en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
作者简介:

代金友(1975—),男,黑龙江海伦人,副教授,博士,从事油气藏开发理论教学与研究工作。E-mail:d772512281@qq.com。

中图分类号:TE122.2+4

文献标识码:A

文章编号:1009-9603(2022)03-0029-07

DOI:10.13673/j.cnki.cn37-1359/te.202104011

参考文献 1
郭睿.储集层物性下限值确定方法及其补充[J].石油勘探与开发,2004,31(5):140-144.GUO Rui.Supplement to determining method of cut-off value of net pay[J].Petroleum Exploration and Development,2004,31(5):140-144.
参考文献 2
付金华,罗安湘,张妮妮,等.鄂尔多斯盆地长7油层组有效储层物性下限的确定[J].中国石油勘探,2014,19(6):82-88.FU Jinhua,LUO Anxiang,ZHANG Nini,et al.Determine lower limits of physical properties of effective reservoirs in Chang7 Oil Formation in Ordos Basin[J].China Petroleum Exploration,2014,19(6):82-88.
参考文献 3
李熙喆,罗瑞兰,胡勇,等.孔隙型砂岩储集层主流通道指数及矿场应用[J].石油勘探与开发,2020,47(5):984-989.LI Xizhe,LUO Ruilan,HU Yong,et al.Main flow channel index in porous sand reservoirs and its application[J].Petroleum Explo⁃ ration and Development,2020,47(5):984-989.
参考文献 4
刘丽,闵令元,孙志刚,等.济阳坳陷页岩油储层孔隙结构与渗流特征[J].油气地质与采收率,2021,28(1):106-114.LIU Li,MIN Lingyuan,SUN Zhigang,et al.Pore structure and per⁃ colation characteristics in shale oil reservoir of Jiyang Depression [J].Petroleum Geology and Recovery Efficiency,2021,28(1):106-114.
参考文献 5
吕端川,宋金鹏.浅水三角洲前缘砂体沉积及渗流特征精细表征——以松辽盆地大庆长垣杏树岗油田为例[J].石油实验地质,2020,42(1):88-94.LÜ Duanchuan,SONG Jinpeng.Characterization of sedimentary and flow characteristics of shallow water delta front sand bodies:Xingshugang Oil Field,Daqing placanticline,Songliao Basin[J].Petroleum Geology & Experiment,2020,42(1):88-94.
参考文献 6
巩联浩,刘继梓,武兴,等.裂缝性致密油藏二氧化碳吞吐基质-裂缝间流体渗流特征研究[J].特种油气藏,2021,28(1):118-124.GONG Lianhao,LIU Jizi,WU Xing,et al.Study on seepage char⁃ acteristics of fluid between matrix and fracture in CO2 huff-puff process in fractured tight reservoirs[J].Special Oil & Gas Reser⁃ voirs,2021,28(1):118-124.
参考文献 7
陆国青,杨少春,张逸帆,等.马海东地区下干柴沟组下段砂岩储层孔隙结构特征及控制因素[J].大庆石油地质与开发,2021,40(2):20-29.LU Guoqing,YANG Shaochun,ZHANG Yifan,et al.Pore struc⁃ ture characteristics and their controlling factors of sandstone res⁃ ervoirs in the Lower Xiaganchaigou Formation in Mahaidong area [J].Petroleum Geology & Oilfield Development in Daqing,2021,40(2):20-29.
参考文献 8
杨庭宝,钟会影,夏惠芬,等.基于微观渗流特征的水驱后残余油动用机理研究[J].油气藏评价与开发,2020,10(6):46-52.YANG Tingbao,ZHONG Huiying,XIA Huifen,et al.Mechanism of residual oil mobilization after water flooding based on micro⁃ scopic flow characteristics[J].Reservoir Evaluation and Develop⁃ ment,2020,10(6):46-52.
参考文献 9
刘中云.基于难动用储量开发的石油工程协同管理创新及实践[J].石油勘探与开发,2020,47(6):1 220-1 226.LIU Zhongyun.Innovation and practice of petroleum engineering synergetic management for the development of difficult-to-pro⁃ duce reserves[J].Petroleum Exploration and Development,2020,47(6):1 220-1 226.
参考文献 10
靳亚勤,王桂成,张涛.直罗油田马莲沟区油层有效厚度下限标准新研究[J].中国西部科技,2010,9(4):11-13.JIN Yaqin,WANG Guicheng,ZHANG Tao.A new study on the lower limit standard of effective reservoir thickness in Maliangou area of Zhiluo oilfield[J].Science and Technology of West China,2010,9(4):11-13.
参考文献 11
崔永斌.有效储层物性下限值的确定方法[J].国外测井技术,2007,22(3):32-35,38.CUI Yongbin.Determination methods of the petrophysical lower limit value for the effective reservoir[J].World Well Logging Technology,2007,22(3):32-35,38.
参考文献 12
张春,蒋裕强,郭红光,等.有效储层基质物性下限确定方法 [J].油气地球物理,2010,8(2):11-16.ZHANG Chun,JIANG Yuqiang,GUO Hongguang,et al.Methods to determine the matrix petrophysical property low limits of the ef⁃ fective reservoir[J].Petroleum Geophysics,2010,8(2):11-16.
参考文献 13
万念明,操应长,郑丽婧,等.滨南—利津地区沙四段有效储层物性下限研究[J].大庆石油地质与开发,2012,30(6):50-56.WAN Nianming,CAO Yingchang,ZHENG Lijing,et al.Lower limit studies of the physical properties for the effective reservoirs in Sha No.4 member of Binnan-Lijin area[J].Petroleum Geology & Oilfield Development in Daqing,2012,30(6):50-56.
参考文献 14
王艳忠,操应长.车镇凹陷古近系深层碎屑岩有效储层物性下限及控制因素[J].沉积学报,2010,28(4):752-761.WANG Yanzhong,CAO Yingchang.Lower property limit and con⁃ trols on deep effective clastic reservoirs of Paleogene in Chezhen depression[J].Acta Sedimentologica Sinica,2010,28(4):752-761.
参考文献 15
于雯泉,叶绍东,陆梅娟.高邮凹陷阜三段有效储层物性下限研究[J].复杂油气藏,2011,4(1):5-9.YU Wenquan,YE Shaodong,LU Meijuan.Study on lower limit of physical properties of E1f3 effective reservoir in Gaoyou Sag[J].Complex Hydrocarbon Reservoirs,2011,4(1):5-9.
参考文献 16
纪友亮,蒋裕强,张世奇.油气储层地质学[M].北京:石油工业出版社,2015.JI Youliang,JIANG Yuqiang,ZHANG Shiqi.Petroleum reservoir geology[M].Beijing:Petroleum Industry Press,2015.
参考文献 17
吴元燕,吴胜和,蔡正旗.油矿地质学[M].3版.北京:石油工业出版社,2005.WU Yuanyan,WU Shenghe,CAI Zhengqi.Oilfield geology [M].3rd ed.Beijing:Petroleum Industry Press,2005.
参考文献 18
吴胜和.储层表征与建模[M].北京:石油工业出版社,2010.WU Shenghe.Reservoir characterization and modeling[M].Bei⁃ jing:Petroleum Industry Press,2010.
参考文献 19
路智勇,韩学辉,张欣,等.储层物性下限确定方法的研究现状与展望[J].中国石油大学学报:自然科学版,2016,40(5):32-42.LU Zhiyong,HAN Xuehui,ZHANG Xin,et al.Research status and outlook for methods of determining petrophysical property cutoffs[J].Journal of China University of Petroleum:Edition of Natural Science,2016,40(5):32-42.
参考文献 20
刘毛利,冯志鹏,蔡永良,等.有效储层物性下限方法的研究现状和发展方向[J].四川地质学报,2014,34(1):9-13.LIU Maoli,FENG Zhipeng,CAI Yongliang,et al.Present situation and developmental trend of the research on methodology for deter⁃ mination of physical properties cut-off of an effective reservoir [J].Acta Geologica Sichuan,2014,34(1):9-13.
目录contents

    摘要

    从储层识别和动用的角度出发,将储层物性下限分为储层、含油储层、动用储层和有效储层物性下限等四种类型。基于储层渗流理论,综合考虑驱动压力作用下的不同尺度孔隙渗流响应特征和最小流动孔径的差异,对四种储层物性下限的内涵及确定方法进行了理论探讨与实例分析。研究结果表明:储层物性下限是判别储层和非储层的界限,孔隙度和渗透率低;含油储层物性下限是划分含油储层和非含油储层的界限,孔隙度和渗透率较高;动用储层物性下限是识别动用储层和非动用储层的界限,孔隙度和渗透率较高;有效储层物性下限是确定有效储层和非有效储层的界限,孔隙度和渗透率高。储层、含油储层、动用储层物性下限分别与理论渗流、充注渗流和生产渗流的最小流动孔径相对应,可以采用最小流动孔径法确定;而有效储层物性下限与试油渗流的最小流动孔径相关性小,主要受工业油流标准限定,需要根据岩心物性分析、试油和生产测试资料综合确定。由单一的有效储层物性下限研究,逐步转向储层、含油储层、动用储层和有效储层等物性下限综合研究,是储层物性下限深入研究的一个重要方向。

    Abstract

    From the perspective of reservoir identification and production,the lower limits of reservoir physical properties are divided into four types:“reservoir”,“oil-bearing reservoir”,“produced reservoir”,and“effective reservoir”. Based on the reservoir percolation theory,comprehensively considering the percolation response characteristics of different-scale pores and the difference in minimum flow pore diameters under the driving pressure,theoretical discussion and case analy- sis were performed on the connotation and determination method of four lower limits of reservoir physical properties. The re- search results show that:①the lower limits of physical properties of“reservoirs”,“oil-bearing reservoirs”,“produced res- ervoirs”,and“effective reservoirs”are respectively the boundaries between reservoirs and non-reservoirs,between oilbearing and non-oil-bearing reservoirs,between produced and non-produced reservoirs,and between effective and ineffec- tive reservoirs. The porosity and permeability increase in the sequence of“reservoirs”,“produced reservoirs”,“oil-bearing reservoirs”,and“effective reservoirs”. ②The lower limits of physical properties of“reservoirs”,“oil-bearing reservoirs”, and“produced reservoirs”respectively correspond to the minimum flow pore diameters of theoretical percolation,charging percolation,and production percolation and can be determined by the minimum flow pore diameter method. ③The lower limits of physical properties of“effective reservoirs”have a low correlation with the minimum flow pore diameter under the test percolation and are mainly limited by the industrial oil flow standard. They need to be determined with the physical property analysis of cores,tests,and production test data. The simple study on the lower limits of physical properties of“ef- fective reservoirs”has gradually shifted to a comprehensive study on the lower limits of physical properties of“reservoirs”,“oil-bearing reservoirs”,“produced reservoirs”,and“effective reservoirs”,which is an important direction for in-depth re- search on the lower limits of reservoir physical properties.

  • 储层物性下限是储层能够储集和渗滤流体的最小孔隙度和最小渗透率界限,通常用孔隙度或渗透率的某个确定值来表述[1]。传统意义上的储层物性下限是储量评价中识别储层、确定有效厚度的重要参数,也是油田勘探开发中选取射孔试油层段的重要依据[2]

  • 考虑到油藏地层由储层和非储层构成,其中,储层由含油储层和非含油储层构成,而含油储层又由有效储层和非有效储层构成。从识别储层的角度来看,储层物性下限应包括储层、含油储层和有效储层物性下限等 3 方面内涵。另外,生产过程中储层动用差异较大,好储层中流体参与渗流而动用[3-6],另一部分差储层中流体未动用或基本未动用[7-9]。从流体渗流角度来看,储层应分为动用储层和非动用储层,储层物性下限亦应包括动用储层物性下限。

  • 目前,人们更多地关注有效储层物性下限研究[10-15],而对其他3种储层物性下限研究相对较少。为此,笔者基于储层渗流理论,综合考虑驱动压力作用下的不同尺度孔隙渗流响应特征和最小流动孔径的差异,对上述四种储层物性下限的涵义和确定方法进行理论探讨与实例分析,以期为储层物性下限的深入研究提供借鉴。

  • 1 四种储层物性下限的内涵

  • 1.1 储层物性下限

  • 储层是能够储存和渗滤流体的岩层,主要包括油层、含水油层、油水同层、含油水层、水层等。非储层是不能渗滤流体的岩层,主要为干层和泥岩。可见,二者的根本区别在于是否具备渗滤流体的能力。

  • 由于多孔介质储集空间由尺度大小不一、几何形态各异的孔喉网络相互交织构成,不同尺度孔隙渗滤流体的能力差异很大。为此,根据孔径大小和渗滤流体能力差异[16-18],将孔隙分为超毛细管孔隙、毛细管孔隙和微毛细管孔隙等三类(表1)。超毛细管孔隙是指孔径大于0.5 mm的毫米级孔隙,其中液体在重力作用下可自由流动;毛细管孔隙是指孔径为0.2~500 μm的微米级孔隙,其中液体质点受毛管力以及周围固体界面分子力作用而不能自由流动,只有在驱动压力作用下才能流动;微毛细管孔隙是指孔径小于0.2 μm的纳米级孔隙,其中液体质点受毛管力以及周围固体界面分子力作用很大,在通常驱动压力作用下液体不能流动而呈吸附态。这说明油藏流体渗流主要发生在超毛细管孔隙和毛细管孔隙中,而微毛细管孔隙不具有理论上的流动性。故连通的超毛细管孔隙和毛细管孔隙为有效连通孔隙,而微毛细管孔隙则为无效孔隙。因此,含有有效连通孔隙的岩层为储层,而仅含微毛细管孔隙的岩层为非储层,即毛细管孔隙和微毛细管孔隙之间的孔径界限(理论最小流动孔径)对应储层物性下限。

  • 1.2 含油储层物性下限

  • 含油储层是被油气侵入的储层,主要包括油层、含水油层、油水同层、含油水层等。非含油储层是未被油气侵入的储层,主要为水层。二者的根本区别在于是否存在油气侵入。

  • 成藏过程中,在充注压差作用下,油气首先进入储层中阻力较小的大尺度孔隙,待其饱和后再依次逐步进入相对较小的孔隙,这一过程一直持续到与充注压差相匹配的有效连通孔隙空间全部充满油气为止。由于油气充注过程主要发生在有效连通孔隙中,被油气充满的有效连通孔隙部分为充注孔隙,反之为不可充注孔隙。因此,充注孔隙和不可充注孔隙之间的孔径界限(充注最小流动孔径) 对应含油储层物性下限。

  • 表1 储层不同尺度孔隙及其渗流特征

  • Table1 Pores of different scales and their percolation characteristics in reservoirs

  • 注:此处孔径界限仅为参考值,具体以油田界限为准。

  • 1.3 动用储层物性下限

  • 动用储层是生产过程中流体能够参与渗流的那部分储层,反之为非动用储层。二者的根本区别在于储层流体是否参与渗流。

  • 生产过程中,在生产压差作用下,储层中阻力较小的大尺度孔隙中流体优先动用,然后相对较小的孔隙中流体再依次动用,这一过程一直持续到与驱动压力相匹配的有效连通孔隙内流体全部动用为止。由于水驱油过程主要发生在有效连通孔隙中,动用的有效连通孔隙部分称为流动孔隙,反之为不可流动孔隙。因此,流动孔隙和不可流动孔隙之间的孔径界限(生产最小流动孔径)对应动用储层物性下限。

  • 1.4 有效储层物性下限

  • 有效储层是经过充分改造且达到工业油流标准的含油储层,主要包括油层、含水油层、油水同层等。非有效储层是不能达到工业油流标准的含油储层,如含油水层。二者的根本区别在于试油条件下是否能够达到工业油流标准。也就是说,即使含有油气但不能达到工业油流标准的含油储层也不是有效储层。因此,有效储层物性下限不能根据流动孔隙和不可流动孔隙之间的孔径界限(试油渗流的最小流动孔径)来区分,而要根据试油工业油流标准来确定。由于剔除了一些未达到工业油流标准的含油储层,因此其下限值较之含油储层更高、物性更好。

  • 上述分析表明:①储层物性下限是判别储层和非储层的界限,孔隙度和渗透率低;含油储层物性下限是划分含油储层和非含油储层的界限,孔隙度和渗透率较高;动用储层物性下限是识别动用储层和非动用储层的界限,孔隙度和渗透率较高;有效储层物性下限是确定有效储层和非有效储层的界限,孔隙度和渗透率高。②储层、含油储层、动用储层物性下限分别与理论渗流、充注渗流和生产渗流的最小流动孔径相对应;有效储层物性下限与试油渗流的最小流动孔径相关性小,而主要受工业油流标准限定。

  • 2 四种储层物性下限的确定方法

  • 2.1 储层、含油储层、动用储层物性下限确定

  • 驱动压力克服渗流阻力是油藏流体渗流的根本原因。驱动压力可用充注压差或生产压差来衡量,而渗流阻力则主要是毛管力和黏滞力。考虑到多孔介质中流体渗流较缓,可近似认为驱动压力与渗流阻力之间具有准静态平衡关系,从而可根据驱动压力来确定最小流动孔径。由于储层物性下限与最小流动孔径具有对应关系,在最小流动孔径确定的基础上,可采用最小流动孔径法确定储层物性下限。

  • 从表1 可以看出,储层最小流动孔径的确定需要找到毛细管孔隙和微毛细管孔隙的分界点;含油储层最小流动孔径的确定需要找到充注孔隙和不可充注孔隙的分界点;动用储层最小流动孔径的确定需要找到流动孔隙和不可流动孔隙的分界点。因此,最小流动孔径确定的前提是弄清储层不同尺度孔径与驱动压力之间的对应关系。为此,笔者选用能直观定量表征储层孔隙结构以及孔喉半径与驱动压力之间关系的压汞曲线来确定最小流动孔径。

  • 如图1 所示:①当压汞曲线达到最大进汞饱和度后,继续增加压力进汞饱和度保持不变,最大进汞饱和度保持不变的初始点可视为毛细管孔隙与微毛细管孔隙的分界点,亦即储层最小流动孔径(A 点)。因此,储层最小流动孔径相当于压汞曲线上的最大进汞饱和度处的孔喉半径。②考虑到压汞过程是非湿相流体驱替湿相流体的过程,相当于油排水的成藏充注过程。若把汞饱和度看作含油饱和度,驱替压力看作成藏充注压差,则压汞曲线反映了储层原始含油饱和度与成藏充注压差之间的对应关系。因此,压汞曲线上储层原始含油饱和度所对应的孔喉半径即为含油储层最小流动孔径。以图1为例,该储层原始含油饱和度为78%,则图中 C 点对应的孔喉半径即为含油储层最小流动孔径。 ③动用储层最小流动孔径可根据生产压差确定。以图1 为例,若该储层生产压差为 1 MPa,则图中 B 点对应的孔喉半径即为动用储层最小流动孔径。

  • 在最小流动孔径确定的基础上,依据统计分析的原理,绘制孔喉中值半径与孔隙度和渗透率的相关曲线,根据最小流动孔径即可求出相应的孔隙度和渗透率的下限值。

  • 2.2 有效储层物性下限确定

  • 目前,有效储层物性下限主要根据岩心物性分析、试油和生产测试资料来确定[19]。由于受储层地质条件(如岩石性质、流体性质、储层孔隙结构、地层压力和温度、埋藏深度等)、试油条件(试油要素组合及驱动压力等)和其他人为因素(工艺技术水平和工业产能标准等)等众多因素影响,有效储层物性下限确定尚无确切的物理定量方法,也难以建立相应的物理或数学模型。为此提出了很多经验方法,如孔隙度-渗透率交会图法、经验统计法、钻井液侵入法、束缚水饱和度法、最小流动孔喉半径法、压汞参数法、渗透率应力敏感法、含油产状法、测试法、分布函数曲线法、试油法等,但每种方法均有其利弊,实践中有效储层物性下限往往需要多种方法相互验证综合确定[20]

  • 图1 最小流动孔径示意

  • Fig.1 Schematic diagram of minimum flow pore diameter

  • 3 应用实例

  • X油田构造隶属于鄂尔多斯盆地伊陕斜坡西南部,地处甘肃省华池、庆阳境内,面积为 2 600 km2,已钻各类井300余口。油田主产层为上三叠统延长组长 63油组,属于深湖-半深湖相重力流沉积,地层平均厚度为 47 m,砂地比为 0.52。该区地表属黄土塬地貌,地形起伏不平,地面海拔约为 1 150~1 650 m,相对高差为500 m左右。长6段顶面构造比较简单,总体为一平缓的西倾单斜,倾角不足 1°。岩心物性资料分析表明,长 63储层孔隙度为 4%~15%,平均为 9.1%;渗透率为 0.01~0.8 mD,平均为 0.152 mD,属于低孔低渗透储层。

  • 3.1 压汞实验及压汞曲线特征

  • 在岩心观察和样品采集的基础上,选取 5 块岩样进行压汞实验,由岩样特征(表2)可以看出,岩样孔隙度为 6.86%~13.51%,平均为 9.97%;渗透率为 0.035~0.203 mD,平均为 0.137 mD;能够反映长 63 储层低孔低渗透的物性特点。

  • 表2 X油田长63储层岩样特征

  • Table2 Characteristics of samples from Chang 63 reservoir in X Oilfield

  • 根据压汞实验数据,绘制压汞曲线(图2)并统计岩样压汞参数特征(表3)。可以看出,5块岩样的排驱压力为 0.78~2.85 MPa,平均为 1.82 MPa;中值压力为 2.61~14.31 MPa,平均为 8.51 MPa;最大孔喉半径为 0.258~0.943 μm,平均为 0.524 μm;中值孔喉半径为 0.051~0.282 μm,平均为 0.135 μm;最大进汞饱和度为 83.94%~92.13%,平均为 87.58%; 退汞效率为 26.83%~32.60%,平均为 30.36%。整体上,长 63储层排驱压力、中值压力较高,中值孔喉半径较小、储层喉道细小,最大进汞饱和度高,退汞效率低。

  • 3.2 最小流动孔径确定

  • 为了确定 X 油田长 63储层最小流动孔径,根据5 块压汞测试样品求取储层平均压汞曲线(图3)。从图3可以看出:当进汞压力达到49.5 MPa时,最大进汞饱和度为88.3%,此后随着压力增加,进汞饱和度始终保持不变。因此,图3 中 A 点对应储层最小流动孔径(0.015 μm)。根据测井解释成果统计样品的原始含油饱和度(表3)可以看出,5块岩样原始含油饱和度为 44.3%~74.4%,平均为 56.1%。因此,图3 中 C 点对应含油储层最小流动孔径(0.085 μm)。生产资料统计表明,X 油田投产井的生产压差平均为3 MPa。通过换算,3 MPa生产压差相当于实验测试压力 44.1 MPa。因此,图3 中 B 点对应动用储层最小流动孔径(0.017 μm),这说明储层生产中孔径处于 15~17 nm 的毛细管孔隙中的流体不参与渗流。

  • 图2 X油田长63储层压汞曲线

  • Fig.2 Mercury injection curves of Chang 63 reservoir in X Oilfield

  • 表3 X油田长63储层岩样压汞参数特征

  • Table3 Characteristics of mercury injection parameters of samples from Chang 63 reservoir in X Oilfield

  • 3.3 储层物性下限确定

  • 在 X 油田长 63储层最小流动孔径确定的基础上,依据统计分析的原理,绘制中值孔喉半径与孔隙度和渗透率的交会图(图4,图5),根据最小流动孔径求出相应的孔隙度和渗透率下限值。根据最小流动孔径确定结果,按照图4 和图5 中的回归公式计算确定X油田长63储层物性下限。

  • 图3 X油田长63储层平均压汞曲线及孔喉分布

  • Fig.3 Average mercury injection curve and pore throat distribution of Chang63 reservoir in X Oilfield

  • 图4 X油田长63储层中值孔喉半径与孔隙度交会图

  • Fig.4 Intersection of median pore throat radius and porosity of Chang 63 reservoir in X Oilfield

  • 图5 X油田长63储层中值孔喉半径与渗透率交会图

  • Fig.5 Intersection of median pore throat radius and permeability of Chang 63 reservoir in X Oilfield

  • X 油田长 63储层最小流动孔径为 0.015 μm,储层物性下限中孔隙度为7.24%,渗透率为0.072 mD; 含油储层最小流动孔径为 0.085 μm,含油储层物性下限中孔隙度为8.83%,渗透率为0.109 mD;动用储层最小流动孔径为 0.017 μm,动用储层物性下限中孔隙度为7.28%,渗透率为0.073 mD;现场确定的有效储层物性下限中孔隙度为 10%,渗透率为 0.15 mD。对比可知,该区 4 种储层物性下限中,储层物性下限最低,含油储层物性下限较高,有效储层物性下限最高。由于动用储层物性下限低于含油储层物性下限,地层产水。

  • 4 结论

  • 从储层识别角度出发,储层物性下限包括储层、含油储层、动用储层和有效储层物性下限等4种类型。其中,储层物性下限是判别储层和非储层的界限,孔隙度和渗透率低;含油储层物性下限是划分含油储层和非含油储层的界限,孔隙度和渗透率较高;动用储层物性下限是识别动用储层和非动用储层的界限,孔隙度和渗透率较高;有效储层物性下限是确定有效储层和非有效储层的界限,孔隙度和渗透率高。

  • 储层、含油储层、动用储层物性下限分别与理论渗流、充注渗流和生产渗流的最小流动孔径相对应,可以采用最小流动孔径法确定。而有效储层物性下限与试油渗流的最小流动孔径相关性小,主要受工业油流标准限定,需要根据岩心物性分析、试油和生产测试资料采用多种方法相互验证综合确定。

  • 由单一的有效储层物性下限研究,逐步转向储层、含油储层、动用储层和有效储层等4种物性下限综合研究,是储层物性下限深入研究的重要方向,对评估源外油藏表外储量规模、落实储量动用程度等具有实际意义,对油田控水稳油和后期开发调整具有指导意义。

  • 参考文献

    • [1] 郭睿.储集层物性下限值确定方法及其补充[J].石油勘探与开发,2004,31(5):140-144.GUO Rui.Supplement to determining method of cut-off value of net pay[J].Petroleum Exploration and Development,2004,31(5):140-144.

    • [2] 付金华,罗安湘,张妮妮,等.鄂尔多斯盆地长7油层组有效储层物性下限的确定[J].中国石油勘探,2014,19(6):82-88.FU Jinhua,LUO Anxiang,ZHANG Nini,et al.Determine lower limits of physical properties of effective reservoirs in Chang7 Oil Formation in Ordos Basin[J].China Petroleum Exploration,2014,19(6):82-88.

    • [3] 李熙喆,罗瑞兰,胡勇,等.孔隙型砂岩储集层主流通道指数及矿场应用[J].石油勘探与开发,2020,47(5):984-989.LI Xizhe,LUO Ruilan,HU Yong,et al.Main flow channel index in porous sand reservoirs and its application[J].Petroleum Explo⁃ ration and Development,2020,47(5):984-989.

    • [4] 刘丽,闵令元,孙志刚,等.济阳坳陷页岩油储层孔隙结构与渗流特征[J].油气地质与采收率,2021,28(1):106-114.LIU Li,MIN Lingyuan,SUN Zhigang,et al.Pore structure and per⁃ colation characteristics in shale oil reservoir of Jiyang Depression [J].Petroleum Geology and Recovery Efficiency,2021,28(1):106-114.

    • [5] 吕端川,宋金鹏.浅水三角洲前缘砂体沉积及渗流特征精细表征——以松辽盆地大庆长垣杏树岗油田为例[J].石油实验地质,2020,42(1):88-94.LÜ Duanchuan,SONG Jinpeng.Characterization of sedimentary and flow characteristics of shallow water delta front sand bodies:Xingshugang Oil Field,Daqing placanticline,Songliao Basin[J].Petroleum Geology & Experiment,2020,42(1):88-94.

    • [6] 巩联浩,刘继梓,武兴,等.裂缝性致密油藏二氧化碳吞吐基质-裂缝间流体渗流特征研究[J].特种油气藏,2021,28(1):118-124.GONG Lianhao,LIU Jizi,WU Xing,et al.Study on seepage char⁃ acteristics of fluid between matrix and fracture in CO2 huff-puff process in fractured tight reservoirs[J].Special Oil & Gas Reser⁃ voirs,2021,28(1):118-124.

    • [7] 陆国青,杨少春,张逸帆,等.马海东地区下干柴沟组下段砂岩储层孔隙结构特征及控制因素[J].大庆石油地质与开发,2021,40(2):20-29.LU Guoqing,YANG Shaochun,ZHANG Yifan,et al.Pore struc⁃ ture characteristics and their controlling factors of sandstone res⁃ ervoirs in the Lower Xiaganchaigou Formation in Mahaidong area [J].Petroleum Geology & Oilfield Development in Daqing,2021,40(2):20-29.

    • [8] 杨庭宝,钟会影,夏惠芬,等.基于微观渗流特征的水驱后残余油动用机理研究[J].油气藏评价与开发,2020,10(6):46-52.YANG Tingbao,ZHONG Huiying,XIA Huifen,et al.Mechanism of residual oil mobilization after water flooding based on micro⁃ scopic flow characteristics[J].Reservoir Evaluation and Develop⁃ ment,2020,10(6):46-52.

    • [9] 刘中云.基于难动用储量开发的石油工程协同管理创新及实践[J].石油勘探与开发,2020,47(6):1 220-1 226.LIU Zhongyun.Innovation and practice of petroleum engineering synergetic management for the development of difficult-to-pro⁃ duce reserves[J].Petroleum Exploration and Development,2020,47(6):1 220-1 226.

    • [10] 靳亚勤,王桂成,张涛.直罗油田马莲沟区油层有效厚度下限标准新研究[J].中国西部科技,2010,9(4):11-13.JIN Yaqin,WANG Guicheng,ZHANG Tao.A new study on the lower limit standard of effective reservoir thickness in Maliangou area of Zhiluo oilfield[J].Science and Technology of West China,2010,9(4):11-13.

    • [11] 崔永斌.有效储层物性下限值的确定方法[J].国外测井技术,2007,22(3):32-35,38.CUI Yongbin.Determination methods of the petrophysical lower limit value for the effective reservoir[J].World Well Logging Technology,2007,22(3):32-35,38.

    • [12] 张春,蒋裕强,郭红光,等.有效储层基质物性下限确定方法 [J].油气地球物理,2010,8(2):11-16.ZHANG Chun,JIANG Yuqiang,GUO Hongguang,et al.Methods to determine the matrix petrophysical property low limits of the ef⁃ fective reservoir[J].Petroleum Geophysics,2010,8(2):11-16.

    • [13] 万念明,操应长,郑丽婧,等.滨南—利津地区沙四段有效储层物性下限研究[J].大庆石油地质与开发,2012,30(6):50-56.WAN Nianming,CAO Yingchang,ZHENG Lijing,et al.Lower limit studies of the physical properties for the effective reservoirs in Sha No.4 member of Binnan-Lijin area[J].Petroleum Geology & Oilfield Development in Daqing,2012,30(6):50-56.

    • [14] 王艳忠,操应长.车镇凹陷古近系深层碎屑岩有效储层物性下限及控制因素[J].沉积学报,2010,28(4):752-761.WANG Yanzhong,CAO Yingchang.Lower property limit and con⁃ trols on deep effective clastic reservoirs of Paleogene in Chezhen depression[J].Acta Sedimentologica Sinica,2010,28(4):752-761.

    • [15] 于雯泉,叶绍东,陆梅娟.高邮凹陷阜三段有效储层物性下限研究[J].复杂油气藏,2011,4(1):5-9.YU Wenquan,YE Shaodong,LU Meijuan.Study on lower limit of physical properties of E1f3 effective reservoir in Gaoyou Sag[J].Complex Hydrocarbon Reservoirs,2011,4(1):5-9.

    • [16] 纪友亮,蒋裕强,张世奇.油气储层地质学[M].北京:石油工业出版社,2015.JI Youliang,JIANG Yuqiang,ZHANG Shiqi.Petroleum reservoir geology[M].Beijing:Petroleum Industry Press,2015.

    • [17] 吴元燕,吴胜和,蔡正旗.油矿地质学[M].3版.北京:石油工业出版社,2005.WU Yuanyan,WU Shenghe,CAI Zhengqi.Oilfield geology [M].3rd ed.Beijing:Petroleum Industry Press,2005.

    • [18] 吴胜和.储层表征与建模[M].北京:石油工业出版社,2010.WU Shenghe.Reservoir characterization and modeling[M].Bei⁃ jing:Petroleum Industry Press,2010.

    • [19] 路智勇,韩学辉,张欣,等.储层物性下限确定方法的研究现状与展望[J].中国石油大学学报:自然科学版,2016,40(5):32-42.LU Zhiyong,HAN Xuehui,ZHANG Xin,et al.Research status and outlook for methods of determining petrophysical property cutoffs[J].Journal of China University of Petroleum:Edition of Natural Science,2016,40(5):32-42.

    • [20] 刘毛利,冯志鹏,蔡永良,等.有效储层物性下限方法的研究现状和发展方向[J].四川地质学报,2014,34(1):9-13.LIU Maoli,FENG Zhipeng,CAI Yongliang,et al.Present situation and developmental trend of the research on methodology for deter⁃ mination of physical properties cut-off of an effective reservoir [J].Acta Geologica Sichuan,2014,34(1):9-13.

  • 参考文献

    • [1] 郭睿.储集层物性下限值确定方法及其补充[J].石油勘探与开发,2004,31(5):140-144.GUO Rui.Supplement to determining method of cut-off value of net pay[J].Petroleum Exploration and Development,2004,31(5):140-144.

    • [2] 付金华,罗安湘,张妮妮,等.鄂尔多斯盆地长7油层组有效储层物性下限的确定[J].中国石油勘探,2014,19(6):82-88.FU Jinhua,LUO Anxiang,ZHANG Nini,et al.Determine lower limits of physical properties of effective reservoirs in Chang7 Oil Formation in Ordos Basin[J].China Petroleum Exploration,2014,19(6):82-88.

    • [3] 李熙喆,罗瑞兰,胡勇,等.孔隙型砂岩储集层主流通道指数及矿场应用[J].石油勘探与开发,2020,47(5):984-989.LI Xizhe,LUO Ruilan,HU Yong,et al.Main flow channel index in porous sand reservoirs and its application[J].Petroleum Explo⁃ ration and Development,2020,47(5):984-989.

    • [4] 刘丽,闵令元,孙志刚,等.济阳坳陷页岩油储层孔隙结构与渗流特征[J].油气地质与采收率,2021,28(1):106-114.LIU Li,MIN Lingyuan,SUN Zhigang,et al.Pore structure and per⁃ colation characteristics in shale oil reservoir of Jiyang Depression [J].Petroleum Geology and Recovery Efficiency,2021,28(1):106-114.

    • [5] 吕端川,宋金鹏.浅水三角洲前缘砂体沉积及渗流特征精细表征——以松辽盆地大庆长垣杏树岗油田为例[J].石油实验地质,2020,42(1):88-94.LÜ Duanchuan,SONG Jinpeng.Characterization of sedimentary and flow characteristics of shallow water delta front sand bodies:Xingshugang Oil Field,Daqing placanticline,Songliao Basin[J].Petroleum Geology & Experiment,2020,42(1):88-94.

    • [6] 巩联浩,刘继梓,武兴,等.裂缝性致密油藏二氧化碳吞吐基质-裂缝间流体渗流特征研究[J].特种油气藏,2021,28(1):118-124.GONG Lianhao,LIU Jizi,WU Xing,et al.Study on seepage char⁃ acteristics of fluid between matrix and fracture in CO2 huff-puff process in fractured tight reservoirs[J].Special Oil & Gas Reser⁃ voirs,2021,28(1):118-124.

    • [7] 陆国青,杨少春,张逸帆,等.马海东地区下干柴沟组下段砂岩储层孔隙结构特征及控制因素[J].大庆石油地质与开发,2021,40(2):20-29.LU Guoqing,YANG Shaochun,ZHANG Yifan,et al.Pore struc⁃ ture characteristics and their controlling factors of sandstone res⁃ ervoirs in the Lower Xiaganchaigou Formation in Mahaidong area [J].Petroleum Geology & Oilfield Development in Daqing,2021,40(2):20-29.

    • [8] 杨庭宝,钟会影,夏惠芬,等.基于微观渗流特征的水驱后残余油动用机理研究[J].油气藏评价与开发,2020,10(6):46-52.YANG Tingbao,ZHONG Huiying,XIA Huifen,et al.Mechanism of residual oil mobilization after water flooding based on micro⁃ scopic flow characteristics[J].Reservoir Evaluation and Develop⁃ ment,2020,10(6):46-52.

    • [9] 刘中云.基于难动用储量开发的石油工程协同管理创新及实践[J].石油勘探与开发,2020,47(6):1 220-1 226.LIU Zhongyun.Innovation and practice of petroleum engineering synergetic management for the development of difficult-to-pro⁃ duce reserves[J].Petroleum Exploration and Development,2020,47(6):1 220-1 226.

    • [10] 靳亚勤,王桂成,张涛.直罗油田马莲沟区油层有效厚度下限标准新研究[J].中国西部科技,2010,9(4):11-13.JIN Yaqin,WANG Guicheng,ZHANG Tao.A new study on the lower limit standard of effective reservoir thickness in Maliangou area of Zhiluo oilfield[J].Science and Technology of West China,2010,9(4):11-13.

    • [11] 崔永斌.有效储层物性下限值的确定方法[J].国外测井技术,2007,22(3):32-35,38.CUI Yongbin.Determination methods of the petrophysical lower limit value for the effective reservoir[J].World Well Logging Technology,2007,22(3):32-35,38.

    • [12] 张春,蒋裕强,郭红光,等.有效储层基质物性下限确定方法 [J].油气地球物理,2010,8(2):11-16.ZHANG Chun,JIANG Yuqiang,GUO Hongguang,et al.Methods to determine the matrix petrophysical property low limits of the ef⁃ fective reservoir[J].Petroleum Geophysics,2010,8(2):11-16.

    • [13] 万念明,操应长,郑丽婧,等.滨南—利津地区沙四段有效储层物性下限研究[J].大庆石油地质与开发,2012,30(6):50-56.WAN Nianming,CAO Yingchang,ZHENG Lijing,et al.Lower limit studies of the physical properties for the effective reservoirs in Sha No.4 member of Binnan-Lijin area[J].Petroleum Geology & Oilfield Development in Daqing,2012,30(6):50-56.

    • [14] 王艳忠,操应长.车镇凹陷古近系深层碎屑岩有效储层物性下限及控制因素[J].沉积学报,2010,28(4):752-761.WANG Yanzhong,CAO Yingchang.Lower property limit and con⁃ trols on deep effective clastic reservoirs of Paleogene in Chezhen depression[J].Acta Sedimentologica Sinica,2010,28(4):752-761.

    • [15] 于雯泉,叶绍东,陆梅娟.高邮凹陷阜三段有效储层物性下限研究[J].复杂油气藏,2011,4(1):5-9.YU Wenquan,YE Shaodong,LU Meijuan.Study on lower limit of physical properties of E1f3 effective reservoir in Gaoyou Sag[J].Complex Hydrocarbon Reservoirs,2011,4(1):5-9.

    • [16] 纪友亮,蒋裕强,张世奇.油气储层地质学[M].北京:石油工业出版社,2015.JI Youliang,JIANG Yuqiang,ZHANG Shiqi.Petroleum reservoir geology[M].Beijing:Petroleum Industry Press,2015.

    • [17] 吴元燕,吴胜和,蔡正旗.油矿地质学[M].3版.北京:石油工业出版社,2005.WU Yuanyan,WU Shenghe,CAI Zhengqi.Oilfield geology [M].3rd ed.Beijing:Petroleum Industry Press,2005.

    • [18] 吴胜和.储层表征与建模[M].北京:石油工业出版社,2010.WU Shenghe.Reservoir characterization and modeling[M].Bei⁃ jing:Petroleum Industry Press,2010.

    • [19] 路智勇,韩学辉,张欣,等.储层物性下限确定方法的研究现状与展望[J].中国石油大学学报:自然科学版,2016,40(5):32-42.LU Zhiyong,HAN Xuehui,ZHANG Xin,et al.Research status and outlook for methods of determining petrophysical property cutoffs[J].Journal of China University of Petroleum:Edition of Natural Science,2016,40(5):32-42.

    • [20] 刘毛利,冯志鹏,蔡永良,等.有效储层物性下限方法的研究现状和发展方向[J].四川地质学报,2014,34(1):9-13.LIU Maoli,FENG Zhipeng,CAI Yongliang,et al.Present situation and developmental trend of the research on methodology for deter⁃ mination of physical properties cut-off of an effective reservoir [J].Acta Geologica Sichuan,2014,34(1):9-13.

  • ×
    《油气地质与采收率》
    《油气地质与采收率》启动新投稿网站的公告