en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

孙林(1983—),男,四川南充人,高级工程师,从事油气田开发研究。E-mail:sunlin3@cnooc.com.cn。

中图分类号:TE357.2

文献标识码:A

文章编号:1009-9603(2022)02-0145-10

DOI:10.13673/j.cnki.cn37-1359/te.2022.02.018

参考文献 1
林会喜,宫亚军,赵乐强,等.火山岩风化壳发育规律及油气地质意义——以准西车排子地区石炭系火山岩为例[J].油气地质与采收率,2019,26(6):11-18.LIN Huixi,GONG Yajun,ZHAO Leqiang,et al.Volcanic weather⁃ ing crust development pattern and its petrogeological signifi⁃ cance:A case study of Carboniferous volcanic crust of Chepaizi area in West Junggar Basin[J].Petroleum Geology and Recovery Efficiency,2019,26(6):11-18.
参考文献 2
王辉,邱争科,周庆,等.克拉玛依油田六区、七区、九区石炭系火山岩内幕成藏规律研究[J].特种油气藏,2019,26(4):33-37,153.WANG Hui,QIU Zhengke,ZHOU Qing,et al.Carboniferous vol⁃ canic inside hydrocarbon accumulation patterns in the 6th,7th and 9th districts of Karamay Oilfield[J].Special Oil & Gas Reser⁃ voirs,2019,26(4):33-37,153.
参考文献 3
李浩,王保华,陆建林,等.松辽盆地南部长岭断陷断陷层油气成藏组合特征[J].石油实验地质,2019,41(5):708-716.LI Hao,WANG Baohua,LU Jianlin,et al.Characteristics of hydro⁃ carbon plays in faulted formations,Changling Fault Depression,southern Songliao Basin[J].Petroleum Geology & Experiment,2019,41(5):708-716.
参考文献 4
袁述武,李想,史乐,等.克拉玛依油田六、七、九区石炭系内幕有利火山岩储层岩性分布预测[J].大庆石油地质与开发,2019,38(6):40-45.YUAN Shuwu,LI Xiang,SHI Le,et al.Prediction of the lithology distribution of favorable volcanic reservoirs in the inside Carbonif⁃ erous system in Block6,7 and 9 of Karamay Oilfield[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2019,38(6):40-45.
参考文献 5
庞尚明,李杪,彭君,等.查干凹陷苏红图组火山岩特征及测井识别[J].断块油气田,2019,26(3):314-318.PANG Shangming,LI Miao,PENG Jun,et al.Characteristics and logging identification of volcanic rocks in Suhongtu Formation of Chagan Depression[J].Fault-Block Oil and Gas Field,2019,26(3):314-318.
参考文献 6
付茜.中国火成岩油气勘探开发现状及展望[J].石油钻采工艺,2017,39(1):25-32.FU Qian.Status and prospect of igneous oil and gas exploration and development in China[J].Oil Drilling & Production Technolo⁃ gy,2017,39(1):25-32.
参考文献 7
牛宝荣,潘红芳.火山岩油藏储层特征及开发对策[J].吐哈油气,2008,13(3):278-292.NIU Baorong,PAN Hongfang.Reservoir characteristics and devel⁃ opment countermeasures of volcanic reservoir[J].Tuha Oil & Gas,2008,13(3):278-292.
参考文献 8
刘宝鸿,张斌,郭强,等.辽河坳陷东部凹陷深层火山岩气藏的发现与勘探启示[J].中国石油勘探,2020,25(3):33-43.LIU Baohong,ZHANG Bin,GUO Qiang,et al.Discovery and ex⁃ ploration inspiration of deep volcanic gas reservoirs in eastern sag of Liaohe depression[J].China Petroleum Exploration,2020,25(3):33-43.
参考文献 9
陈元春.辽河东部凹陷火山岩油藏高效开发研究[J].地球物理学进展,2010,25(1):63-70.CHEN Yuanchun.An effective way of developing volcanic reser⁃ voirs in the Eastern Liaohe Depression[J].Progress in Geophys⁃ ics,2010,25(1):63-70.
参考文献 10
刘应根,徐景润,张健强.准噶尔盆地火山岩储层改造技术研究与实践[J].新疆石油科技,2008,18(3):25-27,46.LIU Yinggen,XU Jingrun,ZHANG Jianqiang.Research and prac⁃ tice of volcanic reservoir modification technology in Junggar Basin [J].Xinjiang Petroleum Seience & Technology,2008,18(3):25-27,46.
参考文献 11
景依.石西油田石炭系火山岩油藏酸化工艺技术研究[J].新疆石油科技,1996,6(4):23-31.JING Yi.Research on acidification process technology of Carbonif⁃ erous volcanic reservoir in Shixi oilfield[J].Xinjiang Petroleum Seience & Technology,1996,6(4):23-31.
参考文献 12
钟诚,刘铉东,韩玉婷,等.适应特殊岩性的酸液体系研究[J].石油与天然气化工,2012,41(6):597-599.ZHONG Cheng,LIU Xuandong,HAN Yuting,et al.Research on the acid systems to adapt special lithology[J].Chemical Engineer⁃ ing of Oil & Gas,2012,41(6):597-599.
参考文献 13
高春华.松南火山岩水平井储层改造工艺技术研究与应用[J].地质装备,2018,19(5):34-36.GAO Chunhua.Research and application of reservoir modification process technology of Songnan volcanic rock horizontal well[J].Equipment for Geotechnical Engineering,2018,19(5):34-36.
参考文献 14
曹英权,王清斌,曲希玉,等.岩屑的有机酸溶蚀实验及验证——以渤中凹陷 CFD6-4 油田东营组为例[J].石油学报,2020,41(7):841-852.CAO Yingquan,WANG Qingbin,QU Xiyu,et al.A dissolution ex⁃ periment of organic acid of cuttings and its verification:a case study of the Dongying Formation of the CFD6-4 oilfield,Bozhong sag[J].Acta Petrolei Sinica,2020,41(7):841-852.
参考文献 15
易飞,赵秀娟,刘文辉,等.渤海油田注水井解堵增注技术[J].石油钻采工艺,2004,26(5):53-56.YI Fei,ZHAO Xiujuan,LIU Wenhui,et al.Plugging removal and injection enhancement technology for the water injection wells in Bohai Oilfield[J].Oil Drilling & Production Technology,2004,26(5):53-56.
参考文献 16
李年银,赵立强,刘平礼,等.多氢酸酸化技术及其应用[J].西南石油大学学报:自然科学版,2009,31(6):131-134.LI Nianyin,ZHAO Liqiang,LIU Pingli,et al.The acidizing tech⁃ nology and application of multi-hydrogen acid[J].Journal of Southwest Petroleum University:Science & Technology Edition,2009,31(6):131-134.
参考文献 17
孙林,杨军伟,周伟强,等.一种适合海上砂岩油田的单段塞活性酸体系[J].钻井液与完井液,2016,33(1):97-101.SUN Lin,YANG Junwei,ZHOU Weiqiang,et al.Acidizing off⁃ shore sandstone reservoir with a single slug active acid system[J].Drilling Fluid & Completion Fluid,2016,33(1):97-101.
参考文献 18
孙林,孟向丽,蒋林宏,等.渤海油田注水井酸化低效对策研究 [J].特种油气藏,2016,23(3):144-147.SUN Lin,MENG Xiangli,JIANG Linhong,et al.Countermeasures of inefficient acidification in water injection wells of Bohai oilfield [J].Special Oil & Gas Reservoirs,2016,23(3):144-147.
参考文献 19
孙林,邹信波,刘春祥,等.南海东部油田水平筛管井酸化工艺改进及应用[J].中国海上油气,2016,28(6):82-87.SUN Lin,ZOU Xinbo,LIU Chunxiang,et al.Improvement on and application of acidization technology for horizontal wells with screen pipe in oilfields in eastern South China Sea[J].China Off⁃ shore Oil and Gas,2016,28(6):82-87.
参考文献 20
管宝山,刘萍,翟文,等.酸化用缓蚀剂性能试验方法及评价指标:SY/T 5405—2019[S].北京:石油工业出版社,2019.GUAN Baoshan,LIU Ping,ZHAI Wen,et al.The method for mea⁃ surement and evaluating indicator of corrosion inhibitor for acidz⁃ ing:SY/T 5405-2019[S].Beijing:Petroluem Industry Press,2019.
参考文献 21
杨金.氟硅酸酸化液体系有利于消除深部地层损害[J].钻井液与完井液,2002,19(3):9.YANG Jin.Fluorosilicic acid acidified fluid system is beneficial to eliminate deep reservoir damage[J].Drilling Fluid & Completion Fluid,2002,19(3):9.
参考文献 22
雷群,胥云,蒋廷学,等.用于提高低-特低渗透油气藏改造效果的缝网压裂技术[J].石油学报,2009,30(2):237-241.LEI Qun,XU Yun,JIANG Tingxue,et al“.Fracture network”frac⁃ turing technique for improving post-fracturing performance of low and ultra-low permeability reservoirs[J].Acta Petrolei Sinica,2009,30(2):237-241.
参考文献 23
孙林,宋爱莉,易飞,等.爆压酸化技术在中国海上低渗油田适应性分析[J].钻采工艺,2016,39(1):60-62.SUN Lin,SONG Aili,YI Fei,et al.Analysis of deflagrate fractur⁃ ing technology adaptability in China offshore low permeability oil⁃ field[J].Drilling & Production Technology,2016,39(1):60-62.
参考文献 24
孙林,杨万有,易飞,等.筛管完井爆燃压裂技术可行性研究 [J].特种油气藏,2017,24(4):161-165.SUN Lin,YANG Wanyou,YI Fei,et al.Feasibility research on lin⁃ er-completion deflagration fracturing technique[J].Special Oil & Gas Reservoirs,2017,24(4):161-165.
参考文献 25
张杰,黄利平,周际永,等.筛管完井高能气体压裂模拟实验研究[J].钻采工艺,2018,41(4):66-68.ZHANG Jie,HUANG Liping,ZHOU Jiyong,et al.Simulation study on high energy gas fracturing in screen completed wells[J].Drilling & Production Technology,2018,41(4):66-68.
参考文献 26
黄波,熊培祺,孙林.海上砂岩油藏爆燃压裂数值模拟技术研究[J].中国科技论文,2018,13(11):1 319-1 324.HUANG Bo,XIONG Peiqi,SUN Lin.Numerical simulation tech⁃ nology of deflagration fracturing in offshore sandstone reservoir [J].China Sciencepaper,2018,13(11):1 319-1 324.
参考文献 27
孙林,黄波,熊培祺.爆燃压裂起裂模型常见问题分析与修正 [J].中国海上油气,2019,31(1):133-138.SUN Lin,HUANG Bo,XIONG Peiqi.Common problems analysis and correction of deflagration fracturing crack initiation model[J].China Offshore Oil and Gas,2019,31(1):133-138.
参考文献 28
孙林,杨军伟,邹信波,等.爆燃压裂技术在近水水平井中的应用[J].钻采工艺,2019,42(1):57-60.SUN Lin,YANG Junwei,ZOU Xinbo,et al.Deflagration fracturing applied in horizontal wells near water zone[J].Drilling & Produc⁃ tion Technology,2019,42(1):57-60.
参考文献 29
孙林,郭士生,熊培祺,等.东海深层致密气藏爆燃压裂技术优化[J].油气地质与采收率,2019,26(4):119-124.SUN Lin,GUO Shisheng,XIONG Peiqi,et al.Optimization of high-energy gas fracturing technology for deep tight gas reser⁃ voirs in East China Sea[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(4):119-124.
参考文献 30
孙林,杨万有,李旭光,等.海上油田爆燃压裂技术研究与现场试验[J].石油钻探技术,2019,47(5):91-96.SUN Lin,YANG Wanyou,LI Xuguang,et al.Research and field test of deflagration fracturing technology in offshore oilfields[J].Petroleum Drilling Techniques,2019,47(5):91-96.
参考文献 31
易飞,孙林,高建崇,等.爆燃压裂火药参数正交综合平衡分析 [J].中国海上油气,2020,32(2):106-111.YI Fei,SUN Lin,GAO Jianchong,et al.Orthogonal comprehen⁃ sive balance analysis of deflagration fracturing gunpowder param⁃ eters[J].China Offshore Oil and Gas,2020,32(2):106-111.
参考文献 32
周万富.砂岩油田酸化技术研究[D].北京:中国科学院研究生院(渗流流体力学研究所),2006.ZHOU Wanfu.Research on acidizing technology for sandstone oil⁃ field[D].Beijing:Graduate School of Chinese Academy of Scienc⁃ es(Institute of Porous Flow & Fluid Mechanics),2006.
目录contents

    摘要

    为了解决珠江口盆地惠州凹陷火山岩产能低及酸化可行性的难题,通过目标储层油藏特征分析,其岩性主要为安山岩,具有岩心致密、低孔、低渗透和高温的特点。通过耐高温强溶蚀酸液体系研究,优选岩屑溶蚀率可达 40.29%~61.29%的酸液体系,其主剂由质量分数为12%盐酸和30%有机氟硅酸构成,并优选了耐温180 ℃的高温缓蚀剂,由质量分数为4%的HZ-1和0.7%的HZ-2构成的缓蚀剂的腐蚀速率为59.33~63.86 g/(m2 •h),可满足行业标准;采用爆燃压裂与酸化联作的工艺可增强酸化改造能力,当表皮系数为 0~3时,增产倍比为 1.4~4.3,远高于基质酸化的预测数据。中国海上油田低渗透储层典型井况应用结果表明,爆燃压裂与酸化联作优势明显,该地区火山岩酸化可作为储备技术进一步提高油井产能。

    Abstract

    To improve the low productivity and acidification feasibility of volcanic rock reservoirs in Huizhou Sag,Pearl River Mouth Basin,we analyze the characteristics of the target reservoir. The lithology is mainly andesite with a tight core, low porosity,low permeability,and high temperature. Through the research on the high-temperature-resistant and strongly corrosive acid solution systems,we select an acid solution system with a 40.29%-61.29% corrosion rate of rock debris,and the main agent is composed of 12% hydrochloric acid and 30% organic fluorosilicic acid. A corrosion inhibitor that is resis- tant to as high as 180 ℃ and consists of 4% HZ-1 and 0.7% HZ-2 is selected. Its corrosion rate is 59.33-63.86 g/(m2 ·h), which can satisfy the industrial standard. The combined process of deflagration fracturing and acidification can enhance the ability of acidification stimulation. When the skin factor is 0-3,the stimulation ratio is 1.4-4.3,much higher than the pre- diction data of matrix acidification. The obvious advantages of the combined process of deflagration fracturing and acidifica- tion are confirmed by the application of typical well conditions in low permeability reservoirs in China’s offshore oilfields. The acidification of volcanic rocks in this area can be used as a reserve technology to further increase the productivity of oil wells.

  • 珠江口盆地是中国石油年产量大于1 000×104 t 的产区之一,而惠州凹陷是珠江口盆地勘探最为成熟的地区,目前勘探方向从浅层新近系向深层古近系及潜山转移。2020 年中国海油首次在该地区的潜山火山岩内幕获得 4 层共 392 m 油气显示,拉开了珠江口盆地火山岩勘探开发的序幕。火山岩通常具有储层致密、连通性差和开采困难等特点。为进一步连通火山岩的孔、缝,改善储层物性,提高储层的渗流能力,提升工业产能,对该地区火山岩进行酸化可行性研究。

  • 世界上已发现的油气储量 99% 以上集中在沉积岩中,而岩石中占比约 95% 的火山岩,近年来也是勘探的热点,常见的火山岩主要有花岗岩、安山岩和玄武岩等。目前火山岩储层在美国、日本等国均有发现,中国有准噶尔盆地玄武岩油气藏、辽河盆地东部凹陷火山岩油藏、松辽盆地深层火山岩气藏等[1-6]。目前火山岩主要增产技术手段为酸化、压裂或酸化压裂。二连盆地阿北油田,油井产能低,产量为 1~20 t/d,需实施增产措施后才能投产,一般采用压裂、酸化手段[1]。苏北闵桥油田一半以上的油井在投产前都进行了酸化,油井酸化投产后产量均较高,一般大于20 t/d[7]。辽河油田黄沙坨火山岩油藏进行了 59 井次压裂、酸化作业,占措施增油总量的 77.1%,被认为是火山岩油田储层改造的重要技术手段[8-9]。新疆油田采用酸化、压裂或酸化压裂,其中在石西油田石炭系实施酸化压裂 19 井次,有效期内累积增油量超过4×104 t [10]

  • 由于不同地区火山岩的储层岩性、油藏特征等差别较大,且目前中国火山岩酸化技术研究相对偏少[11-14],因此,笔者针对惠州凹陷火山岩的储层和工艺条件进行酸化可行性研究,并优化酸化配套技术,从而进一步提高措施作业效果。

  • 1 油藏特征

  • 惠州凹陷古新统火山岩岩性主要为安山岩,储层埋深为 3 600~5 200 m,厚度为 400~500 m,为两期、两相层状结构,表层为爆发相安山质晶屑、浆屑、角砾凝灰岩,深部为喷溢相安山质熔岩。

  • H-3 井火山岩壁心矿物种类及含量(表1)显示,岩石矿物主要包括斜长石、石英、钾长石、方解石、浊沸石和黏土矿物。与砂岩矿物种类成分上基本一致,但石英含量偏低,斜长石含量偏高。

  • H-1 井火山岩壁心薄片鉴定结果(图1)显示,孔隙与孔隙之间的连通性差。孔渗测试结果显示,孔隙度为 2.6%~16.3%,平均为 7.5%,渗透率为 0.001~4.61 mD,平均为 0.48 mD。探井测井解释成果显示,Ⅰ类孔洞-裂缝型有效储层占比为 17.0%, Ⅱ类孔洞型有效储层占比为 53.3%,Ⅲ类裂缝型有效储层占比为 29.7%。以Ⅱ类孔洞型有效储层为主,其电阻率和裂缝密度均偏低。地温梯度为 3.1℃/hm,地层温度为153~172℃。综上所述,惠州凹陷火山岩储层致密,孔隙连通性差,裂缝发育不理想,具有低孔、低渗透和高温的特点。

  • 2 酸化技术实施难点

  • 考虑海上油田勘探开发的作业周期性和施工费用,优选工艺简单、适应性广且施工成本低的酸化技术作为重点研究对象。考虑惠州凹陷火山岩的储层和工艺条件,酸化技术实施主要面临以下难点。

  • 难点 1,暂无适用于海上油田火山岩的酸液体系。酸化技术是中国海上油田最主要的增产技术手段,年施工达600余井次,但海上已开发的油田多数以砂岩和碳酸盐岩储层为主,其酸液体系的主要成分为盐酸、乙酸、氟硼酸和多氢酸等[15-20]。火山岩在中国海上油田属于勘探新方向,尚未有效开发动用,该类储层所适合的酸液体系需要研究。目前中国火山岩采用的酸液体系统计结果(表2)表明,火山岩主要包括安山岩、英安岩、流纹岩、凝灰岩和花岗岩等[11-14],其岩性组分存在一定差异,且采用的酸液体系目前研究相对偏少。现有的酸液体系主要包括有机酸、土酸、氟化氢铵及多氢酸等缓速土酸。土酸或缓速土酸针对目标储层的岩心溶蚀率可达 35%~40%,而有机酸的岩心溶蚀率仅为 4.2%~4.9%。为了取得更大的溶蚀造缝能力,在研究过程中,可借鉴采用岩心溶蚀率更高的土酸类体系,并通过室内实验进行优选。

  • 表1 惠州凹陷H-3井火山岩壁心矿物种类及含量

  • Table1 Types and contents of minerals in volcanic sidewall core of Well H-3 in Huizhou Sag

  • 图1 惠州凹陷H-1井火山岩壁心薄片鉴定照片

  • Fig.1 Thin section identification photos of volcanic sidewall core of Well H-1 in Huizhou Sag

  • 难点 2,高温下酸液体系腐蚀性极强。目前储层温度高达 153~172℃,该温度下酸液体系具有极强的腐蚀性,易导致施工管柱腐蚀穿孔、强度减弱等安全隐患,现用的酸液体系通常较难达到行业标准要求[20],即 12%HCl+3%HF 在 180℃下腐蚀速率不大于70 g/(m2 •h)的控制指标。

  • 表2 中国火山岩采用的酸液体系统计结果

  • Table2 Statistics of acid solution systems for volcanic rocks in China

  • 难点 3,缺乏适合于海上平台或钻井船的酸化改造工艺。目标储层致密且裂缝不发育,除了追求酸液体系的高溶蚀性能以外,还需要促使酸液能够大排量泵注进入储层。基于以往低渗透油田致密储层的酸化经验,基质酸化的改造能力较弱,施工时通常表现为泵注压力高且排量低的特征。而酸化压裂又会导致酸液用量过大,作业及返排周期长,作业设备摆放空间要求大,十分不利于海上平台或钻井船施工作业,因此需要采用高效的酸化改造工艺。

  • 3 耐高温强溶蚀酸液体系研制

  • 3.1 优选思路

  • 根据表1 可知,目标储层酸可溶矿物组分包括斜长石(含量为 4%~65%)、钾长石(含量为 3%~29%)、方解石(含量为 3%~15%)和黏土矿物(含量为1%~20%)等,酸可溶矿物组分几乎占到整个矿物组分的 50% 以上,其溶蚀率应比常规砂岩体系更高,因此可采用土酸类酸液体系。

  • 但考虑到石英骨架(SiO2)仍在岩屑中占有一定比例,为6%~79%。对于低渗透储层,为了防止酸液破坏骨架及产生二次沉淀伤害,因此应避免直接采用氢氟酸,其反应化学方程式为:

  • 4HF+SiO2SiF4+2H2O
    (1)
  • 2HF+SiF4H2SiF6
    (2)
  • 可采用有机氟硅酸和氟硼酸作为候选主体酸。其中有机氟硅酸可水解成氟硅酸(H2SiF6)和有机羧酸,它具有深部缓速的特点,而氟硅酸在 H+ 参与下可以与长石和黏土继续发生反应,从而避免氢氟酸对石英骨架的不利影响[21]。其中钠长石、钾长石、高岭石和蒙脱石与氟硅酸和 H+ 的反应方程式分别为:

  • NaAlSi3O8+7H2SiF6+2H+Na++AlF2+10SiF4+8H2O
    (3)
  • KAlSi3O8+7H2SiF6+2H+K++AlF2++10SiF4+8H2O
    (4)
  • Al4Si4O10(OH)8+12H2SiF6+4H+4AlF2++16SiF4+18H2O
    (5)
  • Al4Si8O20(OH)4+20H2SiF6+4H+4AlF2++28SiF4+24H2O
    (6)
  • 氟硼酸可通过 4 步水解再缓慢产生氢氟酸,从而减轻了氢氟酸的不利影响。考虑到岩屑中的方解石等碳酸盐岩矿物,主体酸中加入盐酸,另外采用乙酸作为有机酸代表来进行对比。结合室内实验优化的配方浓度,优选 12% 盐酸+30% 有机氟硅酸(代号 G)、12% 盐酸+10% 氟硼酸(代号 F)和 10% 乙酸(代号 Y)3种主体酸液体系作为优选对象。对于酸液体系的添加剂,需要优选耐 180℃的高温缓蚀剂。

  • 3.2 主体酸优选实验

  • 3.2.1 实验方法

  • 实验采用 H-1井火山岩壁心样品,样品参数如表3所示。对壁心进行洗油、洗盐和烘干处理,将部分壁心研磨处理成岩屑备用,将 80 mL 的酸液体系加入质量为 4 g 岩屑中,在 90℃下反应 2 h,测试反应前后岩屑质量的变化,以溶蚀率的最大值来优选主体酸。再按照 1 g 岩样对应 20 mL 酸液的比例量取主体酸,并将主体酸加入壁心中,测试主体酸溶蚀率同时观察壁心外观溶蚀情况。

  • 表3 主体酸优选实验用惠州凹陷H-1井火山岩壁心基本岩性参数

  • Table3 Basic lithology parameters of volcanic sidewall core of Well H-1 in Huizhou Sag for optimization experiment of main acid

  • 3.2.2 溶蚀实验结果

  • 岩屑样品与酸液体系溶蚀实验结果(图2)表明:岩屑与12%盐酸+30%有机氟硅酸和12%盐酸+ 10% 氟硼酸反应后,溶液由无色变为褐色或黄色,岩屑由黑灰色变为灰白色;岩屑与 10% 乙酸反应后,溶液仍为无色,岩屑仍为黑灰色。说明 12% 盐酸+30% 有机氟硅酸和 12% 盐酸+10% 氟硼酸与岩屑发生剧烈反应,而10%乙酸与岩屑几乎没有发生反应。

  • 由反应前、后岩屑的质量变化(表4)可以看出:与 12% 盐酸+30% 有机氟硅酸反应后的溶蚀率最大,可达 40.29%~61.29%;与 12% 盐酸+10% 氟硼酸反应后溶蚀率次之,为35.63%~48.08%;与10%乙酸反应后的溶蚀率最低,为2.26%~2.49%。因此,优选溶蚀率最高的 12%盐酸+30%有机氟硅酸作为主体酸。其溶蚀率与岩屑中酸可溶矿物组分含量基本一致。

  • 图2 岩屑样品与酸液体系溶蚀实验照片

  • Fig.2 Corrosion test photos of rock debris samples with acid solution systems

  • 表4 岩屑样品与酸液体系溶蚀实验结果

  • Table4 Corrosion test results of rock debris samples with acid solution systems

  • 壁心样品与酸液体系溶蚀实验结果(图3)表明:与12%盐酸+30%有机氟硅酸反应后,14号壁心顶端、底端和侧面见明显大洞,小孔数量不多,底端有三分之一溶蚀较为强烈;17 号壁心顶端、底端和侧面见明显大洞,小孔数量多,顶端、底端和侧面均溶蚀较为强烈;18 号壁心顶端、底端和侧面未见明显大洞,小孔数量多,顶端和侧面见明显裂缝。

  • 分析反应前、后壁心的质量变化(表5)可以看出:壁心样品与 12% 盐酸+30% 有机氟硅酸的溶蚀率为13.46%~17.06%。虽然比岩屑样品的溶蚀率降幅较大,但对于低渗透储层,其值仍较为可观。这与岩心和岩屑与酸液接触面积不同有关,研磨后的岩屑与酸液接触更充分,其溶蚀率更大。因此,还需要采用改造工艺,使储层提前造缝,再泵注酸液通过裂缝进入储层深部,以获得更好的溶蚀效果。

  • 3.3 高温高压腐蚀实验方法与结果

  • 3.3.1 实验方法

  • 将配制好的12%HCl+3%HF的酸液样品分成若干份,分别在每份样品中加入一定浓度中国生产的 10种高温缓蚀剂产品,再分别置入50 mm×10 mm×3 mm的 N80腐蚀挂片,使用 GDF-Ⅱ型高温高压动态腐蚀评价系统,按照SY/T5405—2019[20] 进行高温高压腐蚀评价实验。考虑到高温高压实验的复杂性,先通过90℃、常压实验进行初选,然后在温度为160 和 180℃、压力为 16 MPa、转速为 60 r/min、时间为 4 h 的条件下进行实验。实验后清理 N80 腐蚀挂片,并计算腐蚀速率。

  • 3.3.2 实验结果

  • 通过低温实验,共优选了3种高温缓蚀剂产品,经过 160℃高温高压腐蚀实验,仅来自南京华洲新材料有限公司生产的 2%HZ-1(液体)+0.5%HZ-2 (固体)性能优异,腐蚀速率为 13.35~17.09 g/(m2 • h),满足腐蚀速率不大于 45 g/(m2 •h)的行业要求 (表6)。为此,加大该缓蚀剂质量分数,4%HZ-1+ 0.7%HZ-2 缓蚀剂在 180℃下的腐蚀速率为 59.33~6 3.86 g/(m2 •h)(表6),也满足了腐蚀速率不大于 70 g/(m2 •h)的行业标准,该标准是缓蚀剂质量分数为 5%时的指标。160和180℃高温高压腐蚀实验挂片照片(图4)显示,实验后挂片整体完整,外面包裹着油状物,防腐蚀现象明显。

  • 图3 壁心样品与12%盐酸+30%有机氟硅酸溶蚀实验后照片

  • Fig.3 Corrosion test photos of sidewall core samples with 12% hydrochloric acid and 30% organic fluorosilicic acid

  • 表5 壁心样品与12%盐酸+30%有机氟硅酸溶蚀实验结果

  • Table5 Corrosion test results of sidewall core samples with 12% hydrochloric acid and 30% organic fluorosilicic acid

  • 4 酸化改造工艺优选

  • 针对目标储层基质酸化改造弱,以及中国海上油田平台或钻井船下酸化压裂难以实施的问题,采用爆燃压裂与酸化联作的工艺[22-31]。爆燃压裂造缝后,酸液再顺着裂缝泵注,进行溶蚀扩缝,使酸液达到更易泵注的效果,避免以往低渗透储层基质酸化易出现的泵注压力高且排量低的问题。

  • 表6 高温高压腐蚀实验结果

  • Table6 Results of HTHP corrosion tests

  • 图4 高温高压腐蚀实验挂片照片

  • Fig.4 Coupons of HTHP corrosion tests

  • 4.1 基质酸化效果预测

  • 将惠州凹陷 H-1 井火山岩参数分别代入基质酸化理论中污染井和未污染井两种酸化后增产倍比预测模型,计算酸化效果[32]。当存在污染时,储层污染后渗透率与原始渗透率比值(Xs)大于等于 0.4时,酸化后增产倍比为 1.13~2.08,由于低渗透储层污染后渗透率下降相对较小,这种情况将很普遍。当不存在污染时,酸化后渗透率与原始渗透率比值(Xf)分别为 1.3,1.7 和 2.2 时,酸化后增产倍比为 1.03~1.31。污染井与未污染井酸化后增产倍比普遍较低(图5)。

  • 图5 惠州凹陷火山岩污染井和未污染井酸化预测效果

  • Fig.5 Predicted acidification effect of volcanic rock contaminated and uncontaminated wells in Huizhou Sag

  • 4.2 爆燃压裂与酸化联作效果预测

  • 爆燃压裂增产倍比预测公式为:

  • η=lnrerw+SlnFreL+hLlnh2πrw
    (7)
  • 由(7)式可知,裂缝长度、裂缝高度、裂缝条数和表皮系数会对增产倍比产生影响。爆燃压裂与酸化联作后,会通过物理和化学的双重作用效果进一步降低表皮系数,并产生造缝效果,从而达到理想增产效果。

  • 根据(7)式进行效果预测,结果(图6)表明:当表皮系数为 0时,增产倍比为 1.4~3.1;当表皮系数为 1 时,增产倍比为 1.6~3.5;当表皮系数为 3时,增产倍比为 1.9~4.3。通常爆燃压裂会产生至少 3 条、单条裂缝长度超过5 m的裂缝,此时,增产倍比大于2.0。

  • 图6 惠州凹陷火山岩爆燃压裂与酸化联作效果预测

  • Fig.6 Predicted combined effect of deflagration fracturing and acidification of volcanic rocks in Huizhou Sag

  • 4.3 应用效果对比

  • 统计中国海上油田低渗透储层典型井酸化作业效果(表7)发现,其中 LF13-1-24H1,KL10-4-A10S1和HZ19-2-7Sa井实施了酸化,均表现为泵注压力高且排量低,酸化后日增液量为 0。而实施爆燃压裂与酸化联作后,无论试注效果,还是漏失速度,在分别进行爆燃压裂与酸化后,均不断增大。例如,与 LF13-1-24H1同层的临井 LF13-1-6、曾实施酸化后不见效的HZ19-2-7Sa和HZ26-1-20Sb井实施爆燃压裂与酸化后,增产效果均十分显著,说明爆燃压裂与酸化联作有效改善酸化改造效果。因此,建议采用爆燃压裂与酸化联作改造工艺。

  • 5 结论

  • 惠州凹陷火山岩储量大,岩性主要为安山岩,储层具有岩心致密、低孔、低渗透和高温等特点,常规酸化难度较大。从酸液体系选择、高温酸液腐蚀性和酸化改造工艺优选三方面进行储层酸化可行性研究。

  • 基于目标储层岩屑组成,优选了盐酸+有机氟硅酸、盐酸+氟硼酸和乙酸作为候选主体酸,并采用酸化溶蚀实验,优选了岩屑溶蚀率可达 40.29%~61.29% 的酸液体系,其主剂为 12% 盐酸+30% 有机氟硅酸,其岩心溶蚀率为 13.46%~17.06%。优选了耐温 180℃的高温缓蚀剂,4%HZ-1+0.7%HZ-2 缓蚀剂的腐蚀速率为 59.33~63.86 g/(m2 •h),满足行业标准指标。

  • 针对目前基质酸化改造能力弱,以及中国海上油田平台或钻井船下酸化压裂难以实施的问题,建议采用爆燃压裂与酸化联作的工艺。目标储层采用基质酸化后增产倍比为 1.03~2.08,其值普遍较低。而采用爆燃压裂与酸化联作工艺,当表皮系数为 0~3时,增产倍比为 1.4~4.3。通过中国海上油田低渗透储层部分典型井应用对比,爆燃压裂与酸化联作后的井无论试注效果,还是井漏失速度,均不断增大,增产效果十分显著。

  • 表7 中国海上油田低渗透储层典型井酸化作业效果统计结果

  • Table7 Statistics of acidizing operation results of typical wells in low permeability reservoirs in China’s offshore oilfields

  • 符号解释

  • F ——裂缝指数,41/n

  • h ——裂缝高度,m;

  • L ——单条裂缝长度,m;

  • n ——裂缝条数;

  • r e——供给边界半径,m;

  • r w——井眼半径,m;

  • S ——表皮系数,无量纲;

  • Xs ——污染后渗透率与原始渗透率比值,f;

  • Xf ——酸化后渗透率与原始渗透率比值,f;

  • η——增产倍比,无量纲。

  • 参考文献

    • [1] 林会喜,宫亚军,赵乐强,等.火山岩风化壳发育规律及油气地质意义——以准西车排子地区石炭系火山岩为例[J].油气地质与采收率,2019,26(6):11-18.LIN Huixi,GONG Yajun,ZHAO Leqiang,et al.Volcanic weather⁃ ing crust development pattern and its petrogeological signifi⁃ cance:A case study of Carboniferous volcanic crust of Chepaizi area in West Junggar Basin[J].Petroleum Geology and Recovery Efficiency,2019,26(6):11-18.

    • [2] 王辉,邱争科,周庆,等.克拉玛依油田六区、七区、九区石炭系火山岩内幕成藏规律研究[J].特种油气藏,2019,26(4):33-37,153.WANG Hui,QIU Zhengke,ZHOU Qing,et al.Carboniferous vol⁃ canic inside hydrocarbon accumulation patterns in the 6th,7th and 9th districts of Karamay Oilfield[J].Special Oil & Gas Reser⁃ voirs,2019,26(4):33-37,153.

    • [3] 李浩,王保华,陆建林,等.松辽盆地南部长岭断陷断陷层油气成藏组合特征[J].石油实验地质,2019,41(5):708-716.LI Hao,WANG Baohua,LU Jianlin,et al.Characteristics of hydro⁃ carbon plays in faulted formations,Changling Fault Depression,southern Songliao Basin[J].Petroleum Geology & Experiment,2019,41(5):708-716.

    • [4] 袁述武,李想,史乐,等.克拉玛依油田六、七、九区石炭系内幕有利火山岩储层岩性分布预测[J].大庆石油地质与开发,2019,38(6):40-45.YUAN Shuwu,LI Xiang,SHI Le,et al.Prediction of the lithology distribution of favorable volcanic reservoirs in the inside Carbonif⁃ erous system in Block6,7 and 9 of Karamay Oilfield[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2019,38(6):40-45.

    • [5] 庞尚明,李杪,彭君,等.查干凹陷苏红图组火山岩特征及测井识别[J].断块油气田,2019,26(3):314-318.PANG Shangming,LI Miao,PENG Jun,et al.Characteristics and logging identification of volcanic rocks in Suhongtu Formation of Chagan Depression[J].Fault-Block Oil and Gas Field,2019,26(3):314-318.

    • [6] 付茜.中国火成岩油气勘探开发现状及展望[J].石油钻采工艺,2017,39(1):25-32.FU Qian.Status and prospect of igneous oil and gas exploration and development in China[J].Oil Drilling & Production Technolo⁃ gy,2017,39(1):25-32.

    • [7] 牛宝荣,潘红芳.火山岩油藏储层特征及开发对策[J].吐哈油气,2008,13(3):278-292.NIU Baorong,PAN Hongfang.Reservoir characteristics and devel⁃ opment countermeasures of volcanic reservoir[J].Tuha Oil & Gas,2008,13(3):278-292.

    • [8] 刘宝鸿,张斌,郭强,等.辽河坳陷东部凹陷深层火山岩气藏的发现与勘探启示[J].中国石油勘探,2020,25(3):33-43.LIU Baohong,ZHANG Bin,GUO Qiang,et al.Discovery and ex⁃ ploration inspiration of deep volcanic gas reservoirs in eastern sag of Liaohe depression[J].China Petroleum Exploration,2020,25(3):33-43.

    • [9] 陈元春.辽河东部凹陷火山岩油藏高效开发研究[J].地球物理学进展,2010,25(1):63-70.CHEN Yuanchun.An effective way of developing volcanic reser⁃ voirs in the Eastern Liaohe Depression[J].Progress in Geophys⁃ ics,2010,25(1):63-70.

    • [10] 刘应根,徐景润,张健强.准噶尔盆地火山岩储层改造技术研究与实践[J].新疆石油科技,2008,18(3):25-27,46.LIU Yinggen,XU Jingrun,ZHANG Jianqiang.Research and prac⁃ tice of volcanic reservoir modification technology in Junggar Basin [J].Xinjiang Petroleum Seience & Technology,2008,18(3):25-27,46.

    • [11] 景依.石西油田石炭系火山岩油藏酸化工艺技术研究[J].新疆石油科技,1996,6(4):23-31.JING Yi.Research on acidification process technology of Carbonif⁃ erous volcanic reservoir in Shixi oilfield[J].Xinjiang Petroleum Seience & Technology,1996,6(4):23-31.

    • [12] 钟诚,刘铉东,韩玉婷,等.适应特殊岩性的酸液体系研究[J].石油与天然气化工,2012,41(6):597-599.ZHONG Cheng,LIU Xuandong,HAN Yuting,et al.Research on the acid systems to adapt special lithology[J].Chemical Engineer⁃ ing of Oil & Gas,2012,41(6):597-599.

    • [13] 高春华.松南火山岩水平井储层改造工艺技术研究与应用[J].地质装备,2018,19(5):34-36.GAO Chunhua.Research and application of reservoir modification process technology of Songnan volcanic rock horizontal well[J].Equipment for Geotechnical Engineering,2018,19(5):34-36.

    • [14] 曹英权,王清斌,曲希玉,等.岩屑的有机酸溶蚀实验及验证——以渤中凹陷 CFD6-4 油田东营组为例[J].石油学报,2020,41(7):841-852.CAO Yingquan,WANG Qingbin,QU Xiyu,et al.A dissolution ex⁃ periment of organic acid of cuttings and its verification:a case study of the Dongying Formation of the CFD6-4 oilfield,Bozhong sag[J].Acta Petrolei Sinica,2020,41(7):841-852.

    • [15] 易飞,赵秀娟,刘文辉,等.渤海油田注水井解堵增注技术[J].石油钻采工艺,2004,26(5):53-56.YI Fei,ZHAO Xiujuan,LIU Wenhui,et al.Plugging removal and injection enhancement technology for the water injection wells in Bohai Oilfield[J].Oil Drilling & Production Technology,2004,26(5):53-56.

    • [16] 李年银,赵立强,刘平礼,等.多氢酸酸化技术及其应用[J].西南石油大学学报:自然科学版,2009,31(6):131-134.LI Nianyin,ZHAO Liqiang,LIU Pingli,et al.The acidizing tech⁃ nology and application of multi-hydrogen acid[J].Journal of Southwest Petroleum University:Science & Technology Edition,2009,31(6):131-134.

    • [17] 孙林,杨军伟,周伟强,等.一种适合海上砂岩油田的单段塞活性酸体系[J].钻井液与完井液,2016,33(1):97-101.SUN Lin,YANG Junwei,ZHOU Weiqiang,et al.Acidizing off⁃ shore sandstone reservoir with a single slug active acid system[J].Drilling Fluid & Completion Fluid,2016,33(1):97-101.

    • [18] 孙林,孟向丽,蒋林宏,等.渤海油田注水井酸化低效对策研究 [J].特种油气藏,2016,23(3):144-147.SUN Lin,MENG Xiangli,JIANG Linhong,et al.Countermeasures of inefficient acidification in water injection wells of Bohai oilfield [J].Special Oil & Gas Reservoirs,2016,23(3):144-147.

    • [19] 孙林,邹信波,刘春祥,等.南海东部油田水平筛管井酸化工艺改进及应用[J].中国海上油气,2016,28(6):82-87.SUN Lin,ZOU Xinbo,LIU Chunxiang,et al.Improvement on and application of acidization technology for horizontal wells with screen pipe in oilfields in eastern South China Sea[J].China Off⁃ shore Oil and Gas,2016,28(6):82-87.

    • [20] 管宝山,刘萍,翟文,等.酸化用缓蚀剂性能试验方法及评价指标:SY/T 5405—2019[S].北京:石油工业出版社,2019.GUAN Baoshan,LIU Ping,ZHAI Wen,et al.The method for mea⁃ surement and evaluating indicator of corrosion inhibitor for acidz⁃ ing:SY/T 5405-2019[S].Beijing:Petroluem Industry Press,2019.

    • [21] 杨金.氟硅酸酸化液体系有利于消除深部地层损害[J].钻井液与完井液,2002,19(3):9.YANG Jin.Fluorosilicic acid acidified fluid system is beneficial to eliminate deep reservoir damage[J].Drilling Fluid & Completion Fluid,2002,19(3):9.

    • [22] 雷群,胥云,蒋廷学,等.用于提高低-特低渗透油气藏改造效果的缝网压裂技术[J].石油学报,2009,30(2):237-241.LEI Qun,XU Yun,JIANG Tingxue,et al“.Fracture network”frac⁃ turing technique for improving post-fracturing performance of low and ultra-low permeability reservoirs[J].Acta Petrolei Sinica,2009,30(2):237-241.

    • [23] 孙林,宋爱莉,易飞,等.爆压酸化技术在中国海上低渗油田适应性分析[J].钻采工艺,2016,39(1):60-62.SUN Lin,SONG Aili,YI Fei,et al.Analysis of deflagrate fractur⁃ ing technology adaptability in China offshore low permeability oil⁃ field[J].Drilling & Production Technology,2016,39(1):60-62.

    • [24] 孙林,杨万有,易飞,等.筛管完井爆燃压裂技术可行性研究 [J].特种油气藏,2017,24(4):161-165.SUN Lin,YANG Wanyou,YI Fei,et al.Feasibility research on lin⁃ er-completion deflagration fracturing technique[J].Special Oil & Gas Reservoirs,2017,24(4):161-165.

    • [25] 张杰,黄利平,周际永,等.筛管完井高能气体压裂模拟实验研究[J].钻采工艺,2018,41(4):66-68.ZHANG Jie,HUANG Liping,ZHOU Jiyong,et al.Simulation study on high energy gas fracturing in screen completed wells[J].Drilling & Production Technology,2018,41(4):66-68.

    • [26] 黄波,熊培祺,孙林.海上砂岩油藏爆燃压裂数值模拟技术研究[J].中国科技论文,2018,13(11):1 319-1 324.HUANG Bo,XIONG Peiqi,SUN Lin.Numerical simulation tech⁃ nology of deflagration fracturing in offshore sandstone reservoir [J].China Sciencepaper,2018,13(11):1 319-1 324.

    • [27] 孙林,黄波,熊培祺.爆燃压裂起裂模型常见问题分析与修正 [J].中国海上油气,2019,31(1):133-138.SUN Lin,HUANG Bo,XIONG Peiqi.Common problems analysis and correction of deflagration fracturing crack initiation model[J].China Offshore Oil and Gas,2019,31(1):133-138.

    • [28] 孙林,杨军伟,邹信波,等.爆燃压裂技术在近水水平井中的应用[J].钻采工艺,2019,42(1):57-60.SUN Lin,YANG Junwei,ZOU Xinbo,et al.Deflagration fracturing applied in horizontal wells near water zone[J].Drilling & Produc⁃ tion Technology,2019,42(1):57-60.

    • [29] 孙林,郭士生,熊培祺,等.东海深层致密气藏爆燃压裂技术优化[J].油气地质与采收率,2019,26(4):119-124.SUN Lin,GUO Shisheng,XIONG Peiqi,et al.Optimization of high-energy gas fracturing technology for deep tight gas reser⁃ voirs in East China Sea[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(4):119-124.

    • [30] 孙林,杨万有,李旭光,等.海上油田爆燃压裂技术研究与现场试验[J].石油钻探技术,2019,47(5):91-96.SUN Lin,YANG Wanyou,LI Xuguang,et al.Research and field test of deflagration fracturing technology in offshore oilfields[J].Petroleum Drilling Techniques,2019,47(5):91-96.

    • [31] 易飞,孙林,高建崇,等.爆燃压裂火药参数正交综合平衡分析 [J].中国海上油气,2020,32(2):106-111.YI Fei,SUN Lin,GAO Jianchong,et al.Orthogonal comprehen⁃ sive balance analysis of deflagration fracturing gunpowder param⁃ eters[J].China Offshore Oil and Gas,2020,32(2):106-111.

    • [32] 周万富.砂岩油田酸化技术研究[D].北京:中国科学院研究生院(渗流流体力学研究所),2006.ZHOU Wanfu.Research on acidizing technology for sandstone oil⁃ field[D].Beijing:Graduate School of Chinese Academy of Scienc⁃ es(Institute of Porous Flow & Fluid Mechanics),2006.

  • 参考文献

    • [1] 林会喜,宫亚军,赵乐强,等.火山岩风化壳发育规律及油气地质意义——以准西车排子地区石炭系火山岩为例[J].油气地质与采收率,2019,26(6):11-18.LIN Huixi,GONG Yajun,ZHAO Leqiang,et al.Volcanic weather⁃ ing crust development pattern and its petrogeological signifi⁃ cance:A case study of Carboniferous volcanic crust of Chepaizi area in West Junggar Basin[J].Petroleum Geology and Recovery Efficiency,2019,26(6):11-18.

    • [2] 王辉,邱争科,周庆,等.克拉玛依油田六区、七区、九区石炭系火山岩内幕成藏规律研究[J].特种油气藏,2019,26(4):33-37,153.WANG Hui,QIU Zhengke,ZHOU Qing,et al.Carboniferous vol⁃ canic inside hydrocarbon accumulation patterns in the 6th,7th and 9th districts of Karamay Oilfield[J].Special Oil & Gas Reser⁃ voirs,2019,26(4):33-37,153.

    • [3] 李浩,王保华,陆建林,等.松辽盆地南部长岭断陷断陷层油气成藏组合特征[J].石油实验地质,2019,41(5):708-716.LI Hao,WANG Baohua,LU Jianlin,et al.Characteristics of hydro⁃ carbon plays in faulted formations,Changling Fault Depression,southern Songliao Basin[J].Petroleum Geology & Experiment,2019,41(5):708-716.

    • [4] 袁述武,李想,史乐,等.克拉玛依油田六、七、九区石炭系内幕有利火山岩储层岩性分布预测[J].大庆石油地质与开发,2019,38(6):40-45.YUAN Shuwu,LI Xiang,SHI Le,et al.Prediction of the lithology distribution of favorable volcanic reservoirs in the inside Carbonif⁃ erous system in Block6,7 and 9 of Karamay Oilfield[J].Petro⁃ leum Geology & Oilfield Development in Daqing,2019,38(6):40-45.

    • [5] 庞尚明,李杪,彭君,等.查干凹陷苏红图组火山岩特征及测井识别[J].断块油气田,2019,26(3):314-318.PANG Shangming,LI Miao,PENG Jun,et al.Characteristics and logging identification of volcanic rocks in Suhongtu Formation of Chagan Depression[J].Fault-Block Oil and Gas Field,2019,26(3):314-318.

    • [6] 付茜.中国火成岩油气勘探开发现状及展望[J].石油钻采工艺,2017,39(1):25-32.FU Qian.Status and prospect of igneous oil and gas exploration and development in China[J].Oil Drilling & Production Technolo⁃ gy,2017,39(1):25-32.

    • [7] 牛宝荣,潘红芳.火山岩油藏储层特征及开发对策[J].吐哈油气,2008,13(3):278-292.NIU Baorong,PAN Hongfang.Reservoir characteristics and devel⁃ opment countermeasures of volcanic reservoir[J].Tuha Oil & Gas,2008,13(3):278-292.

    • [8] 刘宝鸿,张斌,郭强,等.辽河坳陷东部凹陷深层火山岩气藏的发现与勘探启示[J].中国石油勘探,2020,25(3):33-43.LIU Baohong,ZHANG Bin,GUO Qiang,et al.Discovery and ex⁃ ploration inspiration of deep volcanic gas reservoirs in eastern sag of Liaohe depression[J].China Petroleum Exploration,2020,25(3):33-43.

    • [9] 陈元春.辽河东部凹陷火山岩油藏高效开发研究[J].地球物理学进展,2010,25(1):63-70.CHEN Yuanchun.An effective way of developing volcanic reser⁃ voirs in the Eastern Liaohe Depression[J].Progress in Geophys⁃ ics,2010,25(1):63-70.

    • [10] 刘应根,徐景润,张健强.准噶尔盆地火山岩储层改造技术研究与实践[J].新疆石油科技,2008,18(3):25-27,46.LIU Yinggen,XU Jingrun,ZHANG Jianqiang.Research and prac⁃ tice of volcanic reservoir modification technology in Junggar Basin [J].Xinjiang Petroleum Seience & Technology,2008,18(3):25-27,46.

    • [11] 景依.石西油田石炭系火山岩油藏酸化工艺技术研究[J].新疆石油科技,1996,6(4):23-31.JING Yi.Research on acidification process technology of Carbonif⁃ erous volcanic reservoir in Shixi oilfield[J].Xinjiang Petroleum Seience & Technology,1996,6(4):23-31.

    • [12] 钟诚,刘铉东,韩玉婷,等.适应特殊岩性的酸液体系研究[J].石油与天然气化工,2012,41(6):597-599.ZHONG Cheng,LIU Xuandong,HAN Yuting,et al.Research on the acid systems to adapt special lithology[J].Chemical Engineer⁃ ing of Oil & Gas,2012,41(6):597-599.

    • [13] 高春华.松南火山岩水平井储层改造工艺技术研究与应用[J].地质装备,2018,19(5):34-36.GAO Chunhua.Research and application of reservoir modification process technology of Songnan volcanic rock horizontal well[J].Equipment for Geotechnical Engineering,2018,19(5):34-36.

    • [14] 曹英权,王清斌,曲希玉,等.岩屑的有机酸溶蚀实验及验证——以渤中凹陷 CFD6-4 油田东营组为例[J].石油学报,2020,41(7):841-852.CAO Yingquan,WANG Qingbin,QU Xiyu,et al.A dissolution ex⁃ periment of organic acid of cuttings and its verification:a case study of the Dongying Formation of the CFD6-4 oilfield,Bozhong sag[J].Acta Petrolei Sinica,2020,41(7):841-852.

    • [15] 易飞,赵秀娟,刘文辉,等.渤海油田注水井解堵增注技术[J].石油钻采工艺,2004,26(5):53-56.YI Fei,ZHAO Xiujuan,LIU Wenhui,et al.Plugging removal and injection enhancement technology for the water injection wells in Bohai Oilfield[J].Oil Drilling & Production Technology,2004,26(5):53-56.

    • [16] 李年银,赵立强,刘平礼,等.多氢酸酸化技术及其应用[J].西南石油大学学报:自然科学版,2009,31(6):131-134.LI Nianyin,ZHAO Liqiang,LIU Pingli,et al.The acidizing tech⁃ nology and application of multi-hydrogen acid[J].Journal of Southwest Petroleum University:Science & Technology Edition,2009,31(6):131-134.

    • [17] 孙林,杨军伟,周伟强,等.一种适合海上砂岩油田的单段塞活性酸体系[J].钻井液与完井液,2016,33(1):97-101.SUN Lin,YANG Junwei,ZHOU Weiqiang,et al.Acidizing off⁃ shore sandstone reservoir with a single slug active acid system[J].Drilling Fluid & Completion Fluid,2016,33(1):97-101.

    • [18] 孙林,孟向丽,蒋林宏,等.渤海油田注水井酸化低效对策研究 [J].特种油气藏,2016,23(3):144-147.SUN Lin,MENG Xiangli,JIANG Linhong,et al.Countermeasures of inefficient acidification in water injection wells of Bohai oilfield [J].Special Oil & Gas Reservoirs,2016,23(3):144-147.

    • [19] 孙林,邹信波,刘春祥,等.南海东部油田水平筛管井酸化工艺改进及应用[J].中国海上油气,2016,28(6):82-87.SUN Lin,ZOU Xinbo,LIU Chunxiang,et al.Improvement on and application of acidization technology for horizontal wells with screen pipe in oilfields in eastern South China Sea[J].China Off⁃ shore Oil and Gas,2016,28(6):82-87.

    • [20] 管宝山,刘萍,翟文,等.酸化用缓蚀剂性能试验方法及评价指标:SY/T 5405—2019[S].北京:石油工业出版社,2019.GUAN Baoshan,LIU Ping,ZHAI Wen,et al.The method for mea⁃ surement and evaluating indicator of corrosion inhibitor for acidz⁃ ing:SY/T 5405-2019[S].Beijing:Petroluem Industry Press,2019.

    • [21] 杨金.氟硅酸酸化液体系有利于消除深部地层损害[J].钻井液与完井液,2002,19(3):9.YANG Jin.Fluorosilicic acid acidified fluid system is beneficial to eliminate deep reservoir damage[J].Drilling Fluid & Completion Fluid,2002,19(3):9.

    • [22] 雷群,胥云,蒋廷学,等.用于提高低-特低渗透油气藏改造效果的缝网压裂技术[J].石油学报,2009,30(2):237-241.LEI Qun,XU Yun,JIANG Tingxue,et al“.Fracture network”frac⁃ turing technique for improving post-fracturing performance of low and ultra-low permeability reservoirs[J].Acta Petrolei Sinica,2009,30(2):237-241.

    • [23] 孙林,宋爱莉,易飞,等.爆压酸化技术在中国海上低渗油田适应性分析[J].钻采工艺,2016,39(1):60-62.SUN Lin,SONG Aili,YI Fei,et al.Analysis of deflagrate fractur⁃ ing technology adaptability in China offshore low permeability oil⁃ field[J].Drilling & Production Technology,2016,39(1):60-62.

    • [24] 孙林,杨万有,易飞,等.筛管完井爆燃压裂技术可行性研究 [J].特种油气藏,2017,24(4):161-165.SUN Lin,YANG Wanyou,YI Fei,et al.Feasibility research on lin⁃ er-completion deflagration fracturing technique[J].Special Oil & Gas Reservoirs,2017,24(4):161-165.

    • [25] 张杰,黄利平,周际永,等.筛管完井高能气体压裂模拟实验研究[J].钻采工艺,2018,41(4):66-68.ZHANG Jie,HUANG Liping,ZHOU Jiyong,et al.Simulation study on high energy gas fracturing in screen completed wells[J].Drilling & Production Technology,2018,41(4):66-68.

    • [26] 黄波,熊培祺,孙林.海上砂岩油藏爆燃压裂数值模拟技术研究[J].中国科技论文,2018,13(11):1 319-1 324.HUANG Bo,XIONG Peiqi,SUN Lin.Numerical simulation tech⁃ nology of deflagration fracturing in offshore sandstone reservoir [J].China Sciencepaper,2018,13(11):1 319-1 324.

    • [27] 孙林,黄波,熊培祺.爆燃压裂起裂模型常见问题分析与修正 [J].中国海上油气,2019,31(1):133-138.SUN Lin,HUANG Bo,XIONG Peiqi.Common problems analysis and correction of deflagration fracturing crack initiation model[J].China Offshore Oil and Gas,2019,31(1):133-138.

    • [28] 孙林,杨军伟,邹信波,等.爆燃压裂技术在近水水平井中的应用[J].钻采工艺,2019,42(1):57-60.SUN Lin,YANG Junwei,ZOU Xinbo,et al.Deflagration fracturing applied in horizontal wells near water zone[J].Drilling & Produc⁃ tion Technology,2019,42(1):57-60.

    • [29] 孙林,郭士生,熊培祺,等.东海深层致密气藏爆燃压裂技术优化[J].油气地质与采收率,2019,26(4):119-124.SUN Lin,GUO Shisheng,XIONG Peiqi,et al.Optimization of high-energy gas fracturing technology for deep tight gas reser⁃ voirs in East China Sea[J].Petroleum Geology and Recovery Effi⁃ ciency,2019,26(4):119-124.

    • [30] 孙林,杨万有,李旭光,等.海上油田爆燃压裂技术研究与现场试验[J].石油钻探技术,2019,47(5):91-96.SUN Lin,YANG Wanyou,LI Xuguang,et al.Research and field test of deflagration fracturing technology in offshore oilfields[J].Petroleum Drilling Techniques,2019,47(5):91-96.

    • [31] 易飞,孙林,高建崇,等.爆燃压裂火药参数正交综合平衡分析 [J].中国海上油气,2020,32(2):106-111.YI Fei,SUN Lin,GAO Jianchong,et al.Orthogonal comprehen⁃ sive balance analysis of deflagration fracturing gunpowder param⁃ eters[J].China Offshore Oil and Gas,2020,32(2):106-111.

    • [32] 周万富.砂岩油田酸化技术研究[D].北京:中国科学院研究生院(渗流流体力学研究所),2006.ZHOU Wanfu.Research on acidizing technology for sandstone oil⁃ field[D].Beijing:Graduate School of Chinese Academy of Scienc⁃ es(Institute of Porous Flow & Fluid Mechanics),2006.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》入选北大《中文核心期刊要目总览》2020年版