0.627)、加砂强度(0.346)、用液强度(0.304)、施工排量(0.206)、暂堵转向是否实施(0.15)。分析认为,簇间距对单段SRV和单段日产气贡献量的影响最为明显,可见,簇间距的缩短对应力干扰性极强,同时能保证单位体积内的资源动用率更高[28];施工排量、用液强度对单段 SRV 的影响同样明显,表明大排量施工可通过提高净压力等方式提升裂缝复杂度,用液强度大能够确保水力裂缝扩展得更长更远;加砂强度对日产气贡献量的影响较大,表明支撑剂导流能力有助于改善并长期维持渝西区块孔缝连通性,由于支撑剂并不参与水力裂缝的形成,仅起到支撑作用,所以尽管加砂强度与单段SRV存在正相关性,但主要还是与加砂强度较大的井(段) 对应较大的用液强度有关。
-
综合分析认为,压裂参数优化对策与各项参数的适应性是匹配的,具有理论和实施的基础,渝西区块后续的压裂井可采取该模式进行试验。因此,提出渝西区块压裂参数下限:①以 1 500 m 水平段长度为基准,以 20×104 m3作为测试产量基本要求,统计目前渝西区块所有已压井穿行龙一1 1 可获得平均 150 m3/(m·d)每米日产量反推,需保证龙一1 1 钻遇率不低于 90%。②对已压井的分析可知,用液强度约为 40 m3 /m可获得单段 SRV和单段日产气贡献量的峰值(图3),故需保证后续压裂井用液强度稳定在 40 m3/m 左右。③已压井段内平均簇间距由早期的约 18 m 缩短至约 12 m 可取得较高的增产改造敏感性,因此后续压裂井可进一步控制簇间距在10 m及以下,建立更多的“高速通道”实现资源的动用。 ④加砂强度的提升可显著提升单段乃至单井产量,从统计结果上看(图4),当加砂强度大于2.5 t/m后,单段日产气贡献量大于 104 m3/d 的概率大幅提升,因而以此作为加砂强度下限。⑤已压井施工排量的提升对增产改造效果始终呈现出显著提升的趋势,故可保证后续压裂井采用不低于17 m3 /min排量进行施工。⑥暂堵转向工艺尽管在敏感性上较低,但当簇间距缩短、簇数增加后,尽可能全井段实施暂堵转向可促进各簇均匀扩展,提升簇效率。
-
3 矿场应用效果
-
Z203H1 平台是近期采用优化参数进行施工的平台,北东方向钻井 1口,为 Z203井,南西方向钻井 3口,龙一1 1 平均钻遇率达 96.14%,具备试验与取得良好改造效果的基础。井间距约为 400 m,各井均划分为25段,单段簇数为8簇,簇间距均为7~10 m,压裂分段段长约为60 m,主体排量均为18 m3 /min及以上,同时配备变黏滑溜水确保加砂强度。施工过程中,采用了暂堵剂+暂堵球配合工艺,不仅改善了簇效率,还有效提升了各簇裂缝的复杂度,尤其在断裂系统较为发育的压裂段,起到了保证高加砂强度、低施工风险的作用。最终,该平台平均用液强度为 41.09 m3 /m,加砂强度为 2.85 t/m,各项参数符合优化对策标准(表4)。
-
通过对龙一1 1 钻遇率、用液强度、簇间距、加砂强度、施工排量和暂堵转向工艺的优化和实施, Z203H1平台较以往已压井在各方面均具有优势(表5):①裂缝复杂度明显较 3簇井更高,提升 60.59%,与前期多簇压裂井复杂度基本相当。②单段平均 SRV 较 3 簇井更高,提升 38.3%,与前期多簇井基本持平。③测试日产量较 3 簇井、前期多簇井分别提高62.3%和75%,平均提高68.67%。④截至2020年11 月,该平台投产约 150 d,井均累积产气量为 1 948.1×104 m3,而区内前期实施井相同时间内平均仅为641.2×104 m3,且目前已投产1~2 a,井均累积产气量也仅为1 291.4×104 m3,充分展示了参数的良好适应性。不仅如此,尽管裂缝复杂度、单段平均 SRV 等宏观改造体积与前期多簇井基本相当,但簇间距由 10~15 m 缩减至 7~10 m,大大增强了簇间应力扰动,加砂强度由 1.5~2 t/m 提升至 2.5 t/m 以上,实现了单位体积储层内资源的进一步动用,证实了龙一1 1 高钻遇率、高用液强度、密簇间距、高加砂强度、大施工排量和暂堵转向工艺的共同作用,有利于渝西区块页岩气单井产量的提升,为下一步优化参数,实现低成本作业奠定了基础。
-
4 结论
-
通过分析渝西区块地质资料,认为渝西区块面临着储层厚度偏薄、双甜点聚焦龙一1 1,孔缝连通性较差,断裂系统与地应力条件易抑制裂缝扩展等挑战,根据挑战,提出了龙一1 1 高钻遇率、高用液强度、密簇间距、高加砂强度、大施工排量等压裂参数和暂堵转向工艺的优化对策。
-
通过已压井的压裂参数适应性分析认为,优化对策可行性强,提出龙一1 1 钻遇率不得低于90%,用液强度约为40 m3 /m,簇间距控制在10 m及以下,加砂强度不得低于 2.5 t/m,施工排量不低于 17 m3 / min,暂堵转向工艺尽可能全井段实施作为优化对策的参考标准。在 Z203H1 平台得到应用和验证,裂缝复杂度得以提高,单段 SRV 得以增大,单位体积储层的资源动用率得到提升,测试日产量和累积产量显著增大并稳定。
-
参考文献
-
[1] 谢军,鲜成钢,吴建发,等.长宁国家级页岩气示范区地质工程一体化最优化关键要素实践与认识[J].中国石油勘探,2019,24(2):174-185.XIE Jun,XIAN Chenggang,WU Jianfa,et al.Optimal key ele⁃ ments of geoengineering integration in Changning National Shale Gas Demonstration Zone[J].China Petroleum Exploration,2019,24(2):174-185.
-
[2] 杨洪志,赵圣贤,刘勇,等.泸州区块深层页岩气富集高产主控因素[J].天然气工业,2019,39(11):55-63.YANG Hongzhi,ZHAO Shengxian,LIU Yong,et al.Main control⁃ ling factors of enrichment and high-yield of deep shale gas in the Luzhou Block,southern Sichuan Basin[J].Natural Gas Industry,2019,39(11):55-63.
-
[3] 马新华,谢军,雍锐,等.四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素[J].石油勘探与开发,2020,47(5):841-855.MA Xinhua,XIE Jun,YONG Rui,et al.Geological characteristics and high production control factors of shale gas reservoirs in Silu⁃ rian Longmaxi Formation,southern Sichuan Basin,SW China[J].Petroleum Exploration and Development,2020,47(5):841-855.
-
[4] 范宇,王佳珺,刘厚彬,等.复杂载荷下深层脆性页岩力学性能及破坏规律实验研究[J].特种油气藏,2020,27(4):143-148.FAN Yu,WANG Jiajun,LIU Houbin,et al.Test and analysis of mechanical properties and failure patterns for the deep brittle shale under complex load[J].Special Oil & Gas Reservoirs,2020,27(4):143-148.
-
[5] 沈骋,谢军,赵金洲,等.泸州—渝西区块海相页岩可压性演化差异[J].中国矿业大学学报,2020,49(4):742-754.SHEN Cheng,XIE Jun,ZHAO Jinzhou,et al.Evolution difference of fracability of marine shale gas reservoir in Luzhou and west Chongqing block,Sichuan Basin[J].Journal of China University of Mining & Technology,2020,49(4):742-754.
-
[6] 沈骋,谢军,赵金洲,等.提升川南地区深层页岩气储层压裂缝网改造效果的全生命周期对策[J].天然气工业,2021,41(1):169-177.SHEN Cheng,XIE Jun,ZHAO Jinzhou,et al.Whole-life cycle countermeasures to improve the stimulation effect of network frac⁃ turing in deep shale gas reservoirs of the Southern Sichuan Basin [J].Natural Gas Industry,2021,41(1):169-177.
-
[7] 张海杰,蒋裕强,周克明,等.页岩气储层孔隙连通性及其对页岩气开发的启示——以四川盆地南部下志留统龙马溪组为例 [J].天然气工业,2019,39(12):22-31.ZHANG Haijie,JIANG Yuqiang,ZHOU Keming,et al.Connectiv⁃ ity of pores in shale reservoirs and its implications for the develop⁃ ment of shale gas:A case study of the Lower Silurian Longmaxi Formation in the southern Sichuan Basin[J].Natural Gas Indus⁃ try,2019,39(12):22-31.
-
[8] 张成林,张鉴,李武广,等.渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J].天然气地球科学,2019,30(12):1 794-1 804.ZHANG Chenglin,ZHANG Jian,LI Wuguang,et al.Deep shale reservoir characteristics and exploration potential of WufengLongmaxi Formations in Dazu area,western Chongqing[J].Natu⁃ ral Gas Geoscience,2019,30(12):1 794-1 804.
-
[9] 蒋裕强,刘雄伟,付永红,等.渝西地区海相页岩储层孔隙有效性评价[J].石油学报,2019,40(10):1 233-1 243.JIANG Yuqiang,LIU Xiongwei,FU Yonghong,et al.Evaluation of effective porosity in marine shale reservoir,western Chongqing [J].Acta Petrolei Sinica,2019,40(10):1 233-1 243.
-
[10] 沈骋,郭兴午,陈马林,等.深层页岩气水平井储层压裂改造技术[J].天然气工业,2019,39(10):68-75.SHEN Cheng,GUO Xingwu,CHEN Malin,et al.Horizontal well fracturing stimulation technology for deep shale gas reservoirs[J].Natural Gas Industry,2019,39(10):68-75.
-
[11] 何治亮,聂海宽,胡东风,等.深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组—龙马溪组为例[J].石油学报,2020,41(4):379-391.HE Zhiliang,NIE Haikuan,HU Dongfeng,et al.Geological prob⁃ lems in the effective development of deep shale gas:a case study of Upper Ordovician Wufeng-Lower Silurian Longmaxi forma⁃ tions in Sichuan Basin and its periphery[J].Acta Petrolei Sinica,2020,41(4):379-391.
-
[12] 陈作,李双明,陈赞,等.深层页岩气水力裂缝起裂与扩展试验及压裂优化设计[J].石油钻探技术,2020,48(3):70-76.CHEN Zuo,LI Shuangming,CHEN Zan,et al.Hydraulic fracture initiation and extending tests in deep shale gas formations and fracturing design optimization[J].Petroleum Drilling Techniques,2020,48(3):70-76.
-
[13] 赵培荣.页岩气水平井穿行层位优选[J].石油实验地质,2020,42(6):1 014-1 023.ZHAO Peirong.Optimization of target layer selection in shale gas horizontal wells[J].Petroleum Geology & Experiment,2020,42(6):1 014-1 023.
-
[14] 廖东良.页岩气层“双甜点”评价方法及工程应用展望[J].石油钻探技术,2020,48(4):94-99.LIAO Dongliang.Evaluation methods and engineering application of the feasibility of“double sweet spots”in shale gas reservoirs[J].Petroleum Drilling Techniques,2020,48(4):94-99.
-
[15] 陈勇,翟明洋.基于岩心脆性特征的致密砂砾岩储层水力裂缝复杂性分析[J].油气地质与采收率,2020,27(5):33-43.CHEN Yong,ZHAI Mingyang.Complexity analysis of hydraulic fracture in tight glutenite reservoir based on core brittleness[J].Petroleum Geology and Recovery Efficiency,2020,27(5):33-43.
-
[16] 蒋廷学,卞晓冰,王海涛,等.深层页岩气水平井体积压裂技术 [J].天然气工业,2017,37(1):90-96.JIANG Tingxue,BIAN Xiaobing,WANG Haitao,et al.Volume fracturing of deep shale gas horizontal wells[J].Natural Gas In⁃ dustry,2017,37(1):90-96.
-
[17] 张弛.涪陵页岩气田平桥区块深层气井压裂工艺优化与应用 [J].岩性油气藏,2018,30(6):160-168.ZHANG Chi.Optimization and application of deep gas well frac⁃ turing in Pingqiao block of Fuling shale gas field[J].Lithologic Reservoirs,2018,30(6):160-168.
-
[18] 曹学军,王明贵,康杰,等.四川盆地威荣区块深层页岩气水平井压裂改造工艺[J].天然气工业,2019,39(7):81-87.CAO Xuejun,WANG Minggui,KANG Jie,et al.Fracturing tech⁃ nologies of deep shale gas horizontal wells in the Weirong Block,southern Sichuan Basin[J].Natural Gas Industry,2019,39(7):81-87.
-
[19] 段华,李荷婷,代俊清,等.深层页岩气水平井“增净压、促缝网、保充填”压裂改造模式——以四川盆地东南部丁山地区为例[J].天然气工业,2019,39(2):66-70.DUAN Hua,LI Heting,DAI Junqing,et al.Horizontal well fractur⁃ ing mode of“increasing net pressure,promoting network fracture and keeping conductivity”for the stimulation of deep shale gas reservoirs:A case study of the Dingshan area in SE Sichuan Basin [J].Natural Gas Industry,2019,39(2):66-70.
-
[20] 曾波,王星皓,黄浩勇,等.川南深层页岩气水平井体积压裂关键技术[J].石油钻探技术,2020,48(5):77-84.ZENG Bo,WANG Xinghao,HUANG Haoyong,et al.Key technol⁃ ogy of volumetric fracturing in deep shale gas horizontal wells in southern Sichuan[J].Petroleum Drilling Techniques,2020,48(5):77-84.
-
[21] 王兴文,林永茂,缪尉杰.川南深层页岩气体积压裂工艺技术 [J].油气藏评价与开发,2021,11(1):102-108.WANG Xingwen,LIN Yongmao,MIAO Weijie.Volume fracturing technology of deep shale gas in southern Sichuan[J].Reservoir Evaluation and Development,2021,11(1):102-108.
-
[22] 赵金洲,任岚,沈骋,等.页岩气储层缝网压裂理论与技术研究新进展[J].天然气工业,2018,38(3):1-14.ZHAO Jinzhou,REN Lan,SHEN Cheng,et al.Latest research pro⁃ gresses in network fracturing theories and technologies for shale gas reservoirs[J].Natural Gas Industry,2018,38(3):1-14.
-
[23] 周彤,王海波,李凤霞,等.层理发育的页岩气储集层压裂裂缝扩展模拟[J].石油勘探与开发,2020,47(5):1 039-1 051.ZHOU Tong,WANG Haibo,LI Fengxia,et al.Numerical simula⁃ tion of hydraulic fracture propagation in laminated shale reservoirs [J].Petroleum Exploration and Development,2020,47(5):1 039-1 051.
-
[24] 沈云琦,李凤霞,张岩,等.复杂裂缝网络内支撑剂运移及铺置规律分析[J].油气地质与采收率,2020,27(5):134-142.SHEN Yunqi,LI Fengxia,ZHANG Yan,et al.Analysis of prop⁃ pant migration and layout in complex fracture network[J].Petro⁃ leum Geology and Recovery Efficiency,2020,27(5):134-142.
-
[25] 魏旭,张永平,尚立涛,等.多段多簇压裂储层改造效果影响因素分析[J].油气地质与采收率,2018,25(2):96-102,114.WEI Xu,ZHANG Yongping,SHANG Litao,et al.Analysis of in⁃ fluencing factors of reservoir stimulation effect in multi-cluster staged fracturing[J].Petroleum Geology and Recovery Efficiency,2018,25(2):96-102,114.
-
[26] 张永平,魏旭,唐鹏飞,等.松辽盆地古龙页岩油储层压裂裂缝扩展机理与压裂工程技术[J].大庆石油地质与开发,2020,39(3):170-175.ZHANG Yongping,WEI Xu,TANG Pengfei,et al.Fracture propa⁃ gating mechanism and fracturing engineering technology in Gu⁃ long shale oil reservoirs of Songliao Basin[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(3):170-175.
-
[27] 周彤,陈铭,张士诚,等.非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化[J].天然气工业,2020,40(3):82-91.ZHOU Tong,CHEN Ming,ZHANG Shicheng,et al.Simulation of fracture propagation and optimization of ball-sealer in-stage di⁃ version under the effect of heterogeneous stress field[J].Natural Gas Industry,2020,40(3):82-91.
-
[28] 徐加祥,丁云宏,杨立峰,等.致密油藏分段多簇压裂水平井复杂缝网表征及产能分析[J].油气地质与采收率,2019,26(5):132-138.XU Jiaxiang,DING Yunhong,YANG Lifeng,et al.Complex frac⁃ ture network characterization and productivity analysis of multi⁃ stage fractured horizontal well in tight oil reservoirs[J].Petroleum Geology and Recovery Efficiency,2019,26(5):132-138.
-
摘要
泸州—渝西深层页岩气区块分布面积占四川盆地南部的 86%,其中奥陶系五峰组—志留系龙马溪组是进一步实现天然气规模上产的主力储层。其中,渝西区块面临诸多地质挑战,包括储层厚度偏薄,地质工程“双甜点”汇聚在同层,孔缝连通性较差,埋藏深度大,断裂系统发育和地应力条件苛刻等。基于区块内已实施井的地质与工程参数,结合页岩气缝网压裂理论,采用大数据分析方法,形成应对不同地质挑战的压裂工艺优化措施,包括龙马溪组一段一亚段 1小层(龙一1 1 )高钻遇率、高用液强度、密簇间距、高加砂强度、大施工排量和暂堵转向工艺等,并对已压井压裂参数进行适应性分析,以验证优化措施的可行性,提出适用于渝西区块的缝网压裂参数模板,最终应用于矿场实现缝网压裂,单井裂缝复杂度和储层改造体积较早期3簇井分别提升60.59%和38.3%,并整体获得高产,单井测试日产量较早期已压井提升68.67%,累积产量大幅提升,为深层页岩气高效开发奠定了基础。
Abstract
The distribution area of deep shale gas blocks in Luzhou-western Chongqing area accounts for 86% of the south- ern Sichuan Basin,and the Ordovician Wufeng Formation-Silurian Longmaxi Formation are the main reservoirs for further large-scale production of natural gas. However,the reservoirs in the western Chongqing Block faces many geological chal- lenges,including thin reservoirs,“dual sweet spots”of geological engineering converging in the same layer,poor connectivi- ty of pores and fractures,large burial depth,developed fault systems,and harsh geostress conditions. Based on the geologi- cal and engineering parameters of the wells fractured in the block and combined with the theory on shale gas fracture-net- work fracturing,big data analysis was adopted to develop optimization measures for the fracturing process to meet different geological challenges. These measures included high drilling ratios in the first layer of the first sub-member in the first member of Longmaxi Formation(Long11 1 ),great fracturing fluid intensity,short cluster distances,high proppant concentra- tions,high pump rates,and temporary plugging and diversion. The adaptive analysis of the fracturing parameters in the frac- tured wells was carried out to verify the feasibility of those measures. On this basis,a template of fracture-network fractur- ing parameters suitable for the western Chongqing Block was put forward and applied in the field for fracture-network frac- turing. As a result,the fracture complexity and stimulated reservoir volume of a single well were increased by 60.59% and 38.3% respectively compared with the earlier three clusters of wells,and the overall production was high. The single-well test productivity grew by 68.67%,and the cumulative production was enhanced significantly,laying a foundation for the effi- cient development of deep shale gas reservoirs.