en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

王伟庆(1969—),男,山东济宁人,高级工程师,博士,从事石油地质实验及油气勘探研究。E-mail:wangweiqing062.slyt@sinopec.com。

中图分类号:TE121.3

文献标识码:A

文章编号:1009-9603(2022)03-0011-09

DOI:10.13673/j.cnki.cn37-1359/te.202103027

参考文献 1
BENJELLOUN Y,CARLUT J,HÉLIE J F,et al.Geochemical study of carbonate concretions from the aqueduct of Nîmes(south⁃ ern France):a climatic record for the first centuries AD?[J].Sci⁃ entific Reports,2019,9(1):5 209.
参考文献 2
ALTERMANN W.Accretion,tapping and binding of sediment in archean stromatolites-morphological expression of the antiquity of life[J].Space Science Reviews,2008,135(1/4):55-79.
参考文献 3
HIMMLER T,BAYON G,WANGNER D,et al.Seep-carbonate lamination controlled by cyclic particle flux[J].Scientific Reports,2016,6(1):37 439.
参考文献 4
PERRI E,BORRELLI M,BERNASCONI M P,et al.Microbial-dominated carbonate depositional systems:a biosedimentary and stratigraphic reconstruction in the Late Triassic of Western Tethys(northern Calabria,Italy)[J].Facies,2019,65(31):1-25.
参考文献 5
EVELIEN B,MAARTEN V D,JASPER M,et al.Varve formation during the past three centuries in three large proglacial lakes in south-central Alaska[J].Geological Society of America Bulletin,2018,130(5/6):757-774.
参考文献 6
邓宏文,钱凯.深湖相泥岩的成因类型和组合演化[J].沉积学报,1990,8(3):1-21.DENG Hongwen,QIAN Kai.The genetic types and association evolution of deep lacustrine mudstones[J].Acta Sedimentologica Sinica,1990,8(3):1-21.
参考文献 7
刘惠民,于炳松,谢忠怀,等.陆相湖盆富有机质页岩微相特征及对页岩油富集的指示意义——以渤海湾盆地济阳坳陷为例 [J].石油学报,2018,39(12):1 328-1 343.LIU Huimin,YU Bingsong,XIE Zhonghuai,et al.Characteristics and implications of micro-lithofacies in lacustrine-basin organicrich shale:a case study of Jiyang depression,Bohai Bay Basin[J].Acta Petrolei Sinica,2018,39(12):1 328-1 343.
参考文献 8
陈世悦,张顺,王永诗,等.渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J].石油勘探与开发,2016,43(2):198-208.CHEN Shiyue,ZHANG Shun,WANG Yongshi,et al.Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag,Bohai Bay Basin[J].Petroleum Exploration and Development,2016,43(2):198-208.
参考文献 9
柳波,吕延防,孟元林,等.湖相纹层状细粒岩特征、成因模式及其页岩油意义——以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J].石油勘探与开发,2015,42(5):598-607.LIU Bo,LÜ Yanfang,MENG Yuanlin,et al.Petrologic characteris⁃ tics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration:A case study of Permian Lucaogou Formation in Malang sag,Santanghu Basin,NW China[J].Petroleum Exploration and Development,2015,42(5):598-607.
参考文献 10
刘惠民,张守鹏,王朴,等.沾化凹陷罗家地区沙三段下亚段页岩岩石学特征[J].油气地质与采收率,2012,19(6):11-15.LIU Huimin,ZHANG Shoupeng,WANG Pu,et al.Lithologic char⁃ acteristics of Lower Es3 shale in Luojia area,Zhanhua sag[J].Pe⁃ troleum Geology and Recovery Efficiency,2012,19(6):11-15.
参考文献 11
李凯,游海涛,刘兴起.中国湖泊沉积物纹层年代学研究进展 [J].湖泊科学,2017,29(2):266-275.LI Kai,YOU Haitao,LIU Xingqi.Review on lake sediment varve chronology in China[J].Journal of Lake Sciences,2017,29(2):266-275.
参考文献 12
刘强,游海涛,刘嘉麒.湖泊沉积物年纹层的研究方法及其意义[J].第四纪研究,2004,24(6):683-694.LIU Qiang,YOU Haitao,LIU Jiaqi.Methodology of studying on varved lake sediments and its significance[J].Quaternary Scienc⁃ es,2004,24(6):683-694.
参考文献 13
周爱锋,陈发虎,强明瑞,等.内陆干旱区柴达木盆地苏干湖年纹层的发现及其意义[J].中国科学:D 辑地球科学,2007,37(7):941-948.ZHOU Aifeng,CHEN Fahu,QIANG Mingrui,et al.Discovery and significance of the annual laminae of Sugan Lake in Qaidam Basin [J].Science in China:Series D Earth Sciences,2007,37(7):941-948.
参考文献 14
王冠民,任拥军,钟建华,等.济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨[J].地质学报,2005,79(6):834-838.WANG Guanmin,REN Yongjun,ZHONG Jianhua,et al.Genetic analysis on lamellar calcite veins in Paleogene black shale of the Jiyang Depression[J].Acta Geologica Sinica,2005,79(6):834-838.
参考文献 15
陈骥,姜在兴,张万益,等.青海湖湖滩岩的岩石学特征及其形成机制[J].湖泊科学,2019,31(6):1 783-1 796.CHEN Ji,JIANG Zaixing,ZHANG Wanyi,et al.The petrological characteristics and formation mechanism of Lake Beachrock in Lake Qinghai[J].Journal of Lake Sciences,2019,31(6):1 783-1 796.
参考文献 16
WEI H,ALGEO T J,YU H,et al.Episodic euxinia in the Changhs⁃ ingian(Late Permian)of South China:Evidence from framboidal pyrite and geochemical data[J].Sedimentary Geology,2015,319(15):78-97.
参考文献 17
DUPRAZ C,REID R P,BRAISSANT O,et al.Processes of carbon⁃ ate precipitation in modern microbial mats[J].Earth-Science Re⁃ views,2009,96:141-162.
参考文献 18
ADDADI L,RAZ S,WEINER S.Taking advantage of disorder:Amorphous calcium carbonate and its roles in biomineralization [J].Advanced Materials,2003,15(12):959-970.
参考文献 19
VASCONCELOS C,BERNASCONI S,GRUJIC D,et al.Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J].Nature,1995,377(6546):220-222.
参考文献 20
FLÜGEL E.Microfacies analysis of limestones,analysis interpreta⁃ tion and application[M].Berlin:Springer-Verlag,2010.
参考文献 21
DUNHAM R J.Classification of carbonate rocks according to depo⁃ sitional texture[J].AAPG Memoir,1962,1:108-121.
参考文献 22
王勇,宋国奇,刘惠民,等.济阳坳陷细粒沉积岩形成环境及沉积构造[J].东北石油大学学报,2015,39(3):7-14,31.WANG Yong,SONG Guoqi,LIU Huimin,et al.Formation environ⁃ ment and sedimentary structures of fine-grained sedimentary rocks in Jiyang depression[J].Journal of Northeast Petroleum Uni⁃ versity,2015,39(3):7-14,31.
参考文献 23
张顺,刘惠民,陈世悦,等.中国东部断陷湖盆细粒沉积岩岩相划分方案探讨——以渤海湾盆地南部古近系细粒沉积岩为例 [J].地质学报,2017,91(5):1 108-1 119.ZHANG Shun,LIU Huimin,CHEN Shiyue,et al.Classification scheme for lithofacies of fine-grained sedimentary rocks in fault⁃ ed basins of eastern China:In sights from the fine-grained sedi⁃ mentary rocks in Paleogene,southern Bohai Bay Basin[J].Acta Geologica Sinica,2017,91(5):1 108-1 119.
参考文献 24
SCHIEBER J,SOUTHARD J B.Bedload transport of mud by floc⁃ cule ripples-Direct observation of ripple migration processes and their implications[J].Geology,2009,37(6):483-486.
参考文献 25
MACQUAKER J H,BENTLEY S J,BOHACS K M.Wave-en⁃ hanced sediment-gravity flows and mud dispersal across continen⁃ tal shelves:Reappraising sediment transport processes operating in ancient mudstone successions[J].Geology,2010,38(10):947-950.
参考文献 26
FUSSMANN D,HOYNINGEN-HUENE A,REIMER A,et al.Au⁃ thigenic formation of Ca-Mg carbonates in the shallow alkaline Lake Neusiedl,Austria[J].Biogeosciences,2020,17(7):2 085-2 106.
参考文献 27
MEISTER P,FRISIA S.Dolomite formation by nano-crystal aggre⁃ gation in the Dolomia Principale of the Brenta Dolomites(North⁃ ern Italy)[J].Rivista Italiana Paleontologia Stratigrafia,2019,125(1):183-196.
参考文献 28
REID P,DUPRAZ C D,VISSCHER P T,et al.Microbial processes forming marine stromatolites[M].Netherlands:Springer Nether⁃ lands,2003.
参考文献 29
VISSCHER P T,REID R P,BEBOUT B M.Microscale observa⁃ tions of sulfate reduction:correlation of microbial activity with lithifified micritic laminae in modern marine stromatolites[J].Ge⁃ ology,2000,28(10):919-922.
目录contents

    摘要

    湖泊纹层是反映沉积过程与环境变化的沉积响应,利用岩心薄片、扫描电镜、X射线衍射和显微荧光等分析方法,探讨东营凹陷古近系页岩碳酸盐纹层内部结构与成因。结果表明,东营凹陷古近系页岩碳酸盐纹层分为泥晶碳酸盐纹层和亮晶碳酸盐纹层2大类,矿物组成与结构构造多样。碳酸盐透镜体与碳酸盐纹层具有成因上的继承关系,碳酸盐纹层的形成与微生物活动密切相关。纹层的发育和沉积受到环境条件和自身生长的双重控制,多种自生矿物组分证实纹层发育经历了复杂的生物-化学-物理过程,纹层内部结构与组合形态记录了多旋回的侵蚀-沉积活动。湖相页岩发育从透镜体到纹层,从单一纹层到纹层组的沉积序列,记录了湖泊水体环境变化、生态演化和沉积基准面波动等多重地质信息。

    Abstract

    The lacustrine lamina represents a sedimentary response to the sedimentary process and environmental change. The inner texture and genesis of carbonate laminae of Paleogene lacustrine shale in Dongying Sag were studied by thin-sec- tion analysis of core samples,scanning electron microscopy(SEM),and micro-fluorescence analysis. The results show that the Paleogene lacustrine shale carbonate laminae in Dongying Sag can be divided into micritic carbonate laminae and spar carbonate laminae,which are characterized by diverse mineral compositions and fabrics.Carbonate lens and lamina have a genetic relationship of inheritance,and the formation of carbonate laminae is closely related to microbial activities. The de- velopment and sedimentation of those laminae are controlled by both environmental conditions and their growth. A variety of mineral components confirm that lamina development has undergone a complex biological-chemical-physical process, and the inner texture and combination form of the laminae reflect the multi-cycle erosion–deposition activities. The devel- opment of lacustrine shale follows a sedimentary sequence from lens to laminae and from a single lamina to laminae cou- ples,which records abundant geological information,such as changes of lake water environment,ecological evolution,and fluctuation in sedimentary base levels.

  • 纹层又名细层,通常以限制性的厚度和范围,连续和周期性的叠加方式为特征,是构成页理的基本结构单元,也是页岩层系是否具备储集性并形成油气工业聚集规模的物质基础。纹层一般形成于水体分层或生物阶段性勃发等内生性因素变化过程中,在地质记录中发育广泛,从古罗马时期渡槽中结核的碳酸盐纹层[1],到 35亿年前浅海环境中叠层石的层状碳酸盐构造[2];从印度洋海底的甲烷渗漏区[3],到意大利南部山区的洞穴堆积物[4],纹层发育显示出复杂的环境多样性。国外学者研究主要侧重于生物活动对碳酸盐沉积的影响,以及纹层作为周期性沉积产物在地质年代学中的作用[5];中国学者倾向于将纹层纳入到岩相中讨论[6-10],强调沉积环境对岩相的控制作用,也有部分学者把湖泊纹层年代学作为研究重点[11-13]。目前对于纹层内部微观变化特征的识别与分析较少,缺乏沉积属性的特征比对和实证资料,某种程度上制约了页岩成因和形成环境判识等方面的深入研究。

  • 近年来,胜利油田在页岩油勘探方面开展了大量基础分析测试与实践,湖相页岩沉积区先后钻探了多口探井,获得了古近系巨厚细粒沉积物系统取心资料。笔者基于牛页1、樊页1井等取心井岩石特征的系统观察,利用岩石薄片、扫描电镜、X 射线衍射和显微荧光等分析方法,针对厚度为 0.05~1 mm 碳酸盐纹层的内部结构及其生物-化学-物理过程进行分析,通过解释碳酸盐纹层的成因,为沉积相分析和甜点预测等相关研究和生产实践提供依据。

  • 1 纹层内部结构

  • 1.1 形貌特征

  • 岩心观察显示古近系页岩纹层通常以平直状或波状产出,厚度变化不均。碳酸盐纹层与黏土纹层、有机质纹层、粉砂纹层形成互层,根据晶粒大小划分为泥晶碳酸盐纹层(<0.01 mm)和亮晶碳酸盐纹层(>0.01 mm)2 类,其中泥晶碳酸盐纹层发育普遍且集中分布,构成厚度超过 2 m 连续分布的纹层组,被成层性差的黏土和粉砂沉积物间隔。亮晶碳酸盐纹层分布相对局限,对应的纹层组厚度一般小于0.5 m。

  • 从牛页 1 井纹层形貌特征及沉积构造(图1)可以看出,纹层形态以平直为主,局部出现扭折、错断(3 416.94 m)及弯曲变形(3 419.74 m);单个纹层具有较好的连续性,局部出现连续性较差的透镜体 (3 413.39 m);收敛方式相对复杂,部分呈楔状收敛和透镜状收敛,二者以空间上互补的组合形式出现 (3 415.44 m),反映纹层组发育多受控于沉积环境和介质条件。纹层组下部见典型的滑动变形构造 (3 419.34~3 419.45 m),滑动发生在距沉积层面 20 cm的碳酸盐纹层中,变形程度最高的位置处于滑动层的底部或中部,反映半固结沉积物顺层滑动的特点。纹层组顶部发育生物滩或内碎屑为主要组分的碎屑流沉积,前者是浅湖-滨湖环境连续沉积的相变产物,后者对应阶地边缘的块体滑动和崩塌作用,记录了侵蚀-再沉积的地质过程。

  • 图1 牛页1井纹层形貌特征及沉积构造

  • Fig.1 Lamina morphology and sedimentary structures in Well Niuye1

  • 沉积水动力较强的位置或自然环境中的化学边界是纹层组发育的重要边界,岩心观察中见富砂质沉积物的冲刷边界(3 412.34 m)以及氧化-还原界面上的自然硫(3 410.64 m)。

  • 利用 X 射线三维显微镜(微米 CT)对牛页 1 井 3 425.23 m 处的一块直径和长度均为 2.5 cm 的岩心柱进行测试,岩心柱中的白色区域即碳酸盐纹层集中发育区(图2)。分析结果表明碳酸盐纹层所占体积比为 16.25%,纹层厚度为 10~800 μm,98% 的纹层厚度小于 300 μm;纹层长度变化较大,部分纹层长度超过所测岩心长度,纹层宽度主要为 10~600 μm,反映了微米—毫米级纹层集中发育的特征。

  • 1.2 矿物特征

  • 1.2.1 矿物类型与产状

  • 碳酸盐纹层中矿物成分多样,含有方解石、白云石、菱铁矿、菱锶矿、黄铁矿、自生石英、石盐、硬石膏、石膏等多种矿物组分(图3a—3f)。粒状方解石和片状伊利石是古近系页岩纹层中的2种主要矿物组分,随着伊利石类黏土矿物含量降低,纹层由黏土矿物环绕碳酸盐等碎屑颗粒构成的包含结构,逐渐过渡为碳酸盐矿物结晶形成的连晶结构。前者碳酸盐颗粒通常具有破损或一定程度的磨圆,记录了机械搬运活动的影响,后者方解石、白云石等各种碳酸盐矿物晶面上普遍具有黄铁矿、石英等自生矿物印模(图3g,3h),说明矿物结晶过程中存在多变的流体介质环境。相邻的粉砂纹层以石英、长石等陆源碎屑为主,含少量方解石、白云石碎屑和黏土矿物;黏土纹层和有机质纹层富含黏土矿物和有机质,还含有数量不等的黄铁矿和碳酸盐颗粒。

  • 图3中亮晶碳酸盐揭示了纹层次生演化过程中强烈的变形和重结晶作用,其中亮晶方解石具有明显的近距离经溶解再重结晶的特征且与有机质含量密切相关[14]。一部分亮晶碳酸盐纹层具有原生性质,镜下观察见栉壳状生长的结晶形态,属于典型的渗流带碳酸盐矿物结晶标志,陈骥等在青海湖滩岩的研究中也证实了类似环境的碳酸盐结构[15]

  • 图2 牛页1井纹层微米CT扫描图像及碳酸盐纹层频数分布

  • Fig.2 CT scans of laminae and frequency of carbonate laminae in Well Niuye1

  • 1.2.2 矿物组构特征

  • 富镁碳酸盐发育是古近系碳酸盐纹层的成分特征之一。图4a中亮色区域为结晶方解石,暗色部分富含黏土矿物及泥晶级碳酸盐碎屑。从图4b 可以看出,结晶方解石中 Mg 原子质量分数通常低于 5%,暗色区域中 Mg 原子质量分数通常大于 12%。大粒径的碳酸盐聚合体(图4c)中,Mg原子质量分数由亮色区的4%~7%上升到22%~38%(图4d)。分析可知,东营凹陷古近系咸化湖泊中存在大量比 Ca2+ 更小的Fe2+,Mn2+,Mg2+ 等离子,其中被水分子包围的Mg2+ 等水合键的强度比 Ca2+ 高 20%,高盐度演化阶段形成的文石和高镁方解石向稳定的方解石转化需在淡水条件下进行,而始新世中期频繁的湖平面升降为纹层中方解石类碳酸盐矿物的形成提供了基础条件。图4c 中结晶方解石颗粒中的富镁质残余也验证了这一特征。

  • 图3 碳酸盐、黄铁矿及蒸发岩类矿物产状

  • Fig.3 Occurrences of carbonate,pyrite and evaporite minerals

  • 东营凹陷沙四段上亚段—沙三段下亚段页岩中白云石具有显著的荧光特征(图5a),证实有机质参与了白云石的结晶进程。草莓状黄铁矿是纹层中重要的矿物类型之一且晶粒大小变化较大,这是由于随着含氧程度增加,草莓状黄铁矿的粒径增大且分布范围趋于加宽[16]。沙四段上亚段页岩中大晶粒黄铁矿发育在碳酸盐纹层中,小晶粒黄铁矿发育在黏土纹层中,符合湖泊中心区还原条件加强的趋势。

  • 碳酸盐纹层与黄铁矿层状分布具有交替发育的现象(图5b,5c),反映环境变化对碳酸盐沉淀和黄铁矿生成具有共同的制约作用。DUPRAZ等发现以蓝藻为代表的典型光自养微生物群落负责二氧化碳的固定,新生有机碳是异养细菌发育的首选位置,异养群落包括硫酸盐还原菌和甲烷细菌等厌氧菌[17],合理地解释了微生物介导的碳循环通过代谢转化,控制光合作用与呼吸作用之间的平衡,形成这种被沉积界面限定的矿物共生现象。

  • 图4 官17-11井纹层及碳酸盐纹层Ca,Mg和 C原子质量分数变化

  • Fig.4 Variation in atomic mass fractions of Ca,Mg,and C between laminae and carbonate laminae in Well Guan17-11

  • 利用扫描电镜观察部分纹层中发育非晶态 CaSO4(图5d),符合 ADDADI 等识别的非晶态前驱体特征,前驱体条件合适时会相变为结晶态的针状、圆片状硬石膏[18]

  • 白云石还具有与黄铁矿共生结晶现象(图5e)。 VASCONCELOS 等在巴西 lagoa vemelha 潟湖中发现了现代白云石[19],并建立白云石形成与硫酸盐细菌活动的动力学模型,这与东营凹陷沙四段上亚段— 沙三段下亚段富含黄铁矿,硫酸盐还原菌活跃的微生物发育特征以及白云石-黄铁矿共生现象类似,可以推测硫酸盐还原菌介导的白云石沉淀是白云石形成的关键因素。图5f 揭示了部分纹层中碳酸盐矿物特有的结晶特征,即部分微米级碳酸盐颗粒来自于纳米级碳酸盐微粒的黏结,这些纳米级颗粒具有不规则的外形且在进一步的结晶过程中聚合生长,形成不规则颗粒形态。

  • 2 成因分析

  • 2.1 沉积属性

  • 碳酸盐纹层通常被作为碳酸盐岩的一个结构单元[20-21],而不作为一种具有独立意义的沉积单元来研究。东营凹陷沙四段上亚段页岩形貌特征表明,碳酸盐纹层与黏土纹层、粉砂纹层和有机质纹层等以不同形式组合,经历了多期侵蚀-再沉积旋回沉积活动,具有相对独立的沉积属性。

  • 单个纹层内部存在似球粒是纹层发育的一个重要结构特征(图6a,6b)。似球粒一般指小于 0.2mm 的无结构次圆状内碎屑颗粒,来源于泥和颗粒的改造作用,多被认为是经侵蚀和再沉积的内碎屑。似球粒与微晶基质有相似的微晶组分,优先出现在透镜体、纹层或层内,摩洛哥 High Atlas早侏罗世台地内部纹层状球粒泥晶灰岩,巴伐利亚晚侏罗世至早白垩世缓坡沉积中,内缓坡潮间浅滩、外缓坡似红藻泥粒灰岩中具有类似的结构特征[21]。部分纹层内部碳酸盐颗粒存在泥晶—显微晶—微晶的变化序列(图6c),与硅质碎屑岩粒序层具有形貌上的可比性。

  • 图5 白云石、方解石结晶特征及黄铁矿发育特征

  • Fig.5 Crystal features of dolomite and calcite and pyrite development features

  • 图6 碳酸盐纹层的内部结构与沉积特征

  • Fig.6 Inner texture and sedimentary features of carbonate laminae

  • 多个碳酸盐纹层构成的纹层组之间常见垂向加积、交错纹层和滑动变形等复杂的沉积到同生沉积变形微构造。图6d 记录了原始沉积界面的角度变化和侵蚀特征,A段是早期的水平纹层;B段为侵蚀残余;C段中原始沉积界面倾斜,新生纹层上超早期纹层组;D段沉积界面角度进一步调整,纹层组继续发育。图6e中A段是翼部出现断裂的褶皱形态,显示水平方向挤压应力的作用;B 段由 2 组近于翻转的水平褶皱构造构成,反映挤压活动进一步增强;C段未见明显变形,层面顶部受到了侵蚀削截;D 段为水平翻转变形层理;E 段则是较薄的黏土纹层沉积后另一段水平纹层组的开始。图6f 中自下而上发育不同规模的前积纹层并在顶部出现类似于经典三角洲层序中的顶积纹层,显示了微观构造与宏观构造良好的相似性。王勇等认为钻井取心中的交错层理、冲刷面等属于风暴引起的浊流和黏土絮沉成因[22],张顺等识别了纹层三元结构并指出受温跃层和物源供给变化控制[23],都强调了湖水沉积动力对纹层控制作用。SCHIEBER 等用粒径小于 0.02 mm 的钙蒙脱石等黏性颗粒,基于不同流速和盐度的流体介质,模拟了黏性纹层形成过程和内部结构[24],其中的交错纹层也为上述纹层提供了对比的实验依据。

  • 沉积构造还可见压扁纹层、波状纹层和透镜状纹层等多种与层理相对应的纹层构造(图6a—6c, 6h)。透镜状纹层平行层面分布,局部密集且被黏土和粉砂基质分隔(图6g,6h)。透镜体通常有统一的多色性和消光位,具有席状共轴生长的特征。单个透镜体分布受到层面的限制,发育受到沉积活动的控制。部分透镜体具有扭曲形貌和断裂特征,显示同沉积期的滑动变形甚至遭受同沉积黏土的破坏变形和充填,与MACQUAKER等提出的波浪增强的沉积物重力流及其侵蚀活动相对应,记录了高频侵蚀和再沉积活动[25]。此外,在东营凹陷斜坡区发育的泥晶碳酸盐顺有机质纹层滑动,形成包卷纹层构造(图6i)。

  • 单层白云石晶粒富集成层是东营凹陷沙四段上亚段一类特殊的纹层发育现象(图3e)。FUSS⁃ MANN 等对 Neusiedl 湖碳酸盐研究认为,地表水输入和温度变化导致湖泊表层水 pH 值的波动并诱发白云石沉淀[26]。MEISTER 等建议用这种季节性依赖的形成机制来解释三叠纪蒸发潮坪环境中白云石的形成[27]。以上研究解释了白云石富集沉淀产状的来源,SCHIEBER 等所提及的线粒层同样与这种白云石纹层具有几何相似性。

  • 2.2 生物属性

  • 构成纹层的基础组分如方解石、白云石等矿物与生物活动密切相关,同时纹层内部及周边发育一系列与生物活动直接相关的现象。页岩碳酸盐纹层中常见鱼类、腹足类、介形类、藻类和孢粉等古生物化石[27]。扫描电镜下可见部分矿物表面发育花瓣状、锥状、丝发状、蠕虫状、囊泡状等具有生物形态的颗粒胞衣结构(图7a—7d),反映蓝细菌等微生物活动在各类矿物组分沉淀和聚合沉积过程中的作用。从成因上看,无论是碳酸盐矿物异相晶核还是由原核生物完成的层状建造[28],以及 VISSCHER 等讨论的 EPS(胞外聚合物)降解后硫酸盐还原和 Ca2+ 释放各种异养细菌对碳酸钙沉淀的控制作用[29] 都印证了生物活动对碳酸盐纹层发育的重要影响。

  • 湖泊叠层石和核形石是东营凹陷沙四段上亚段—沙三段下亚段沉积时期典型的生物成因纹层建造。叠层石主要出现在礁-坪微相,具有特征的窗格状孔隙,微生物席生长并捕捉碎屑颗粒形成的定向层状构造,以及部分特征的生物结构等(图8a, 8d)。核形石指示滨浅湖或水道环境的沉积活动,其同心纹层是细小的沉积物附着藻坪黏液质的表面上,在藻类或细菌新陈代谢和光合作用中交换的二氧化碳作用下形成的碳酸钙沉淀(图8b,8c)。

  • 图7 碳酸盐纹层内部钙化的微生物结构构造

  • Fig.7 Microbial fabrics of calcification in carbonate laminae

  • 图8 叠层石、核形石以及包卷纹层构造

  • Fig.8 Stromatolite,oncoid and involute laminae textures

  • 2.3 沉积与生物活动的相关性

  • 纹层组中交错纹层、透镜状纹层等典型的沉积构造证实沉积活动是纹层组或部分单个纹层形成的主导因素。纹层内部丰富的生物、沉积结构失去秩序并发生碎片化的特征以及众多的生物成矿活动等现象,用通常的沉积动力机制很难解释。纹层中各种微生物化石残余揭示了生物活动如微生物代谢或者黏液吸附捕获等是纹层形成的重要因素。

  • 从沉积与生物活动的相关性看:①碎屑物源的波动性供给影响受藻类等生物活动控制的碳酸盐生长,活跃期发育黏土纹层和粉砂纹层,间歇期发育碳酸盐纹层,整体上形成了纹层是沉积物主要类型的特征;同时由于沉积物供给的缺乏,欠补偿区高出基准面的大部分区域较长时间处于侵蚀状态,导致滨岸碳酸盐和先存碎屑的再次搬运,一定程度上破坏了原始沉积物结构的保存。②洪泛期除黏土纹层和粉砂纹层之外,还出现由细砂级沉积物构成的水道或浊流沉积物,冲刷剥离边缘的碳酸盐纹层,生物活动及对应的沉积记录保存较少。③间歇性碎屑供给为有机质富集提供了必要的营养条件和物质基础。生物带的发育及欠补偿环境有机质富集形成的湖泊高生产力与间歇性碎屑供给密切相关。微生物席形成在先存沉积物层面上,多数具有丝状形态的特点,丝状体可作为沉积颗粒黏结作用和外部钙化作用的场所。造席生物群落的建造期和消减期通常相间分布,自养和异养细菌向上垂直移动避免被沉积物埋藏,沉积响应为泥晶碳酸盐纹层与富黄铁矿黏土纹层的互层。

  • 3 结论

  • 碳酸盐纹层形成于沉积控制与生物控制的联合作用。生物控制主要指细菌等微生物席通过对物理化学环境的调节导致碳酸盐沉淀,以及对其他沉积物的黏结和捕获。沉积作用无论是短周期的沉积事件,还是较长周期的沉积活动,主要是限定了微生物席所依附的沉积层面,控制了更高一级结构要素。微生物群落、沉积物供给、古气候、氧化还原条件等不同层次的要素耦合在一起,构成了控制纹层发育的基础地质条件。纹层形貌总体上保持简单的平直形态并出现复杂的塑性变形,同沉积期沉积物埋藏条件控制了纹层的沉积期后几何形态。纹层侧向具有良好的连续性,可形成产状稳定的席状薄层,记录安静水体的沉积介质状态,也可以出现撕裂状或透镜状等形态各异的碎片化形态,记录风暴沉积等强烈扰动的水介质环境。

  • 参考文献

    • [1] BENJELLOUN Y,CARLUT J,HÉLIE J F,et al.Geochemical study of carbonate concretions from the aqueduct of Nîmes(south⁃ ern France):a climatic record for the first centuries AD?[J].Sci⁃ entific Reports,2019,9(1):5 209.

    • [2] ALTERMANN W.Accretion,tapping and binding of sediment in archean stromatolites-morphological expression of the antiquity of life[J].Space Science Reviews,2008,135(1/4):55-79.

    • [3] HIMMLER T,BAYON G,WANGNER D,et al.Seep-carbonate lamination controlled by cyclic particle flux[J].Scientific Reports,2016,6(1):37 439.

    • [4] PERRI E,BORRELLI M,BERNASCONI M P,et al.Microbial-dominated carbonate depositional systems:a biosedimentary and stratigraphic reconstruction in the Late Triassic of Western Tethys(northern Calabria,Italy)[J].Facies,2019,65(31):1-25.

    • [5] EVELIEN B,MAARTEN V D,JASPER M,et al.Varve formation during the past three centuries in three large proglacial lakes in south-central Alaska[J].Geological Society of America Bulletin,2018,130(5/6):757-774.

    • [6] 邓宏文,钱凯.深湖相泥岩的成因类型和组合演化[J].沉积学报,1990,8(3):1-21.DENG Hongwen,QIAN Kai.The genetic types and association evolution of deep lacustrine mudstones[J].Acta Sedimentologica Sinica,1990,8(3):1-21.

    • [7] 刘惠民,于炳松,谢忠怀,等.陆相湖盆富有机质页岩微相特征及对页岩油富集的指示意义——以渤海湾盆地济阳坳陷为例 [J].石油学报,2018,39(12):1 328-1 343.LIU Huimin,YU Bingsong,XIE Zhonghuai,et al.Characteristics and implications of micro-lithofacies in lacustrine-basin organicrich shale:a case study of Jiyang depression,Bohai Bay Basin[J].Acta Petrolei Sinica,2018,39(12):1 328-1 343.

    • [8] 陈世悦,张顺,王永诗,等.渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J].石油勘探与开发,2016,43(2):198-208.CHEN Shiyue,ZHANG Shun,WANG Yongshi,et al.Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag,Bohai Bay Basin[J].Petroleum Exploration and Development,2016,43(2):198-208.

    • [9] 柳波,吕延防,孟元林,等.湖相纹层状细粒岩特征、成因模式及其页岩油意义——以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J].石油勘探与开发,2015,42(5):598-607.LIU Bo,LÜ Yanfang,MENG Yuanlin,et al.Petrologic characteris⁃ tics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration:A case study of Permian Lucaogou Formation in Malang sag,Santanghu Basin,NW China[J].Petroleum Exploration and Development,2015,42(5):598-607.

    • [10] 刘惠民,张守鹏,王朴,等.沾化凹陷罗家地区沙三段下亚段页岩岩石学特征[J].油气地质与采收率,2012,19(6):11-15.LIU Huimin,ZHANG Shoupeng,WANG Pu,et al.Lithologic char⁃ acteristics of Lower Es3 shale in Luojia area,Zhanhua sag[J].Pe⁃ troleum Geology and Recovery Efficiency,2012,19(6):11-15.

    • [11] 李凯,游海涛,刘兴起.中国湖泊沉积物纹层年代学研究进展 [J].湖泊科学,2017,29(2):266-275.LI Kai,YOU Haitao,LIU Xingqi.Review on lake sediment varve chronology in China[J].Journal of Lake Sciences,2017,29(2):266-275.

    • [12] 刘强,游海涛,刘嘉麒.湖泊沉积物年纹层的研究方法及其意义[J].第四纪研究,2004,24(6):683-694.LIU Qiang,YOU Haitao,LIU Jiaqi.Methodology of studying on varved lake sediments and its significance[J].Quaternary Scienc⁃ es,2004,24(6):683-694.

    • [13] 周爱锋,陈发虎,强明瑞,等.内陆干旱区柴达木盆地苏干湖年纹层的发现及其意义[J].中国科学:D 辑地球科学,2007,37(7):941-948.ZHOU Aifeng,CHEN Fahu,QIANG Mingrui,et al.Discovery and significance of the annual laminae of Sugan Lake in Qaidam Basin [J].Science in China:Series D Earth Sciences,2007,37(7):941-948.

    • [14] 王冠民,任拥军,钟建华,等.济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨[J].地质学报,2005,79(6):834-838.WANG Guanmin,REN Yongjun,ZHONG Jianhua,et al.Genetic analysis on lamellar calcite veins in Paleogene black shale of the Jiyang Depression[J].Acta Geologica Sinica,2005,79(6):834-838.

    • [15] 陈骥,姜在兴,张万益,等.青海湖湖滩岩的岩石学特征及其形成机制[J].湖泊科学,2019,31(6):1 783-1 796.CHEN Ji,JIANG Zaixing,ZHANG Wanyi,et al.The petrological characteristics and formation mechanism of Lake Beachrock in Lake Qinghai[J].Journal of Lake Sciences,2019,31(6):1 783-1 796.

    • [16] WEI H,ALGEO T J,YU H,et al.Episodic euxinia in the Changhs⁃ ingian(Late Permian)of South China:Evidence from framboidal pyrite and geochemical data[J].Sedimentary Geology,2015,319(15):78-97.

    • [17] DUPRAZ C,REID R P,BRAISSANT O,et al.Processes of carbon⁃ ate precipitation in modern microbial mats[J].Earth-Science Re⁃ views,2009,96:141-162.

    • [18] ADDADI L,RAZ S,WEINER S.Taking advantage of disorder:Amorphous calcium carbonate and its roles in biomineralization [J].Advanced Materials,2003,15(12):959-970.

    • [19] VASCONCELOS C,BERNASCONI S,GRUJIC D,et al.Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J].Nature,1995,377(6546):220-222.

    • [20] FLÜGEL E.Microfacies analysis of limestones,analysis interpreta⁃ tion and application[M].Berlin:Springer-Verlag,2010.

    • [21] DUNHAM R J.Classification of carbonate rocks according to depo⁃ sitional texture[J].AAPG Memoir,1962,1:108-121.

    • [22] 王勇,宋国奇,刘惠民,等.济阳坳陷细粒沉积岩形成环境及沉积构造[J].东北石油大学学报,2015,39(3):7-14,31.WANG Yong,SONG Guoqi,LIU Huimin,et al.Formation environ⁃ ment and sedimentary structures of fine-grained sedimentary rocks in Jiyang depression[J].Journal of Northeast Petroleum Uni⁃ versity,2015,39(3):7-14,31.

    • [23] 张顺,刘惠民,陈世悦,等.中国东部断陷湖盆细粒沉积岩岩相划分方案探讨——以渤海湾盆地南部古近系细粒沉积岩为例 [J].地质学报,2017,91(5):1 108-1 119.ZHANG Shun,LIU Huimin,CHEN Shiyue,et al.Classification scheme for lithofacies of fine-grained sedimentary rocks in fault⁃ ed basins of eastern China:In sights from the fine-grained sedi⁃ mentary rocks in Paleogene,southern Bohai Bay Basin[J].Acta Geologica Sinica,2017,91(5):1 108-1 119.

    • [24] SCHIEBER J,SOUTHARD J B.Bedload transport of mud by floc⁃ cule ripples-Direct observation of ripple migration processes and their implications[J].Geology,2009,37(6):483-486.

    • [25] MACQUAKER J H,BENTLEY S J,BOHACS K M.Wave-en⁃ hanced sediment-gravity flows and mud dispersal across continen⁃ tal shelves:Reappraising sediment transport processes operating in ancient mudstone successions[J].Geology,2010,38(10):947-950.

    • [26] FUSSMANN D,HOYNINGEN-HUENE A,REIMER A,et al.Au⁃ thigenic formation of Ca-Mg carbonates in the shallow alkaline Lake Neusiedl,Austria[J].Biogeosciences,2020,17(7):2 085-2 106.

    • [27] MEISTER P,FRISIA S.Dolomite formation by nano-crystal aggre⁃ gation in the Dolomia Principale of the Brenta Dolomites(North⁃ ern Italy)[J].Rivista Italiana Paleontologia Stratigrafia,2019,125(1):183-196.

    • [28] REID P,DUPRAZ C D,VISSCHER P T,et al.Microbial processes forming marine stromatolites[M].Netherlands:Springer Nether⁃ lands,2003.

    • [29] VISSCHER P T,REID R P,BEBOUT B M.Microscale observa⁃ tions of sulfate reduction:correlation of microbial activity with lithifified micritic laminae in modern marine stromatolites[J].Ge⁃ ology,2000,28(10):919-922.

  • 参考文献

    • [1] BENJELLOUN Y,CARLUT J,HÉLIE J F,et al.Geochemical study of carbonate concretions from the aqueduct of Nîmes(south⁃ ern France):a climatic record for the first centuries AD?[J].Sci⁃ entific Reports,2019,9(1):5 209.

    • [2] ALTERMANN W.Accretion,tapping and binding of sediment in archean stromatolites-morphological expression of the antiquity of life[J].Space Science Reviews,2008,135(1/4):55-79.

    • [3] HIMMLER T,BAYON G,WANGNER D,et al.Seep-carbonate lamination controlled by cyclic particle flux[J].Scientific Reports,2016,6(1):37 439.

    • [4] PERRI E,BORRELLI M,BERNASCONI M P,et al.Microbial-dominated carbonate depositional systems:a biosedimentary and stratigraphic reconstruction in the Late Triassic of Western Tethys(northern Calabria,Italy)[J].Facies,2019,65(31):1-25.

    • [5] EVELIEN B,MAARTEN V D,JASPER M,et al.Varve formation during the past three centuries in three large proglacial lakes in south-central Alaska[J].Geological Society of America Bulletin,2018,130(5/6):757-774.

    • [6] 邓宏文,钱凯.深湖相泥岩的成因类型和组合演化[J].沉积学报,1990,8(3):1-21.DENG Hongwen,QIAN Kai.The genetic types and association evolution of deep lacustrine mudstones[J].Acta Sedimentologica Sinica,1990,8(3):1-21.

    • [7] 刘惠民,于炳松,谢忠怀,等.陆相湖盆富有机质页岩微相特征及对页岩油富集的指示意义——以渤海湾盆地济阳坳陷为例 [J].石油学报,2018,39(12):1 328-1 343.LIU Huimin,YU Bingsong,XIE Zhonghuai,et al.Characteristics and implications of micro-lithofacies in lacustrine-basin organicrich shale:a case study of Jiyang depression,Bohai Bay Basin[J].Acta Petrolei Sinica,2018,39(12):1 328-1 343.

    • [8] 陈世悦,张顺,王永诗,等.渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征[J].石油勘探与开发,2016,43(2):198-208.CHEN Shiyue,ZHANG Shun,WANG Yongshi,et al.Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks in Dongying Sag,Bohai Bay Basin[J].Petroleum Exploration and Development,2016,43(2):198-208.

    • [9] 柳波,吕延防,孟元林,等.湖相纹层状细粒岩特征、成因模式及其页岩油意义——以三塘湖盆地马朗凹陷二叠系芦草沟组为例[J].石油勘探与开发,2015,42(5):598-607.LIU Bo,LÜ Yanfang,MENG Yuanlin,et al.Petrologic characteris⁃ tics and genetic model of lacustrine lamellar fine-grained rock and its significance for shale oil exploration:A case study of Permian Lucaogou Formation in Malang sag,Santanghu Basin,NW China[J].Petroleum Exploration and Development,2015,42(5):598-607.

    • [10] 刘惠民,张守鹏,王朴,等.沾化凹陷罗家地区沙三段下亚段页岩岩石学特征[J].油气地质与采收率,2012,19(6):11-15.LIU Huimin,ZHANG Shoupeng,WANG Pu,et al.Lithologic char⁃ acteristics of Lower Es3 shale in Luojia area,Zhanhua sag[J].Pe⁃ troleum Geology and Recovery Efficiency,2012,19(6):11-15.

    • [11] 李凯,游海涛,刘兴起.中国湖泊沉积物纹层年代学研究进展 [J].湖泊科学,2017,29(2):266-275.LI Kai,YOU Haitao,LIU Xingqi.Review on lake sediment varve chronology in China[J].Journal of Lake Sciences,2017,29(2):266-275.

    • [12] 刘强,游海涛,刘嘉麒.湖泊沉积物年纹层的研究方法及其意义[J].第四纪研究,2004,24(6):683-694.LIU Qiang,YOU Haitao,LIU Jiaqi.Methodology of studying on varved lake sediments and its significance[J].Quaternary Scienc⁃ es,2004,24(6):683-694.

    • [13] 周爱锋,陈发虎,强明瑞,等.内陆干旱区柴达木盆地苏干湖年纹层的发现及其意义[J].中国科学:D 辑地球科学,2007,37(7):941-948.ZHOU Aifeng,CHEN Fahu,QIANG Mingrui,et al.Discovery and significance of the annual laminae of Sugan Lake in Qaidam Basin [J].Science in China:Series D Earth Sciences,2007,37(7):941-948.

    • [14] 王冠民,任拥军,钟建华,等.济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨[J].地质学报,2005,79(6):834-838.WANG Guanmin,REN Yongjun,ZHONG Jianhua,et al.Genetic analysis on lamellar calcite veins in Paleogene black shale of the Jiyang Depression[J].Acta Geologica Sinica,2005,79(6):834-838.

    • [15] 陈骥,姜在兴,张万益,等.青海湖湖滩岩的岩石学特征及其形成机制[J].湖泊科学,2019,31(6):1 783-1 796.CHEN Ji,JIANG Zaixing,ZHANG Wanyi,et al.The petrological characteristics and formation mechanism of Lake Beachrock in Lake Qinghai[J].Journal of Lake Sciences,2019,31(6):1 783-1 796.

    • [16] WEI H,ALGEO T J,YU H,et al.Episodic euxinia in the Changhs⁃ ingian(Late Permian)of South China:Evidence from framboidal pyrite and geochemical data[J].Sedimentary Geology,2015,319(15):78-97.

    • [17] DUPRAZ C,REID R P,BRAISSANT O,et al.Processes of carbon⁃ ate precipitation in modern microbial mats[J].Earth-Science Re⁃ views,2009,96:141-162.

    • [18] ADDADI L,RAZ S,WEINER S.Taking advantage of disorder:Amorphous calcium carbonate and its roles in biomineralization [J].Advanced Materials,2003,15(12):959-970.

    • [19] VASCONCELOS C,BERNASCONI S,GRUJIC D,et al.Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures[J].Nature,1995,377(6546):220-222.

    • [20] FLÜGEL E.Microfacies analysis of limestones,analysis interpreta⁃ tion and application[M].Berlin:Springer-Verlag,2010.

    • [21] DUNHAM R J.Classification of carbonate rocks according to depo⁃ sitional texture[J].AAPG Memoir,1962,1:108-121.

    • [22] 王勇,宋国奇,刘惠民,等.济阳坳陷细粒沉积岩形成环境及沉积构造[J].东北石油大学学报,2015,39(3):7-14,31.WANG Yong,SONG Guoqi,LIU Huimin,et al.Formation environ⁃ ment and sedimentary structures of fine-grained sedimentary rocks in Jiyang depression[J].Journal of Northeast Petroleum Uni⁃ versity,2015,39(3):7-14,31.

    • [23] 张顺,刘惠民,陈世悦,等.中国东部断陷湖盆细粒沉积岩岩相划分方案探讨——以渤海湾盆地南部古近系细粒沉积岩为例 [J].地质学报,2017,91(5):1 108-1 119.ZHANG Shun,LIU Huimin,CHEN Shiyue,et al.Classification scheme for lithofacies of fine-grained sedimentary rocks in fault⁃ ed basins of eastern China:In sights from the fine-grained sedi⁃ mentary rocks in Paleogene,southern Bohai Bay Basin[J].Acta Geologica Sinica,2017,91(5):1 108-1 119.

    • [24] SCHIEBER J,SOUTHARD J B.Bedload transport of mud by floc⁃ cule ripples-Direct observation of ripple migration processes and their implications[J].Geology,2009,37(6):483-486.

    • [25] MACQUAKER J H,BENTLEY S J,BOHACS K M.Wave-en⁃ hanced sediment-gravity flows and mud dispersal across continen⁃ tal shelves:Reappraising sediment transport processes operating in ancient mudstone successions[J].Geology,2010,38(10):947-950.

    • [26] FUSSMANN D,HOYNINGEN-HUENE A,REIMER A,et al.Au⁃ thigenic formation of Ca-Mg carbonates in the shallow alkaline Lake Neusiedl,Austria[J].Biogeosciences,2020,17(7):2 085-2 106.

    • [27] MEISTER P,FRISIA S.Dolomite formation by nano-crystal aggre⁃ gation in the Dolomia Principale of the Brenta Dolomites(North⁃ ern Italy)[J].Rivista Italiana Paleontologia Stratigrafia,2019,125(1):183-196.

    • [28] REID P,DUPRAZ C D,VISSCHER P T,et al.Microbial processes forming marine stromatolites[M].Netherlands:Springer Nether⁃ lands,2003.

    • [29] VISSCHER P T,REID R P,BEBOUT B M.Microscale observa⁃ tions of sulfate reduction:correlation of microbial activity with lithifified micritic laminae in modern marine stromatolites[J].Ge⁃ ology,2000,28(10):919-922.