en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

柴德民(1967—),男,山东单县人,高级工程师,硕士,从事油藏动态监测研究。E-mail:chaidemin.slyt@sinopec.com。

通讯作者:

安振芳(1984—),男,河北邢台人,工程师,博士。E-mail:azf@stu.ouc.edu.cn。

中图分类号:P631.84

文献标识码:A

文章编号:1009-9603(2022)03-0020-09

DOI:10.13673/j.cnki.cn37-1359/te.202107040

参考文献 1
冯其红,李闪闪,黄迎松,等.基于瞬时流场潜力系数的水驱开发效果评价方法[J].油气地质与采收率,2020,27(4):79-84.FENG Qihong,LI Shanshan,HUANG Yingsong,et al.Evaluation method of water flooding development effect based on instanta⁃ neous flow field potential coefficient[J].Petroleum Geology and Recovery Efficiency,2020,27(4):79-84.
参考文献 2
柴汝宽,刘月田,何宇廷,等.智能水驱中油水相互作用规律与机理实验研究[J].油气地质与采收率,2021,28(4):93-100.CHAI Rukuan,LIU Yuetian,HE Yuting,et al.Experimental study on oil-water interaction law and mechanism in smart water-flood⁃ ing[J].Petroleum Geology and Recovery Efficiency,2021,28(4):93-100.
参考文献 3
张世明,杨勇.特高含水水驱油藏流场边界动态追踪模型研究 [J].油气地质与采收率,2021,28(2):91-99.ZHANG Shiming,YANG Yong.Study on the dynamic tracking model of flow field boundaries in water drive reservoirs at ultrahigh water cut stage[J].Petroleum Geology and Recovery Efficien⁃ cy,2021,28(2):91-99.
参考文献 4
姜颜波,刘璐,元福卿,等.聚合物/降黏剂复合驱产液能力动态预测方法[J].油气地质与采收率,2020,27(3):91-99.JIANG Yanbo,LIU Lu,YUAN Fuqing,et al.Dynamic prediction method of liquid production capacity in polymer/viscosity reducer compound flooding[J].Petroleum Geology and Recovery Efficien⁃ cy,2020,27(3):91-99.
参考文献 5
张娜,元福卿,魏翠华,等.普通稠油油藏聚合物驱提高采收率研究与实践——以孤岛油田B21单元为例[J].油气地质与采收率,2021,28(6):101-106.ZHANG Na,YUAN Fuqing,WEI Cuihua,et al.Research and practice of enhanced oil recovery by polymer flooding in ordinary heavy oil reservoirs:Taking Block B21,Gudao Oilfield as an ex⁃ ample[J].Petroleum Geology and Recovery Efficiency,2021,28(6):101-106.
参考文献 6
杨斌.聚合物降黏剂的性能及其提高采收率效果[J].油气地质与采收率,2021,28(6):107-113.YANG Bin.Properties of polymer viscosity reducer and its effect on enhanced oil recovery[J].Petroleum Geology and Recovery Ef⁃ ficiency,2021,28(6):107-113.
参考文献 7
仲艳华,魏大农,冯爱国,等.中子寿命测井技术在江汉油田的应用[J].测井技术,2015,39(2):253-256.ZHONG Yanhua,WEI Danong,FENG Aiguo,et al.Application of neutron lifetime logging technology in Jianghan oilfield[J].Well Logging Technology,2015,39(2):253-256.
参考文献 8
王功军,黄文新,张超谟.硼中子测井解释方法研究[J].石油地球物理勘探,2010,45(增刊1):210-213.WANG Gongjun,HUANG Wenxin,ZHANG Chaomo.Studies on boron neutron logging interpretation method[J].Oil Geophysical Prospecting,2010,45(Supplement1):210-213.
参考文献 9
任文博.PNN 测井技术在塔河油田的应用研究[J].石油仪器,2013,27(2):49-51.REN Wenbo.Research on the application of PNN well-logging technology in Tahe oilfield[J].Petroleum Instruments,2013,27(2):49-51.
参考文献 10
刘萍,冯伟,任书莲,等.热中子成像测井在饶阳油田的应用 [J].测井技术,2018,42(4):407-412.LIU Ping,FENG Wei,REN Shulian,et al.Application of TNIS sat⁃ uration logging technology in Raoyang Oilfield[J].Well Logging Technology,2018,42(4):407-412.
参考文献 11
李传伟,李安宗,慕德俊.碳氧比能谱测井原理与实现[J].核电子学与探测技术,2007,27(6):1 189-1 192.LI Chuanwei,LI Anzong,MU Dejun.The principle and compli⁃ ment of C/O logging[J].Nuclear Electronics & Detection Technol⁃ ogy,2007,27(6):1 189-1 192.
参考文献 12
林梁.双探测器碳氧比测井解释方法[J].测井技术,2000,24(6):463-465.LIN Liang.Interpretation method for dual detector carbon oxygen log[J].Well Logging Technology,2000,24(6):463-465.
参考文献 13
龙武,陶碧娥,马立新,等.PSSL全能谱饱和度测井技术在塔河油田的应用[J].石油天然气学报,2012,34(8):99-102,106.LONG Wu,TAO Bi’e,MA Lixin,et al.Application of poly-spec⁃ tra saturation logging(PSSL)in Tahe Oilfield[J].Journal of Oil and Gas Technology,2012,34(8):99-102,106.
参考文献 14
张洪,邱金权,张智峰,等.脉冲中子全谱饱和度测井在青海油田的应用[J].测井技术,2014,38(5):627-633.ZHANG Hong,QIU Jinquan,ZHANG Zhifeng,et al.Applications of pulsed neutron full-spectra saturation logging in Qinghai oil⁃ field[J].Well Logging Technology,2014,38(5):627-633.
参考文献 15
梁军彬.PND-S 测井技术在特高含水油田的应用[J].测井技术,2003,27(4):338-342.LIANG Junbin.Application of pulsed neutron decay-spectrum log⁃ ging(PND-S)in higher watercut oilfield[J].Well Logging Tech⁃ nology,2003,27(4):338-342.
参考文献 16
陈占才.应用PND-S技术进行储层状况评价[J].断块油气田,2005,12(2):86-88.CHEN Zhancai.Application of pulsed neutron decay-spectrum logging(PND-S)for reservoir evaluation[J].Fault-Block Oil and Gas Field,2005,12(2):86-88.
参考文献 17
吴银川,张家田,严正国.过套管地层电阻率测井技术综述[J].石油仪器,2006,20(5):1-5.WU Yinchuan,ZHANG Jiatian,YAN Zhengguo.An overview of the logging technology of formation resistivity through casing[J].Petroleum Instruments,2006,20(5):1-5.
参考文献 18
孔庆东.过套管电阻率测井在海外油田的适用性分析[J].测井技术,2020,44(2):141-145.KONG Qingdong.Adaptability analysis of cased-hole resistivity logging in oversea oilfields[J].Well Logging Technology,2020,44(2):141-145.
参考文献 19
刘子雄,李啸南,王金伟,等.致密气藏水平井甜点段识别方法研究[J].中国石油勘探,2021,26(3):117-125.LIU Zixiong,LI Xiaonan,WANG Jinwei,et al.Study on method of sweet spot interval identification of tight gas reservoir in horizon⁃ tal well[J].China Petroleum Exploration,2021,26(3):117-125.
参考文献 20
孙焕泉,王海涛,吴光焕,等.稠油油藏注 CO2提高采收率影响因素研究[J].石油实验地质,2020,42(6):1 009-1 013,1 023.SUN Huanquan,WANG Haitao,WU Guanghuan,et al.CO2 EOR factors in heavy oil reservoirs[J].Petroleum Geology & Experi⁃ ment,2020,42(6):1 009-1 013,1 023.
参考文献 21
卢异,夏国朝,吕栋梁,等.缝洞型火成岩油藏注水提高采收率研究[J].特种油气藏,2020,27(1):96-101.LU Yi,XIA Guochao,LÜ Dongliang,et al.Enhancing oil recovery by waterflooding in fracture-cave igneous reservoir[J].Special Oil & Gas Reservoirs,2020,27(1):96-101.
参考文献 22
刘俊杰.鄂尔多斯盆地致密砂岩储层高温高压动态渗吸实验 [J].大庆石油地质与开发,2020,39(5):161-168.LIU Junjie.Dynamic imbibition experiment of the high-tempera⁃ ture high-pressure tight sandstone reservoirs in Ordos Basin[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(5):161-168.
参考文献 23
张立安,王少鹏,张岚,等.通过地质建模剖析古潜山碳酸盐岩裂缝性储层地质特征[J].油气藏评价与开发,2021,11(5):688-693.ZHANG Li’an,WANG Shaopeng,ZHANG Lan,et al.Analysis on geological characteristics of fractured carbonate reservoir in bur⁃ ied-hill by geological modeling[J].Reservoir Evaluation and De⁃ velopment,2021,11(5):688-693.
参考文献 24
赖书敏.特高含水后期油藏细分注水界限研究——以胜利油田整装油藏为例[J].岩性油气藏,2018,30(5):124-130.LAI Shumin.Technology policy limitation of subdivision water in⁃ jection in ultra-high water cut stage:a case from Shengli uncom⁃ partmentalized reservoirs[J].Lithologic Reservoirs,2018,30(5):124-130.
参考文献 25
邓宏伟.超深层低渗透稠油CO2增溶降黏体系研发与应用[J].油气地质与采收率,2020,27(1):81-88.DENG Hongwei.Development and application of CO2 solubilizing and viscosity reducing system for ultra-deep and low-permeabili⁃ ty heavy oil reservoirs[J].Petroleum Geology and Recovery Effi⁃ ciency,2020,27(1):81-88.
参考文献 26
王志兴,赵凤兰,冯海如,等.边水断块油藏水平井组 CO2协同吞吐注入量优化实验研究[J].油气地质与采收率,2020,27(1):75-80.WANG Zhixing,ZHAO Fenglan,FENG Hairu,et al.Experimental research on injection volumes optimization of CO2 huff and puff in horizontal well group in fault block reservoirs with edge water[J].Petroleum Geology and Recovery Efficiency,2020,27(1):75-80.
参考文献 27
张世明.低渗透油藏CO2驱气窜通道识别方法[J].油气地质与采收率,2020,27(1):101-106.ZHANG Shiming.Study on identification method for gas channel⁃ ing of CO2 flooding in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):101-106.
目录contents

    摘要

    剩余油分布状况是油田开发后期需要普遍关注的焦点问题,地下情况的复杂性给剩余油的探测增加了难度,套管井饱和度测井是探测剩余油最为直接有效的方法,可为油田开发方案调整提供有力支撑。然而,单一饱和度测井方法很难适用于各类地质情况。为此,对目前胜利油区常用的几种主要饱和度测井方法进行比较,并分析其所适用的储层特征,在现场应用中针对区域地质特点,优选合适的饱和度测井方法,可以更加准确地判断管外窜槽,指示出水层位,识别气层、低电阻率油层、清污交替混合注入油藏复杂水淹层,辨析近井地带孔隙内的流体性质,确定剩余油的分布状况,挖掘潜力油层,减小了岩性、孔隙度、井筒环境、地层水矿化度等因素的影响,降低了多解性,解释结果符合率得以有效提升,根据测井解释结果,为酸化、压裂、补孔提供潜力层位,措施后,含水率下降,产油量增加。

    Abstract

    The distribution of remaining oil is a common concern in the later period of oilfield development,and the com- plexity of underground conditions makes the detection of remaining oil more difficult. The cased hole saturation logging is the most direct and effective method to detect remaining oil,which can provide strong support for the adjustment of oilfield development plans. However,one saturation logging method can hardly be applied to all geological conditions. Hence,we compared the current saturation logging methods applied in Shengli Oilfield and analyzed the characteristics of reservoirs that these methods can be applied to. According to the geological characteristics of the region,an appropriate saturation log- ging method was selected to evaluate the remaining oil saturation(ROS). It can more accurately determine the channeling outside the casing,indicate the location of water leakage,and recognize the gas reservoir,the oil reservoir with low resistivi- ty,and the oil reservoir that is injected with fresh water and produced water alternately. Additionally,this method can dis- tinguish and analyze the fluid properties in pores near the well,determine the distribution of remaining oil,and excavate the potential oil reservoirs. As a result,the multiplicity of solutions and the influence of factors such as lithology,porosity,well- bore environment,and the salinity of formation water are reduced;the coincidence rate of interpretation results has been ef- fectively improved. Given the result of logging interpretations,the potential reservoirs are provided for acidizing,fracturing, and perforation adding. Upon the implementation of the measures,the water cut decreases,and the oil production increases.

  • 胜利油区主力开发油田经过长期注水开发,油层水淹严重,需要调整开发方案,以提高原油采收率。然而,剩余油分布不清,这给开发方案调整带来了一定困难。因此迫切需要了解当前剩余油的分布状况,为下一步采取降水增油措施提供指导。套管井饱和度测井是直接探测剩余油的有效手段,可为油藏管理提供参考依据,因而近些年来在油气开采中对饱和度测井的需求不断攀升,同时也对饱和度测井技术提出了更高要求。

  • 胜利油区油藏种类繁多,岩性复杂,经过长期注水[1-3] 开发以及聚合物驱[4-6] 等三次采油提高采收率措施的实施,地层孔渗结构以及地层水矿化度发生了较大变化,单一饱和度测井方法很难适用于各类储层。通过对胜利油区目前常用的几种主要饱和度测井方法的适应性进行对比,分析每种饱和度测井方法所适用的储层特征,并根据区域地质特点优选合适的饱和度测井方法,在现场应用中取得了良好效果。

  • 1 主要饱和度测井方法及其特点

  • 1.1 不同核测井技术对比

  • 核测井主要使用中子发生器向地层发射 14 MeV的高能快中子,中子与组成物质的原子核经过一系列的非弹性碰撞和弹性碰撞后减速,当中子的能量与周围物质的原子核处于热平衡状态时不再减速,此时的中子称为热中子(能量为 0.025 eV,速度为2.2×103 m/s),与原子核主要发生俘获反应。

  • 中子寿命(Neutron Lifetime,NL)测井(包括注硼中子寿命测井)探测的是热中子被俘获后所释放出的伽马射线[7-8],脉冲中子-中子(Pulsed Neutron-Neutron,PNN)测井和热中子成像系统(Thermal Neutron Imaging System,TNIS)测井同属于 NL 测井系列,但又与传统的NL测井不同,PNN和TNIS测井探测的是未被地层俘获的热中子[9-10]。PNN测井记录从快中子发射 30 μs 后的 1 800 μs 时间内的热中子计数率,每个探测器均将其时谱记录分成 60 道,每30 μs为1道,根据各道记录的热中子计数生成热中子时间衰减谱,利用两个探测器上得到的中子记录的比值计算储层含氢指数,分辨近井地带的油水分布。TNIS仪器从快中子发射15 μs后开始记录热中子计数率,每 15 μs为 1道,记录时长为 2 700 μs,共180道。不同岩性和流体的热中子衰减率和热中子俘获截面是不一样的,因而依据热中子衰减率和热中子俘获截面大小来辨析岩性和流体性质,衰减率和俘获截面值都以矩阵数据显示出来,将数据分别以曲线和颜色的方式显现,可以直观、快速评价储层油水性质。

  • 表1 为 TNIS 与 PNN 测井的特点对比。TNIS 测井的优势是测量的宏观俘获截面值更接近真实值; 含气指示能力强;地层水矿化度与孔隙度的测量范围宽;径向探测距离远。

  • 表1 TNIS与PNN测井的特点对比

  • Table1 Characteristic comparison of TNIS and PNN logging

  • 碳氧比(Carbon to Oxygen Ratio,COR)测井探测的是快中子与原子核发生非弹性碰撞时所释放出的非弹性伽马射线[11]。其中,双探测器碳氧比能谱 (Sidewall Neutron Porosity,SNP)测井亦属此类[12]。不同元素具有不同的伽马特征,通过计算非弹谱 C 窗与O窗所包含的伽马射线总计数的比值来评价产层的油水含量。因为COR测井采用的是比值法,所以减少了非弹性散射之外的伽马射线的影响,同时克服了脉冲中子源产额不稳对测井所带来的影响,因而提高了区分产层油水关系的灵敏度。

  • 脉冲中子全谱饱和度测井(Pulsed Neutron Full-Spectra Saturation Logging,PSSL)集合了中子寿命、碳氧比、氯能谱及氧活化等一系列能谱与时间谱测井,分别记录非弹性散射伽马能谱、俘获伽马能谱和伽马时间谱的全谱信息,具有录取信息量丰富、辅助手段多等特点,多种测井信息互相佐证,消除多解性[13-14]。脉冲中子衰减—能谱(Pulsed Neu⁃ tron Decay-Spectrum,PND-S)测井也是一种能够同时记录非弹性散射伽马能谱和俘获伽马能谱的方法,具有短脉冲和长脉冲2种发射方式,可以得到中子孔隙度和密度孔隙度,测量所有阳离子的非弹性散射伽马射线计数率与氧离子的非弹性散射伽马射线计数率的比值(CATO),提高了计数率,降低了统计误差,分别利用俘获截面 Σ 值和由非弹性散射数据得到的CATO计算含水饱和度[15-16]

  • 1.2 过套管地层电阻率测井与核测井技术对比

  • 过套管地层电阻率测井(Formation Resistivity Log Through Casing,FRLTC)是在套管内通过测量套管上的电压降从而达到测量地层电阻率的目的[17-18]。如果有电流注入套管,大部分电流会沿套管向上或向下流动,只有一小部分电流泄漏到周围地层。通过评估 2 个电极范围内泄漏电流的大小,测量出该点相对于参考点的电位,可以计算出地层视电阻率,其表达式为:

  • ρa=kΔzU0ΔI
    (1)
  • FRLTC,COR 和 NL 测井均可反映岩性和含油性。COR和 NL测井分别测量的是含碳量和地层宏观俘获截面,FRLTC 测量的是地层水的导电能力。 FRLTC 的优点是径向探测距离远、不受孔隙度影响,缺点是易受侵入和地层水矿化度影响。FRLTC 的径向探测距离为1.5~2.0 m,能够更加真实反映地层特征,而 NL 测井的径向探测距离一般为 0.2~0.3 m。FRLTC 还可与裸眼井电阻率形成时间推移测井,便于推算储层流体在时间上的变化。

  • CHFR 和 ECOS 分别为法国和俄罗斯的过套管地层电阻率测井仪。其特点对比表明,ECOS和CH⁃ FR分别采用液压和机械推靠方式,径向探测距离均为 1.5~2.0 m。ECOS 的纵向分辨率更高,测量范围更广,而且无需洗井、刮井,所测曲线能够反映套管接箍,推导的电阻率公式更加精确。此外,ECOS还具有质量控制功能,在操作界面上实时显示测量电极的波形,随时掌握探头与井壁的接触状态,保证测试结果的准确性。

  • 2 剩余油饱和度测井方法适应性分析

  • 近年来,以上几种剩余油饱和度测井方法在胜利油区得到了较为广泛的应用,各种方法对于不同地层以及工程状况具有不同的适应性。

  • 2.1 NL测井

  • NL测井能很好地分辨含气井中的气层,但对地层水矿化度的要求较高,在低地层水矿化度条件下很难区分油水层,实际应用中通常注入硼酸溶液辅助测井任务的完成。NL测井要求测井前避免通井、洗井,孔隙度≥15%。

  • PNN和TNIS测井记录的是未被俘获的热中子,因而在低地层水矿化度条件下具有较高的计数率,可以消除统计起伏的影响;由于探测的是中子,因此不受伽马本底的影响;基本不受井筒流体影响 (卤水除外),适合孔隙度>8% 的地层;径向探测距离较COR测井稍远。

  • PNN与TNIS测井在低地层水矿化度、低孔隙度和低渗透率储层中具有较强的油水分辨能力,可应用于气藏[19]、稠油油藏[20]、特殊岩性(如火成岩[21]、致密砂岩[22]、碳酸盐岩[23] 等)油气藏中。

  • 2.2 COR测井

  • COR测井不受地层水矿化度的影响,但受井筒内流体影响严重;计数率低,统计误差偏大;一般要求测量井段不大于200 m,油藏埋深不超过3 000 m; 测量井段内最好有水层,以便进行数据对比;泥质含量最好低于 10%,否则很难精确计算剩余油饱和度;不适用于目的层段固井质量差、井眼垮塌的情况;受孔隙度影响较大,当孔隙度≥20% 时,可定量解释含油饱和度,而当 10%≤孔隙度<20% 时,则只能定性划分油水层。

  • 单探测器碳氧比能谱测井仪器 SNP-2 要求测井前必须洗井和刮蜡,而双探测器碳氧比能谱测井仪器 SNP-3 在 SNP-2 的基础上增加了一个短源距探测器,能够确定井筒内的持水率,可以在井筒流体是泥浆、清水和石油的混合物以及套管壁上粘有石蜡和石油的情况下进行测量,无需洗井、刮蜡等作业。

  • 2.3 PSSL

  • PSSL主要通过NL和COR测井来判断地层的油水性质。胜利油区经过多年的注水开发,多数油藏的地层水矿化度偏低,因此很多区块COR测井好于 NL 测井。在 PSSL 的解释应用中,对于低孔低渗透油藏,利用COR测井进行饱和度解释的符合率并不高,因此除利用 COR 测井外,还应结合井温和氧活化等曲线,以及井史资料和作业情况进行综合分析。对于高孔高渗透油藏,适合选用 COR 测井,符合率可达 83%。对于稠油油藏,符合率更是达到了 87%,原因是稠油黏度高,洗井、压井等作业对近井地带影响较小。

  • 2.4 FRLTC

  • FRLTC测量的信号非常微弱,不可避免地会受到套管、水泥环、围岩、仪器系数等多种因素的影响。但是通过数据预处理,包括测量值选点、数据插值和深度校正,以及影响因素分析与校正,最终解释成果可以满足地质分析需要。FRLTC 由于具有与电法类似的探测深度,因此可广泛适用于整装[24]、稠油[25]、断块[26]、低渗透油藏[27]

  • FRLTC的优点是不受孔隙度的影响,缺点是只能进行点测、占井时间长,而且对施工工程条件有要求:套管尺寸需满足直径为 5~7 in;套管整体技术状况要好,无套破、结垢不严重;井斜最好不要超过 30°;测井前需要通井、洗井,而且必须配合刮管,以便于推靠电极与质量控制。FRLTC 在实际应用中仍然存在以下问题:①深度校正问题。仪器自身不带井温、磁定位和自然伽马,并且占用测井电缆7 根缆心,挂接伽马仪难度大,因而需要先测量井温、磁定位和自然伽马3个参数来校正深度。②仪器推靠问题。在腐蚀、结垢、射孔井段,出现推靠接触不良,影响数据质量的情况。采用多次收放液压推靠探头、更换测点深度的方法,能解决部分问题,但又会损耗仪器液压系统,容易造成液压部分渗漏、探头收不拢等问题。③测量的可重复性问题。在电阻率基本稳定的泥岩段校正仪器系数时,对同一点进行多次测量的重复性较好,然而,一旦更换测量点,即使在电阻率几乎不变的情况下,当前点的电阻率数值仍会与临近点的电阻率数值产生较大的差异。

  • 3 实例应用

  • 3.1 SNP测井

  • 近 10 年来 SNP 测井在胜利油区高孔高渗透地层共应用 615井次,其中 402井次有效,措施符合率为65%,累积增油量为10.969 2×104 t。

  • 永安区块 A 井待射孔层段的平均孔隙度为 30%,平均渗透率为 1 658.8 mD。测井前,日产液量为 61.5 t/d,日产油量为 0.8 t/d,含水率为 98.7%。之后进行SNP测井,其解释结果(图1a)显示,沙二段54 层(即20号层,埋深为2 179.6~2 192.1 m)为出水层,沙二段 51 层(即 18(1)号层,埋深为 2 125~2 132 m) 顶部富集剩余油。根据 SNP 测井解释结果制定措施,补孔沙二段51 层,并与沙二段1—2层合采,打水泥塞封沙二段54 —96 层。措施后,日产液量为41.6 t/ d,日产油量为 6.6 t/d,含水率为 84.1%,初期平均日增油量为5.8 t/d。

  • 3.2 PNN或TNIS测井

  • 近 10 年来 PNN 测井在胜利油区低孔低渗透地层共应用 393井次,其中 280井次有效,措施符合率为71%,累积增油量为24.947 8×104 t。

  • 王家岗区块B井,生产沙三段中亚段4层,该层平均孔隙度为 18.5%,平均渗透率为 254.5 mD。测井前,日产液量为3.4 t/d,日产油量为0.1 t/d,含水率为97.1%,为低液低效井。为了解各层剩余油情况,进行了PNN测井。根据PNN测井解释结果(图1b),分析认为沙二段 72 层(即 16.1 和 16.2 号层,埋深为 2 077.8~2 089.6 m)具有潜力,因而补孔沙二段 72 层并与沙三段中亚段 4 层(即 31,32.1,32.2 和 32.3 号层,埋深为 2 481.0~2 491.3 m)合采。措施后,日产液量为 13.3 t / d,日产油量为 6.5 t / d,含水率为 51.1%,增油效果明显。

  • TNIS 测井应用的较少,以现场试验摸索为主,近 10 年来在胜利油区共应用 16 井次,其中 14 井次有效,措施符合率为 88%,累积增油量为 0.520 8× 104 t,试验应用效果较好。

  • 纯化区块 C 井,矿化度高、渗透率低,平均孔隙度约为 15%,COR 测井要求孔隙度大于 15%,为此选用 TNIS 测井。测井前,8,9,10 号层处于投产状态,日产液量为3.5 t/d,日产油量为0.1 t/d,含水率为 97.1%。TNIS 测井核谱成像(图2)显示,10 号层的热中子俘获谱灰度成像尾端偏高,整体要好于8和9 号层。依据 TNIS 测井解释结果,将投产的 8,9,10 号层重新挤水泥封堵,然后复射 10 号层。措施后,日产液量为 9.9 t/d,日产油量为 8.2 t/d,含水率为 17.2%,取得良好应用效果。

  • 3.3 注硼中子寿命测井

  • 近 10 年来注硼中子寿命测井在胜利油区多层合采、油井水淹共应用 170 井次,其中 130 井次有效,措施符合率为76%,累积增油量为7.963 3×104 t。

  • 东风港区块 D 井,渗透率低、产能不足,采取多层合采(27—30 号层投产),后来出现水淹状况,日产液量为32.0 t/d,含水率为100%。此时,剩余油评价的重点为找水,优先选用注硼中子寿命测井寻找出水层位。从注硼中子寿命测井解释结果(图3)来看,27 号层井温较低、进硼,判断为主要出水层位; 28和29号层井温变化不明显、进硼较少或基本未进硼,判断为非主产层;30号层井温变化较27号层小、进硼,判断为次产层。综合分析认为27号层为出水点,建议封堵27号层。因27和28号层较近,单独卡封27号层困难,故对27和28号层卡封。措施后,日产液量为 14.0 t/ d,日产油量为 3.7 t/ d,含水率为 73.6%,取得较好效果。

  • 3.4 PSSL

  • 近 10 年来 PSSL 在胜利油区复杂油藏共应用 233井次,其中153井次有效,措施符合率为66%,累积增油量为5.952 9×104 t。

  • 图1 A井SNP与B井PNN测井解释结果

  • Fig.1 Interpretation results of SNP for Well A and PNN for Well B

  • 油水关系复杂的E井,测井前,日产液量为28.6 t/d,日产油量为 1.1 t/d,含水率为 96.2%。为了理清油水关系,该井需要借助井温、活化氧和自然伽马等曲线辅助解释,因此选择 PSSL,解释结果如图4a 所示,分析认为 6号层具有一定潜力,3,4号层潜力更大。根据 PSSL 资料,射孔 4 号层,实施单采。措施后,日产液量为 17.6 t/d,日产油量为 6.7 t/d,含水率为 61.9%,365 d 累积增油量为 2 044 t,增油效果显著。

  • 图2 C井TNIS测井解释结果

  • Fig.2 Interpretation results of TNIS logging for Well C

  • 3.5 FRLTC

  • 近 10 年来 FRLTC 在胜利油区特种油藏共应用 53井次,其中43井次有效,措施符合率为81%,累积增油量为4.150 8×104 t。

  • 孤南区块的 F 井钙质含量相对较高,自投产之日起长期生产主力层沙二段12-3 层(埋深为2 072.4~2 091.9 m),后期含水率高达99%。因为该井富含钙质,所以选择FRLTC。解释结果(图4b)显示,2号层电阻率下降约7 Ω·m,下降幅度尤为明显,含水饱和度由 70% 上升到近 100%;3 号层含水饱和度也由60 % 上升到 80%;4 号层上部含水饱和度由 50% 上升到 90%,水淹明显,为强水淹层;8 号层在该井未经开采,含水饱和度也由 60% 上升到 90% 以上,分析注采井网后认为,水淹为邻井影响所致;10 和 11 号层含水饱和度约为50%。根据FRLTC解释结果,补孔 10 号层上部(埋深为 2 138.5~2 140.0 m),卡封 2,3,4号层。措施后,日产液量为12.1 t/d,日产油量为12.0 t/d,含水率为0.8%,増油效果明显。

  • 图3 D井注硼中子寿命测井解释结果

  • Fig.3 Interpretation results of Boron-injected neutron lifetime logging for Well D

  • 4 结论

  • 通过对各种套管井饱和度测井方法的对比分析及其在胜利油区不同油藏类型的实际应用,取得了以下认识:①高孔高渗透地层,可以选择适用于复杂地层水矿化度条件的COR测井,其中一般COR 测井受井筒环境影响严重,而高精度 SNP测井则对井筒流体没有要求,且无需洗井、刮蜡等作业。② 普通中子寿命测井对地层水矿化度要求较高,而注硼中子寿命测井在低地层水矿化度条件下仍适用,但只能对射孔层位进行施工,对于多层合采、油井水淹情况,可以选用注硼中子寿命测井寻找出水层位、判断管外窜槽和水泥环是否缺失。PNN与TNIS 测井在低孔低渗透地层中具有较强的油水分辨能力,还能很好地识别气藏。③PSSL与PND-S测井不仅适用于高孔高渗透地层,还适用于低孔低渗透地层,以及复杂油气藏,但在非弹模式下仍受钙质影响较大。④对于特低渗透地层,富含钙质的特殊岩性油气藏,可以选用FRLTC。

  • 图4 E井PSSL与F井FRLTC解释结果

  • Fig.4 Interpretation results of PSSL for Well E and FRLTC for Well F

  • 符号解释

  • ΔI——泄漏到地层的电流,A;

  • k——仪器系数;

  • U0——测量点相对于参考点的电位,V;

  • Δz——2个电极之间的距离,m;

  • ρa——视电阻率,Ω·m。

  • 参考文献

    • [1] 冯其红,李闪闪,黄迎松,等.基于瞬时流场潜力系数的水驱开发效果评价方法[J].油气地质与采收率,2020,27(4):79-84.FENG Qihong,LI Shanshan,HUANG Yingsong,et al.Evaluation method of water flooding development effect based on instanta⁃ neous flow field potential coefficient[J].Petroleum Geology and Recovery Efficiency,2020,27(4):79-84.

    • [2] 柴汝宽,刘月田,何宇廷,等.智能水驱中油水相互作用规律与机理实验研究[J].油气地质与采收率,2021,28(4):93-100.CHAI Rukuan,LIU Yuetian,HE Yuting,et al.Experimental study on oil-water interaction law and mechanism in smart water-flood⁃ ing[J].Petroleum Geology and Recovery Efficiency,2021,28(4):93-100.

    • [3] 张世明,杨勇.特高含水水驱油藏流场边界动态追踪模型研究 [J].油气地质与采收率,2021,28(2):91-99.ZHANG Shiming,YANG Yong.Study on the dynamic tracking model of flow field boundaries in water drive reservoirs at ultrahigh water cut stage[J].Petroleum Geology and Recovery Efficien⁃ cy,2021,28(2):91-99.

    • [4] 姜颜波,刘璐,元福卿,等.聚合物/降黏剂复合驱产液能力动态预测方法[J].油气地质与采收率,2020,27(3):91-99.JIANG Yanbo,LIU Lu,YUAN Fuqing,et al.Dynamic prediction method of liquid production capacity in polymer/viscosity reducer compound flooding[J].Petroleum Geology and Recovery Efficien⁃ cy,2020,27(3):91-99.

    • [5] 张娜,元福卿,魏翠华,等.普通稠油油藏聚合物驱提高采收率研究与实践——以孤岛油田B21单元为例[J].油气地质与采收率,2021,28(6):101-106.ZHANG Na,YUAN Fuqing,WEI Cuihua,et al.Research and practice of enhanced oil recovery by polymer flooding in ordinary heavy oil reservoirs:Taking Block B21,Gudao Oilfield as an ex⁃ ample[J].Petroleum Geology and Recovery Efficiency,2021,28(6):101-106.

    • [6] 杨斌.聚合物降黏剂的性能及其提高采收率效果[J].油气地质与采收率,2021,28(6):107-113.YANG Bin.Properties of polymer viscosity reducer and its effect on enhanced oil recovery[J].Petroleum Geology and Recovery Ef⁃ ficiency,2021,28(6):107-113.

    • [7] 仲艳华,魏大农,冯爱国,等.中子寿命测井技术在江汉油田的应用[J].测井技术,2015,39(2):253-256.ZHONG Yanhua,WEI Danong,FENG Aiguo,et al.Application of neutron lifetime logging technology in Jianghan oilfield[J].Well Logging Technology,2015,39(2):253-256.

    • [8] 王功军,黄文新,张超谟.硼中子测井解释方法研究[J].石油地球物理勘探,2010,45(增刊1):210-213.WANG Gongjun,HUANG Wenxin,ZHANG Chaomo.Studies on boron neutron logging interpretation method[J].Oil Geophysical Prospecting,2010,45(Supplement1):210-213.

    • [9] 任文博.PNN 测井技术在塔河油田的应用研究[J].石油仪器,2013,27(2):49-51.REN Wenbo.Research on the application of PNN well-logging technology in Tahe oilfield[J].Petroleum Instruments,2013,27(2):49-51.

    • [10] 刘萍,冯伟,任书莲,等.热中子成像测井在饶阳油田的应用 [J].测井技术,2018,42(4):407-412.LIU Ping,FENG Wei,REN Shulian,et al.Application of TNIS sat⁃ uration logging technology in Raoyang Oilfield[J].Well Logging Technology,2018,42(4):407-412.

    • [11] 李传伟,李安宗,慕德俊.碳氧比能谱测井原理与实现[J].核电子学与探测技术,2007,27(6):1 189-1 192.LI Chuanwei,LI Anzong,MU Dejun.The principle and compli⁃ ment of C/O logging[J].Nuclear Electronics & Detection Technol⁃ ogy,2007,27(6):1 189-1 192.

    • [12] 林梁.双探测器碳氧比测井解释方法[J].测井技术,2000,24(6):463-465.LIN Liang.Interpretation method for dual detector carbon oxygen log[J].Well Logging Technology,2000,24(6):463-465.

    • [13] 龙武,陶碧娥,马立新,等.PSSL全能谱饱和度测井技术在塔河油田的应用[J].石油天然气学报,2012,34(8):99-102,106.LONG Wu,TAO Bi’e,MA Lixin,et al.Application of poly-spec⁃ tra saturation logging(PSSL)in Tahe Oilfield[J].Journal of Oil and Gas Technology,2012,34(8):99-102,106.

    • [14] 张洪,邱金权,张智峰,等.脉冲中子全谱饱和度测井在青海油田的应用[J].测井技术,2014,38(5):627-633.ZHANG Hong,QIU Jinquan,ZHANG Zhifeng,et al.Applications of pulsed neutron full-spectra saturation logging in Qinghai oil⁃ field[J].Well Logging Technology,2014,38(5):627-633.

    • [15] 梁军彬.PND-S 测井技术在特高含水油田的应用[J].测井技术,2003,27(4):338-342.LIANG Junbin.Application of pulsed neutron decay-spectrum log⁃ ging(PND-S)in higher watercut oilfield[J].Well Logging Tech⁃ nology,2003,27(4):338-342.

    • [16] 陈占才.应用PND-S技术进行储层状况评价[J].断块油气田,2005,12(2):86-88.CHEN Zhancai.Application of pulsed neutron decay-spectrum logging(PND-S)for reservoir evaluation[J].Fault-Block Oil and Gas Field,2005,12(2):86-88.

    • [17] 吴银川,张家田,严正国.过套管地层电阻率测井技术综述[J].石油仪器,2006,20(5):1-5.WU Yinchuan,ZHANG Jiatian,YAN Zhengguo.An overview of the logging technology of formation resistivity through casing[J].Petroleum Instruments,2006,20(5):1-5.

    • [18] 孔庆东.过套管电阻率测井在海外油田的适用性分析[J].测井技术,2020,44(2):141-145.KONG Qingdong.Adaptability analysis of cased-hole resistivity logging in oversea oilfields[J].Well Logging Technology,2020,44(2):141-145.

    • [19] 刘子雄,李啸南,王金伟,等.致密气藏水平井甜点段识别方法研究[J].中国石油勘探,2021,26(3):117-125.LIU Zixiong,LI Xiaonan,WANG Jinwei,et al.Study on method of sweet spot interval identification of tight gas reservoir in horizon⁃ tal well[J].China Petroleum Exploration,2021,26(3):117-125.

    • [20] 孙焕泉,王海涛,吴光焕,等.稠油油藏注 CO2提高采收率影响因素研究[J].石油实验地质,2020,42(6):1 009-1 013,1 023.SUN Huanquan,WANG Haitao,WU Guanghuan,et al.CO2 EOR factors in heavy oil reservoirs[J].Petroleum Geology & Experi⁃ ment,2020,42(6):1 009-1 013,1 023.

    • [21] 卢异,夏国朝,吕栋梁,等.缝洞型火成岩油藏注水提高采收率研究[J].特种油气藏,2020,27(1):96-101.LU Yi,XIA Guochao,LÜ Dongliang,et al.Enhancing oil recovery by waterflooding in fracture-cave igneous reservoir[J].Special Oil & Gas Reservoirs,2020,27(1):96-101.

    • [22] 刘俊杰.鄂尔多斯盆地致密砂岩储层高温高压动态渗吸实验 [J].大庆石油地质与开发,2020,39(5):161-168.LIU Junjie.Dynamic imbibition experiment of the high-tempera⁃ ture high-pressure tight sandstone reservoirs in Ordos Basin[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(5):161-168.

    • [23] 张立安,王少鹏,张岚,等.通过地质建模剖析古潜山碳酸盐岩裂缝性储层地质特征[J].油气藏评价与开发,2021,11(5):688-693.ZHANG Li’an,WANG Shaopeng,ZHANG Lan,et al.Analysis on geological characteristics of fractured carbonate reservoir in bur⁃ ied-hill by geological modeling[J].Reservoir Evaluation and De⁃ velopment,2021,11(5):688-693.

    • [24] 赖书敏.特高含水后期油藏细分注水界限研究——以胜利油田整装油藏为例[J].岩性油气藏,2018,30(5):124-130.LAI Shumin.Technology policy limitation of subdivision water in⁃ jection in ultra-high water cut stage:a case from Shengli uncom⁃ partmentalized reservoirs[J].Lithologic Reservoirs,2018,30(5):124-130.

    • [25] 邓宏伟.超深层低渗透稠油CO2增溶降黏体系研发与应用[J].油气地质与采收率,2020,27(1):81-88.DENG Hongwei.Development and application of CO2 solubilizing and viscosity reducing system for ultra-deep and low-permeabili⁃ ty heavy oil reservoirs[J].Petroleum Geology and Recovery Effi⁃ ciency,2020,27(1):81-88.

    • [26] 王志兴,赵凤兰,冯海如,等.边水断块油藏水平井组 CO2协同吞吐注入量优化实验研究[J].油气地质与采收率,2020,27(1):75-80.WANG Zhixing,ZHAO Fenglan,FENG Hairu,et al.Experimental research on injection volumes optimization of CO2 huff and puff in horizontal well group in fault block reservoirs with edge water[J].Petroleum Geology and Recovery Efficiency,2020,27(1):75-80.

    • [27] 张世明.低渗透油藏CO2驱气窜通道识别方法[J].油气地质与采收率,2020,27(1):101-106.ZHANG Shiming.Study on identification method for gas channel⁃ ing of CO2 flooding in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):101-106.

  • 参考文献

    • [1] 冯其红,李闪闪,黄迎松,等.基于瞬时流场潜力系数的水驱开发效果评价方法[J].油气地质与采收率,2020,27(4):79-84.FENG Qihong,LI Shanshan,HUANG Yingsong,et al.Evaluation method of water flooding development effect based on instanta⁃ neous flow field potential coefficient[J].Petroleum Geology and Recovery Efficiency,2020,27(4):79-84.

    • [2] 柴汝宽,刘月田,何宇廷,等.智能水驱中油水相互作用规律与机理实验研究[J].油气地质与采收率,2021,28(4):93-100.CHAI Rukuan,LIU Yuetian,HE Yuting,et al.Experimental study on oil-water interaction law and mechanism in smart water-flood⁃ ing[J].Petroleum Geology and Recovery Efficiency,2021,28(4):93-100.

    • [3] 张世明,杨勇.特高含水水驱油藏流场边界动态追踪模型研究 [J].油气地质与采收率,2021,28(2):91-99.ZHANG Shiming,YANG Yong.Study on the dynamic tracking model of flow field boundaries in water drive reservoirs at ultrahigh water cut stage[J].Petroleum Geology and Recovery Efficien⁃ cy,2021,28(2):91-99.

    • [4] 姜颜波,刘璐,元福卿,等.聚合物/降黏剂复合驱产液能力动态预测方法[J].油气地质与采收率,2020,27(3):91-99.JIANG Yanbo,LIU Lu,YUAN Fuqing,et al.Dynamic prediction method of liquid production capacity in polymer/viscosity reducer compound flooding[J].Petroleum Geology and Recovery Efficien⁃ cy,2020,27(3):91-99.

    • [5] 张娜,元福卿,魏翠华,等.普通稠油油藏聚合物驱提高采收率研究与实践——以孤岛油田B21单元为例[J].油气地质与采收率,2021,28(6):101-106.ZHANG Na,YUAN Fuqing,WEI Cuihua,et al.Research and practice of enhanced oil recovery by polymer flooding in ordinary heavy oil reservoirs:Taking Block B21,Gudao Oilfield as an ex⁃ ample[J].Petroleum Geology and Recovery Efficiency,2021,28(6):101-106.

    • [6] 杨斌.聚合物降黏剂的性能及其提高采收率效果[J].油气地质与采收率,2021,28(6):107-113.YANG Bin.Properties of polymer viscosity reducer and its effect on enhanced oil recovery[J].Petroleum Geology and Recovery Ef⁃ ficiency,2021,28(6):107-113.

    • [7] 仲艳华,魏大农,冯爱国,等.中子寿命测井技术在江汉油田的应用[J].测井技术,2015,39(2):253-256.ZHONG Yanhua,WEI Danong,FENG Aiguo,et al.Application of neutron lifetime logging technology in Jianghan oilfield[J].Well Logging Technology,2015,39(2):253-256.

    • [8] 王功军,黄文新,张超谟.硼中子测井解释方法研究[J].石油地球物理勘探,2010,45(增刊1):210-213.WANG Gongjun,HUANG Wenxin,ZHANG Chaomo.Studies on boron neutron logging interpretation method[J].Oil Geophysical Prospecting,2010,45(Supplement1):210-213.

    • [9] 任文博.PNN 测井技术在塔河油田的应用研究[J].石油仪器,2013,27(2):49-51.REN Wenbo.Research on the application of PNN well-logging technology in Tahe oilfield[J].Petroleum Instruments,2013,27(2):49-51.

    • [10] 刘萍,冯伟,任书莲,等.热中子成像测井在饶阳油田的应用 [J].测井技术,2018,42(4):407-412.LIU Ping,FENG Wei,REN Shulian,et al.Application of TNIS sat⁃ uration logging technology in Raoyang Oilfield[J].Well Logging Technology,2018,42(4):407-412.

    • [11] 李传伟,李安宗,慕德俊.碳氧比能谱测井原理与实现[J].核电子学与探测技术,2007,27(6):1 189-1 192.LI Chuanwei,LI Anzong,MU Dejun.The principle and compli⁃ ment of C/O logging[J].Nuclear Electronics & Detection Technol⁃ ogy,2007,27(6):1 189-1 192.

    • [12] 林梁.双探测器碳氧比测井解释方法[J].测井技术,2000,24(6):463-465.LIN Liang.Interpretation method for dual detector carbon oxygen log[J].Well Logging Technology,2000,24(6):463-465.

    • [13] 龙武,陶碧娥,马立新,等.PSSL全能谱饱和度测井技术在塔河油田的应用[J].石油天然气学报,2012,34(8):99-102,106.LONG Wu,TAO Bi’e,MA Lixin,et al.Application of poly-spec⁃ tra saturation logging(PSSL)in Tahe Oilfield[J].Journal of Oil and Gas Technology,2012,34(8):99-102,106.

    • [14] 张洪,邱金权,张智峰,等.脉冲中子全谱饱和度测井在青海油田的应用[J].测井技术,2014,38(5):627-633.ZHANG Hong,QIU Jinquan,ZHANG Zhifeng,et al.Applications of pulsed neutron full-spectra saturation logging in Qinghai oil⁃ field[J].Well Logging Technology,2014,38(5):627-633.

    • [15] 梁军彬.PND-S 测井技术在特高含水油田的应用[J].测井技术,2003,27(4):338-342.LIANG Junbin.Application of pulsed neutron decay-spectrum log⁃ ging(PND-S)in higher watercut oilfield[J].Well Logging Tech⁃ nology,2003,27(4):338-342.

    • [16] 陈占才.应用PND-S技术进行储层状况评价[J].断块油气田,2005,12(2):86-88.CHEN Zhancai.Application of pulsed neutron decay-spectrum logging(PND-S)for reservoir evaluation[J].Fault-Block Oil and Gas Field,2005,12(2):86-88.

    • [17] 吴银川,张家田,严正国.过套管地层电阻率测井技术综述[J].石油仪器,2006,20(5):1-5.WU Yinchuan,ZHANG Jiatian,YAN Zhengguo.An overview of the logging technology of formation resistivity through casing[J].Petroleum Instruments,2006,20(5):1-5.

    • [18] 孔庆东.过套管电阻率测井在海外油田的适用性分析[J].测井技术,2020,44(2):141-145.KONG Qingdong.Adaptability analysis of cased-hole resistivity logging in oversea oilfields[J].Well Logging Technology,2020,44(2):141-145.

    • [19] 刘子雄,李啸南,王金伟,等.致密气藏水平井甜点段识别方法研究[J].中国石油勘探,2021,26(3):117-125.LIU Zixiong,LI Xiaonan,WANG Jinwei,et al.Study on method of sweet spot interval identification of tight gas reservoir in horizon⁃ tal well[J].China Petroleum Exploration,2021,26(3):117-125.

    • [20] 孙焕泉,王海涛,吴光焕,等.稠油油藏注 CO2提高采收率影响因素研究[J].石油实验地质,2020,42(6):1 009-1 013,1 023.SUN Huanquan,WANG Haitao,WU Guanghuan,et al.CO2 EOR factors in heavy oil reservoirs[J].Petroleum Geology & Experi⁃ ment,2020,42(6):1 009-1 013,1 023.

    • [21] 卢异,夏国朝,吕栋梁,等.缝洞型火成岩油藏注水提高采收率研究[J].特种油气藏,2020,27(1):96-101.LU Yi,XIA Guochao,LÜ Dongliang,et al.Enhancing oil recovery by waterflooding in fracture-cave igneous reservoir[J].Special Oil & Gas Reservoirs,2020,27(1):96-101.

    • [22] 刘俊杰.鄂尔多斯盆地致密砂岩储层高温高压动态渗吸实验 [J].大庆石油地质与开发,2020,39(5):161-168.LIU Junjie.Dynamic imbibition experiment of the high-tempera⁃ ture high-pressure tight sandstone reservoirs in Ordos Basin[J].Petroleum Geology & Oilfield Development in Daqing,2020,39(5):161-168.

    • [23] 张立安,王少鹏,张岚,等.通过地质建模剖析古潜山碳酸盐岩裂缝性储层地质特征[J].油气藏评价与开发,2021,11(5):688-693.ZHANG Li’an,WANG Shaopeng,ZHANG Lan,et al.Analysis on geological characteristics of fractured carbonate reservoir in bur⁃ ied-hill by geological modeling[J].Reservoir Evaluation and De⁃ velopment,2021,11(5):688-693.

    • [24] 赖书敏.特高含水后期油藏细分注水界限研究——以胜利油田整装油藏为例[J].岩性油气藏,2018,30(5):124-130.LAI Shumin.Technology policy limitation of subdivision water in⁃ jection in ultra-high water cut stage:a case from Shengli uncom⁃ partmentalized reservoirs[J].Lithologic Reservoirs,2018,30(5):124-130.

    • [25] 邓宏伟.超深层低渗透稠油CO2增溶降黏体系研发与应用[J].油气地质与采收率,2020,27(1):81-88.DENG Hongwei.Development and application of CO2 solubilizing and viscosity reducing system for ultra-deep and low-permeabili⁃ ty heavy oil reservoirs[J].Petroleum Geology and Recovery Effi⁃ ciency,2020,27(1):81-88.

    • [26] 王志兴,赵凤兰,冯海如,等.边水断块油藏水平井组 CO2协同吞吐注入量优化实验研究[J].油气地质与采收率,2020,27(1):75-80.WANG Zhixing,ZHAO Fenglan,FENG Hairu,et al.Experimental research on injection volumes optimization of CO2 huff and puff in horizontal well group in fault block reservoirs with edge water[J].Petroleum Geology and Recovery Efficiency,2020,27(1):75-80.

    • [27] 张世明.低渗透油藏CO2驱气窜通道识别方法[J].油气地质与采收率,2020,27(1):101-106.ZHANG Shiming.Study on identification method for gas channel⁃ ing of CO2 flooding in low permeability reservoirs[J].Petroleum Geology and Recovery Efficiency,2020,27(1):101-106.